1
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2024:e202400157. [PMID: 39460429 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ouyang Y, O'Hagan MP, Willner B, Willner I. Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210885. [PMID: 37083210 DOI: 10.1002/adma.202210885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Conjugation of aptamers to homogeneous catalysts ("nucleoapzymes"), heterogeneous nanoparticle catalysts ("aptananozymes"), and photocatalysts ("photoaptazymes") yields superior catalytic/photocatalytic hybrid nanostructures emulating functions of native enzymes and photosystems. The concentration of the substrate in proximity to the catalytic sites ("molarity effect") or spatial concentration of electron-acceptor units in spatial proximity to the photosensitizers, by aptamer-ligand complexes, leads to enhanced catalytic/photocatalytic efficacies of the hybrid nanostructures. This is exemplified by sets of "nucleoapzymes" composed of aptamers conjugated to the hemin/G-quadruplex DNAzymes or metal-ligand complexes as catalysts, catalyzing the oxidation of dopamine to aminochrome, oxygen-insertion into the Ar─H moiety of tyrosinamide and the subsequent oxidation of the catechol product into aminochrome, or the hydrolysis of esters or ATP. Also, aptananozymes consisting of aptamers conjugated to Cu2+ - or Ce4+ -ion-modified C-dots or polyadenine-stabilized Au nanoparticles acting as catalysts oxidizing dopamine or operating bioreactor biocatalytic cascades, are demonstrated. In addition, aptamers conjugated to the Ru(II)-tris-bipyridine photosensitizer or the Zn(II) protoporphyrin IX photosensitizer provide supramolecular photoaptazyme assemblies emulating native photosynthetic reaction centers. Effective photoinduced electron transfer followed by the catalyzed synthesis of NADPH or the evolution of H2 is demonstrated by the photosystems. Structure-function relationships dictate the catalytic and photocatalytic efficacies of the systems.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Bilha Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Trinh TK, Jian T, Jin B, Nguyen DT, Zuckermann RN, Chen CL. Designed Metal-Containing Peptoid Membranes as Enzyme Mimetics for Catalytic Organophosphate Degradation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51191-51203. [PMID: 37879106 PMCID: PMC10636725 DOI: 10.1021/acsami.3c11816] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
The detoxification of lethal organophosphate (OP) residues in the environment is crucial to prevent human exposure and protect modern society. Despite serving as excellent catalysts for OP degradation, natural enzymes require costly preparation and readily deactivate upon exposure to environmental conditions. Herein, we designed and prepared a series of phosphotriesterase mimics based on stable, self-assembled peptoid membranes to overcome these limitations of the enzymes and effectively catalyze the hydrolysis of dimethyl p-nitrophenyl phosphate (DMNP)─a nerve agent simulant. By covalently attaching metal-binding ligands to peptoid N-termini, we attained enzyme mimetics in the form of surface-functionalized crystalline nanomembranes. These nanomembranes display a precisely controlled arrangement of coordinated metal ions, which resemble the active sites found in phosphotriesterases to promote DMNP hydrolysis. Moreover, using these highly programmable peptoid nanomembranes allows for tuning the local chemical environment of the coordinated metal ion to achieve enhanced hydrolysis activity. Among the crystalline membranes that are active for DMNP degradation, those assembled from peptoids containing bis-quinoline ligands with an adjacent phenyl side chain showed the highest hydrolytic activity with a 219-fold rate acceleration over the background, demonstrating the important role of the hydrophobic environment in proximity to the active sites. Furthermore, these membranes exhibited remarkable stability and were able to retain their catalytic activity after heating to 60 °C and after multiple uses. This work provides insights into the principal features to construct a new class of biomimetic materials with high catalytic efficiency, cost-effectiveness, and reusability applied in nerve agent detoxification.
Collapse
Affiliation(s)
- Thi Kim
Hoang Trinh
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Tengyue Jian
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Biao Jin
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dan-Thien Nguyen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National
Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
| | - Chun-Long Chen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Wang L, Jiang P, Liu W, Li J, Chen Z, Guo T. Molecularly imprinted self-buffering double network hydrogel containing bi-amidoxime functional groups for the rapid hydrolysis of organophosphates. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130332. [PMID: 36423451 DOI: 10.1016/j.jhazmat.2022.130332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The development of high-performance catalyst materials with high catalytic activity for the hydrolysis of organophosphorus toxicants without additional pH buffer conditions has become an urgent need for practical application. Here, a multifunctional molecularly imprinted polymer double network hydrogel (MIP-DN) material has been prepared by integrating the first polymer network containing the functional group of bi-amidoxime as the catalytic active center and the cationic polymer polyethyleneimine (PEI) with pH buffer function as the main component of the second network. Advantageously, the resultant MIP-DN hydrogel showed excellent catalytic performance without additional pH buffer conditions, exhibiting a half-life of 25 min for the hydrolysis of paraoxon in pure water. Together with multi-functions of high catalytic activity, self-buffering function and excellent processability, the MIP-DN hydrogel prepared in this work provides a new strategy for the preparation of catalytic materials with practical application value toward toxic organophosphates.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weijie Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Onyido I, Obumselu OF, Egwuatu CI, Okoye NH. Solvent and solvation effects on reactivities and mechanisms of phospho group transfers from phosphate and phosphinate esters to nucleophiles. Front Chem 2023; 11:1176746. [PMID: 37179775 PMCID: PMC10172589 DOI: 10.3389/fchem.2023.1176746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Organophosphorus esters fulfil many industrial, agricultural, and household roles. Nature has deployed phosphates and their related anhydrides as energy carriers and reservoirs, as constituents of genetic materials in the form of DNA and RNA, and as intermediates in key biochemical conversions. The transfer of the phosphoryl (PO3) group is thus a ubiquitous biological process that is involved in a variety of transformations at the cellular level such as bioenergy and signals transductions. Significant attention has been paid in the last seven decades to understanding the mechanisms of uncatalyzed (solution) chemistry of the phospho group transfer because of the notion that enzymes convert the dissociative transition state structures in the uncatalyzed reactions into associative ones in the biological processes. In this regard, it has also been proposed that the rate enhancements enacted by enzymes result from the desolvation of the ground state in the hydrophobic active site environments, although theoretical calculations seem to disagree with this position. As a result, some attention has been paid to the study of the effects of solvent change, from water to less polar solvents, in uncatalyzed phospho transfer reactions. Such changes have consequences on the stabilities of the ground and the transition states of reactions which affect reactivities and, sometimes, the mechanisms of reactions. This review seeks to collate and evaluate what is known about solvent effects in this domain, especially their effects on rates of reactions of different classes of organophosphorus esters. The outcome of this exercise shows that a systematized study of solvent effects needs to be undertaken to fully understand the physical organic chemistry of the transfer of phosphates and related molecules from aqueous to substantially hydrophobic environments, since significant knowledge gaps exist.
Collapse
|
6
|
Basak T, Frontera A, Chattopadhyay S. Synthesis and characterization of a mononuclear zinc(ii) Schiff base complex: on the importance of C-H⋯π interactions. RSC Adv 2021; 11:30148-30155. [PMID: 35480293 PMCID: PMC9040895 DOI: 10.1039/d1ra03943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
A zinc(ii) complex, [ZnL(H2O)]·H2O {H2L = 2,2′-[(2,2-dimethyl-1,3-propanediyl)bis(nitrilomethylidyne)]bis[6-ethoxyphenol]} has been synthesized and characterized by UV-vis and IR spectroscopy. The structure of the complex has been confirmed by X-ray crystallography and the noncovalent interactions characterized using Hirshfeld surface analysis. In addition to the conventional H-bonds involving the Zn-coordinated and non-coordinated water molecules, interesting C–H⋯π interactions between the H-atoms belonging to aliphatic part of the ligand (2,2-dimethyl-1,3-propanediyl) and the Zn-coordinated aromatic rings are established. These interactions have been studied using DFT calculations (PBE0-D3/def2-TZVP) and characterized using molecular electrostatic potential (MEP) surfaces and the noncovalent interaction (NCI) plot index analyses. The strength of the C–H⋯π interaction in the solid state of [ZnL(H2O)]·H2O has been evaluated using DFT calculations and also analysed using the MEP surface and NCI plot index computational tool.![]()
Collapse
Affiliation(s)
- Tanmoy Basak
- Department of Chemistry, Inorganic Section, Jadavpur University Kolkata-700032 India
| | - Antonio Frontera
- Departamento de Química, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma Baleares Spain
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section, Jadavpur University Kolkata-700032 India
| |
Collapse
|
7
|
Lyu Y, Scrimin P. Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01219] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanchao Lyu
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Zheng S, Pan J, Wang J, Liu S, Zhou T, Wang L, Jia H, Chen Z, Peng Q, Guo T. Ag(I) Pyridine-Amidoxime Complex as the Catalysis Activity Domain for the Rapid Hydrolysis of Organothiophosphate-Based Nerve Agents: Mechanistic Evaluation and Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34428-34437. [PMID: 34278774 DOI: 10.1021/acsami.1c09003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two novel Ag(I) complexes containing synergistic pyridine and amidoxime ligands (Ag-DPAAO and Ag-PAAO) were first designed as complex monomers. Taking advantage of the molecular imprinting technique and solvothermal method, molecular imprinted porous cross-linked polymers (MIPCPs) were developed as a robust platform for the first time to incorporate Ag-PAAO into a polymer material as a recyclable catalyst. Advantageously, the observed pseudo first-order rate constant (kobs) of MIPCP-Ag-PAAO-20% for ethyl-parathion (EP) hydrolysis is about 1.2 × 104-fold higher than that of self-hydrolysis (30 °C, pH = 9). Furthermore, the reaction mechanism of the MIPCP-containing Ag-PAAO-catalyzed organothiophosphate was analyzed in detail using density functional theory and experimental spectra, indicating that the amidoxime can display dual roles for both the key coordination with the silver ion and nucleophilic attack to weaken the P-OAr bond in the catalytic active site.
Collapse
Affiliation(s)
- Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Jianping Pan
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Junhao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Shuai Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Tongtong Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Lan Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Huiting Jia
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry and Frontier Science Center for the Creation of New Organic Substances, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Pecina A, Rosa-Gastaldo D, Riccardi L, Franco-Ulloa S, Milan E, Scrimin P, Mancin F, De Vivo M. On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catal 2021; 11:8736-8748. [PMID: 34476110 PMCID: PMC8397296 DOI: 10.1021/acscatal.1c01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Indexed: 12/20/2022]
Abstract
![]()
Recent studies have
shown that gold nanoparticles (AuNPs) functionalized
with Zn(II) complexes can cleave phosphate esters and nucleic acids.
Remarkably, such synthetic nanonucleases appear to catalyze metal
(Zn)-aided hydrolytic reactions of nucleic acids similar to metallonuclease
enzymes. To clarify the reaction mechanism of these nanocatalysts,
here we have comparatively analyzed two nanonucleases with a >10-fold
difference in the catalytic efficiency for the hydrolysis of the 2-hydroxypropyl-4-nitrophenylphosphate
(HPNP, a typical RNA model substrate). We have used microsecond-long
atomistic simulations, integrated with NMR experiments, to investigate
the structure and dynamics of the outer coating monolayer of these
nanoparticles, either alone or in complex with HPNP, in solution.
We show that the most efficient one is characterized by coating ligands
that promote a well-organized monolayer structure, with the formation
of solvated bimetallic catalytic sites. Importantly, we have found
that these nanoparticles can mimic two-metal-ion enzymes for nucleic
acid processing, with Zn ions that promote HPNP binding at the reaction
center. Thus, the two-metal-ion-aided hydrolytic strategy of such
nanonucleases helps in explaining their catalytic efficiency for substrate
hydrolysis, in accordance with the experimental evidence. These mechanistic
insights reinforce the parallelism between such functionalized AuNPs
and proteins toward the rational design of more efficient catalysts.
Collapse
Affiliation(s)
- Adam Pecina
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sebastian Franco-Ulloa
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Emil Milan
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
10
|
Shu J, Yue J, Qiu X, Liu X, Ren W, Li Q, Li Y, Xu B, Zhang K, Jiang W. Binuclear metal complexes with a novel hexadentate imidazole derivative for the cleavage of phosphate diesters and biomolecules: distinguishable mechanisms. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative cleavage of phosphate diesters (HPNP, BNPP) is highly faster than the hydrolytic one by binuclear metal complexes with novel imidazole derivative, producing a non-lactone phosphate monoester due to the direct attack of free radicals.
Collapse
Affiliation(s)
- Jun Shu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Jian Yue
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xin Qiu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Wang Ren
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Qianli Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Shandong Liaocheng 252059
- P. R. China
| | - Yulong Li
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Bin Xu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Sichuan Zigong 643000
- P. R. China
| |
Collapse
|
11
|
Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Du J, Qi S, Chen J, Yang Y, Fan T, Zhang P, Zhuo S, Zhu C. Fabrication of highly active phosphatase-like fluorescent cerium-doped carbon dots for in situ monitoring the hydrolysis of phosphate diesters. RSC Adv 2020; 10:41551-41559. [PMID: 35516543 PMCID: PMC9057792 DOI: 10.1039/d0ra07429b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic cleavage of BNPP was catalyzed and monitored by the fluorescent CeCDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Tingting Fan
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
13
|
Pan J, Liu S, Jia H, Yang J, Qin M, Zhou T, Chen Z, Jia X, Guo T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Zhou X, Zhang XP, Li W, Jiang J, Xu H, Ke Z, Phillips DL, Zhao C. Unraveling mechanisms of the uncoordinated nucleophiles: theoretical elucidations of the cleavage of bis( p-nitrophenyl) phosphate mediated by zinc-complexes with apical nucleophiles. RSC Adv 2019; 9:37696-37704. [PMID: 35541823 PMCID: PMC9075727 DOI: 10.1039/c9ra06737j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023] Open
Abstract
A theoretical approach was used to investigate the hydrolytic cleavage mechanisms of the bis(p-nitrophenyl) phosphate (BNPP-) catalyzed by Zn(ii)-complexes featuring uncoordinated nucleophiles. Ligand-based and alternative solvent-based nucleophilic attack reaction models are proposed. The pK a values of the Zn(ii)-bound water molecules or ligands in the [Zn(L n H)(η-H2O)(H2O)]2+ (n = 1, 2 and 3) complexes, as well as the dimerization tendency of the mononuclear Zn(ii)-complexes, were found to significantly influence the reaction mechanisms. The Zn(ii)-L3 complexes were found to be more favorable for the hydrolytic cleavage of the BNPP- via a ligand-based nucleophilic attack pathway. This was due to the lower pK a value for the deprotonation of the oxime ligand, the hard dimerization of the mononuclear Zn(ii)-L3 species, and the presence of an uncoordinated nucleophile. The origins of the uncoordinated reactions were systematically elucidated. The theoretical results reported here are in good agreement with experimental observations and more importantly, help to elucidate the factors that influence intermolecular nucleophilic attack reactions with coordinated/uncoordinated nucleophiles.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue-Peng Zhang
- School of Chemisty and Chemical Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jingxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Huiying Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
15
|
Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate. Molecules 2019; 24:molecules24152814. [PMID: 31374998 PMCID: PMC6696475 DOI: 10.3390/molecules24152814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
A series of 2-nm gold nanoparticles passivated with different thiols all featuring at least one triazacyclonanone-Zn(II) complex and different flanking units (a second Zn(II) complex, a triethyleneoxymethyl derivative or a guanidinium of arginine of a peptide) were prepared and studied for their efficiency in the cleavage of the RNA-model substrate 2-hydroxypropyl-p-nitrophenyl phosphate. The source of catalysis for each of them was elucidated from the kinetic analysis (Michaelis–Menten profiles, pH dependence and kinetic isotope effect). The data indicated that two different mechanisms were operative: One involving two Zn(II) complexes and the other one involving a single Zn(II) complex and a flanking guanidinium cation. The mechanism based on a dinuclear catalytic site appeared more efficient than the one based on the cooperativity between a metal complex and a guanidinium.
Collapse
|
16
|
Diez-Castellnou M, Salassa G, Mancin F, Scrimin P. The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Front Chem 2019; 7:469. [PMID: 31334218 PMCID: PMC6616306 DOI: 10.3389/fchem.2019.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1, 4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate, HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow the characteristic bell-shape profile typical of complexes with penta-coordinated metal centers. By the contrary, two reactive species, featuring different deprotonation states, are present, with the tri-aqua complex being more reactive than the mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex charge which plays an important role in the stability of the transition state/s of the reactions. Relevant insight on the reaction mechanism were hence obtained.
Collapse
Affiliation(s)
| | - Giovanni Salassa
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| |
Collapse
|
17
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
18
|
Biniuri Y, Shpilt Z, Albada B, Vázquez-González M, Wolff M, Hazan C, Golub E, Gelman D, Willner I. A Bis-Zn 2+ -Pyridyl-Salen-Type Complex Conjugated to the ATP Aptamer: An ATPase-Mimicking Nucleoapzyme. Chembiochem 2019; 21:53-58. [PMID: 30908871 DOI: 10.1002/cbic.201900182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 11/09/2022]
Abstract
Catalytic nucleic acids consisting of a bis-Zn2+ -pyridyl-salen-type ([di-ZnII 3,5 bis(pyridinylimino) benzoic acid]) complex conjugated to the ATP aptamer act as ATPase-mimicking catalysts (nucleoapzymes). Direct linking of the Zn2+ complex to the 3'- or 5'-end of the aptamer (nucleoapzymes I and II) or its conjugation to the 3'- or 5'-end of the aptamer through bis-thymidine spacers (nucleoapzymes III and IV) provided a set of nucleoapzymes exhibiting variable catalytic activities. Whereas the separated bis-Zn2+ -pyridyl-salen-type catalyst and the ATP aptamer do not show any noticeable catalytic activity, the 3'-catalyst-modified nucleoapzyme (nucleoapzyme IV) and, specifically, the nucleoapzyme consisting of the catalyst linked to the 3'-position through the spacer (nucleoapzyme III) reveal enhanced catalytic features in relation to the analogous nucleoapzyme substituted at the 5'-position (kcat =4.37 and 6.88 min-1 , respectively). Evaluation of the binding properties of ATP to the different nucleoapzyme and complementary molecular dynamics simulations suggest that the distance separating the active site from the substrate linked to the aptamer binding site controls the catalytic activities of the different nucleoapzymes.
Collapse
Affiliation(s)
- Yonatan Biniuri
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | | | - Mariusz Wolff
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Carina Hazan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Eyal Golub
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Dimitri Gelman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
19
|
Hu L, Arifuzzaman MD, Zhao Y. Controlling Product Inhibition through Substrate-Specific Active Sites in Nanoparticle-Based Phosphodiesterase and Esterase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lan Hu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - MD Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
20
|
Wang R, Pan J, Qin M, Guo T. Molecularly imprinted nanocapsule mimicking phosphotriesterase for the catalytic hydrolysis of organophosphorus pesticides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Parrot A, Collin S, Bruylants G, Reinaud O. The 3 rd degree of biomimetism: associating the cavity effect, Zn II coordination and internal base assistance for guest binding and activation. Chem Sci 2018; 9:5479-5487. [PMID: 30079177 PMCID: PMC6048688 DOI: 10.1039/c8sc01129j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The synthesis and characterization of a resorcinarene-based tetra(imidazole) ligand is reported. The properties of the corresponding ZnII complex are studied in depth, notably by NMR spectroscopy. In MeCN, acid-base titration reveals that one out of the four imidazole arms is hemi-labile and can be selectively protonated, thereby opening a coordination site in the exo position. Quite remarkably, the 4th imidazole arm promotes binding of an acidic molecule (a carboxylic acid, a β-diketone or acetamide), by acting as an internal base, which allows guest binding as an anion to the metal center in the endo position. Most importantly, the presence of this labile imidazole arm makes the ZnII complex active for the catalyzed hydration of acetonitrile. It is proposed that it acts as a general base for activating a water molecule in the vicinity of the metal center during its nucleophilic attack to the endo-bound MeCN substrate. This system presents a unique degree of biomimetism when considering zinc enzymes: a pocket for guest binding, a similar first coordination sphere, a coordination site available for water activation in the cis position relative to the substrate and finally an internal imidazole residue that plays the role of a general base.
Collapse
Affiliation(s)
- A Parrot
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , CNRS UMR8601 , Université Paris Descartes , Sorbonne Paris Cité , 45 rue des Saints Pères , 75006 Paris , France .
| | - S Collin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , CNRS UMR8601 , Université Paris Descartes , Sorbonne Paris Cité , 45 rue des Saints Pères , 75006 Paris , France .
| | - G Bruylants
- Engineering of Molecular NanoSystems , Ecole Polytechnique de Bruxelles , Université Libre de Bruxelles (ULB) , Avenue F. D. Roosevelt 50, CP165/64 , B-1050 Brussels , Belgium
| | - O Reinaud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques , CNRS UMR8601 , Université Paris Descartes , Sorbonne Paris Cité , 45 rue des Saints Pères , 75006 Paris , France .
| |
Collapse
|
22
|
Bencze ES, Zonta C, Mancin F, Prins LJ, Scrimin P. Distance between Metal Centres Affects Catalytic Efficiency of Dinuclear CoIII
Complexes in the Hydrolysis of a Phosphate Diester. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eva Szusanna Bencze
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| | - Cristiano Zonta
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
23
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
24
|
Wanderlind EH, Bittencourt CR, Manfredi AM, Gerola AP, Souza BS, Fiedler HD, Nome F. Cu(II)-catalyzed hydrolysis of tris-2-pyridyl phosphate assisted by sodium dodecyl sulfate micelles. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eduardo H. Wanderlind
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Catiunaiara R. Bittencourt
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Alex M. Manfredi
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Adriana P. Gerola
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Bruno S. Souza
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Haidi D. Fiedler
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Faruk Nome
- National Institute of Science and Technology of Catalysis in Molecular and Nanostructured Systems, Department of Chemistry; Federal University of Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|
25
|
Pezzato C, Chen JLY, Galzerano P, Salvi M, Prins LJ. Catalytic signal amplification for the discrimination of ATP and ADP using functionalised gold nanoparticles. Org Biomol Chem 2018; 14:6811-20. [PMID: 27336846 DOI: 10.1039/c6ob00993j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnostic assays that incorporate a signal amplification mechanism permit the detection of analytes with enhanced selectivity. Herein, we report a gold nanoparticle-based chemical system able to differentiate ATP from ADP by means of catalytic signal amplification. The discrimination between ATP and ADP is of relevance for the development of universal assays for the detection of enzymes which consume ATP. For example, protein kinases are a class of enzymes critical for the regulation of cellular functions, and act to modulate the activity of other proteins by transphosphorylation, transferring a phosphate group from ATP to give ADP as a byproduct. The system described here exploits the ability of cooperative catalytic head groups on gold nanoparticles to very efficiently catalyze chromogenic reactions such as the transphosphorylation of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNPP). A series of chromogenic substrates have been synthesized and evaluated by means of Michaelis-Menten kinetics (compounds 2, 4-6). 2-Hydroxypropyl-(3-trifluoromethyl-4-nitro)phenyl phosphate (5) was found to display higher reactivity (kcat) and higher binding affinity (KM) when compared to HPNPP. This higher binding affinity allows phosphate 5 to compete with ATP and ADP to different extents for binding on the monolayer surface, thus enabling a catalytically amplified signal only when ATP is absent. Overall, this represents a viable new approach for monitoring the conversion of ATP into ADP with high sensitivity.
Collapse
Affiliation(s)
- Cristian Pezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Jack L-Y Chen
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Patrizia Galzerano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Michela Salvi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
26
|
Fujiwara S, Nonaka K, Yamaguchi M, Hashimoto T, Hayashita T. Structural effects of ditopic azoprobe–cyclodextrin complexes on the selectivity of guest-induced supramolecular chirality. Chem Commun (Camb) 2018; 54:12690-12693. [DOI: 10.1039/c8cc02242a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Guest-induced supramolecular chirality: the guest ion selectivity was dramatically altered by a slight change in the spacer length of (15C5-Azo-n-dpa)2–γ-CyD complexes in water.
Collapse
Affiliation(s)
- Shoji Fujiwara
- Department of Current Legal Studies
- Faculty of Law
- Meiji Gakuin University
- Yokohama
- Japan
| | - Kentaro Nonaka
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Mai Yamaguchi
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences
- Faculty of Science and Technology
- Sophia University
- Tokyo 102-8554
- Japan
| |
Collapse
|
27
|
Xie JQ, Cai SL, Feng FM. Transition Metal Complexes of a Diaza-Crown Ether with two Carbamoylmethyl Substituents: Synthesis and Assessment as a Functional Nuclease. PROGRESS IN REACTION KINETICS AND MECHANISM 2017. [DOI: 10.3184/146867817x14806858832144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the synthesis, catalytic function and catalytic mechanism of two transition metal complexes (CuL, ZnL) of a diaza-crown ether with two acetylamino side arms [L = 2,2′-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)diacetamide] in the hydrolysis of DNA. Their nuclease functions on pUC19 DNA cleavage were investigated. The results indicated that the active species might be formed by the deprotonation of the water-coordinated molecules in the complex and the optimum pH is 8.0 for both CuL and ZnL. The catalytic activity of CuL is higher than that of ZnL in DNA hydrolytic cleavage due to the difference in the Lewis acidity of the central metal ions, which is contrary to the result with the Cu and Zn complexes of the parent ligand L0 (1,4,10,13-tetraoxa-7,16-diazacyclooctadecane) as artificial nuclease. Comparison studies of DNA cleavage in the presence and absence of several oxygen scavengers showed that these complexes can promote DNA cleavage by a hydrolytic pathway. Our proposed mechanism suggests that the negative charge on the phosphorus oxygen atom of the substrate molecule is dispersed and the intermediate is formed and stabilised by hydrogen bonding between the DNA molecule and the acetylamino group of the complex.
Collapse
Affiliation(s)
- Jia-qing Xie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Shu-lan Cai
- College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P.R. China
| | - Fa-mei Feng
- College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
28
|
Gomathi A, Vijayan P, Viswanathamurthi P, Suresh S, Nandhakumar R, Hashimoto T. Organoruthenium(II) compounds with pyridyl benzoxazole/benzthiazole moiety: studies on DNA/protein binding and enzyme mimetic activities. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1309649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | | | | | - Takeshi Hashimoto
- Faculty of Science and Technology, Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
29
|
Diez-Castellnou M, Martinez A, Mancin F. Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Silva GADS, Amorim AL, Souza BD, Gabriel P, Terenzi H, Nordlander E, Neves A, Peralta RA. Synthesis and characterization of FeIII(μ-OH)ZnII complexes: effects of a second coordination sphere and increase in the chelate ring size on the hydrolysis of a phosphate diester and DNA. Dalton Trans 2017; 46:11380-11394. [DOI: 10.1039/c7dt02035j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Effects of a second coordination sphere and of the chelate ring size in FeIII(μ-OH)ZnII complexes properties and catalysis.
Collapse
Affiliation(s)
| | - André Luiz Amorim
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Bernardo de Souza
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Philipe Gabriel
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| |
Collapse
|
31
|
Xue SS, Zhao M, Lan JX, Ye RR, Li Y, Ji LN, Mao ZW. Enantioselective hydrolysis of amino acid esters by non-chiral copper complexes equipped with bis (β-cyclodextrin)s. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Xie J, Zhang Y, Cai S, Feng F. Hydrolytic activity of a crown ether-lanthanum complex in the phosphate diester and DNA cleavage. MAIN GROUP CHEMISTRY 2016. [DOI: 10.3233/mgc-160211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jiaqing Xie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, P.R. of China
| | - Ya Zhang
- Chongqing Environmental Monitoring Center, Chongqing, P.R. of China
| | - Shulan Cai
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, P.R. of China
| | - Famei Feng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, P.R. of China
| |
Collapse
|
33
|
Xie JQ, Zhang Y, Cai SL, Li FZ, Feng FM. Catalytic Capacity of Diaza-Crown Ether Lanthanum Complexes with Varied Ligands for Phosphate Ester Hydrolysis in Different Media. PROGRESS IN REACTION KINETICS AND MECHANISM 2016. [DOI: 10.3184/146867816x14710833328904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two diaza-crown ether compounds, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (L0) and its derivative with double acetamide side arms 2,2'-(1,4,10,13-teteaoxa-7,16-diazacyclooctadecane-7,16-diyl)diacetamide (L), and the corresponding two lanthanum complexes were synthesised and characterised. The catalytic capacity of the lanthanum complexes was investigated for the hydrolysis of bis(4-nitrophenyl) phosphate ester (BNPP) in aqueous solution and in CTAB micelles. Kinetic studies show that the catalytic efficiency of complex LaL is obviously higher than that of complex LaL0, and introducing acetamide into the ring of the diaza-crown ether can improve the catalytic ability of the complexes for BNPP hydrolysis. A rate enhancement of about two times was observed for the complex–micelle in contrast with the complex–water system for BNPP catalytic hydrolysis. The optimal pH for the catalytic reaction in the two kinds of media systems show an approximately 0.4 pH unit difference. The two complexes possess higher thermostability, and are more stable in the micelle than in aqueous solution. Based on the results and their analysis, a catalytic mechanism with cooperation of acetamide is proposed.
Collapse
Affiliation(s)
- Jia-qing Xie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Ya Zhang
- Chongqing Environmental Monitoring Center, Chongqing 401147, P.R. China
| | - Shu-lan Cai
- College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P.R. China
| | - Fang-zhen Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China
| | - Fa-mei Feng
- College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
34
|
Zhou YH, Chen LQ, Tao J, Shen JL, Gong DY, Yun RR, Cheng Y. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin. J Inorg Biochem 2016; 163:176-184. [DOI: 10.1016/j.jinorgbio.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|
35
|
Mancin F, Prins LJ, Pengo P, Pasquato L, Tecilla P, Scrimin P. Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles. Molecules 2016; 21:molecules21081014. [PMID: 27527134 PMCID: PMC6272841 DOI: 10.3390/molecules21081014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Although the term nanozymes was coined by us in 2004 to highlight the enzyme-like properties of gold nanoparticles passivated with a monolayer of Zn(II)-complexes in the cleavage of phosphate diesters, systems resembling those metallo-nanoparticles, like micelles and vesicles, have been the subject of investigation since the mid-eighties of the last century. This paper reviews what has been done in the field and compares the different nanosystems highlighting the source of catalysis and frequent misconceptions found in the literature.
Collapse
Affiliation(s)
- Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, Padova 35131, Italy.
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, Padova 35131, Italy.
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri, 1, Trieste 34127, Italy.
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri, 1, Trieste 34127, Italy.
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri, 1, Trieste 34127, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, Padova 35131, Italy.
| |
Collapse
|
36
|
Cai SL, Feng FM, Liu FA. Function of the Metallomicelle from an Aza-Crown Ether Complex with an Acetamide Branch as a Highly Potent Promoter of Phosphate Diester Hydrolytic Cleavage. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2015.1088451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Li S, Dai M, Zhang C, Jiang B, Xu J, Zhou D, Gu Z. DNA Cleavage and Condensation Activities of Mono- and Binuclear Hybrid Complexes and Regulation by Graphene Oxide. Molecules 2016; 21:E920. [PMID: 27428945 PMCID: PMC6274443 DOI: 10.3390/molecules21070920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/26/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
Hybrid complexes with N,N'-bis(2-benzimidazolylmethyl)amine and cyclen moieties are novel enzyme mimics and controlled DNA release materials, which could interact with DNA through three models under different conditions. In this paper, the interactions between plasmid DNA and seven different complexes were investigated, and the methods to change the interaction patterns by graphene oxide (GO) or concentrations were also investigated. The cleavage of pUC19 DNA promoted by target complexes were via hydrolytic or oxidative mechanisms at low concentrations ranging from 3.13 × 10(-7) to 6.25 × 10(-5) mol/L. Dinuclear complexes 2a and 2b can promote the cleavage of plasmid pUC19 DNA to a linear form at pH values below 7.0. Furthermore, binuclear hybrid complexes could condense DNA as nanoparticles above 3.13 × 10(-5) mol/L and partly release DNA by graphene oxide with π-π stacking. Meanwhile, the results also reflected that graphene oxide could prevent DNA from breaking down. Cell viability assays showed dinuclear complexes were safe to normal human hepatic cells at relative high concentrations. The present work might help to develop novel strategies for the design and synthesis of DNA controllable releasing agents, which may be applied to gene delivery and also to exploit the new application for GO.
Collapse
Affiliation(s)
- Shuo Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Mingxing Dai
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Chunping Zhang
- Jiangsu Key Laboratory of Target Drug and Clinical Application, Xuzhou Medical College, Xuzhou 221004, China.
| | - Bingying Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Junqiang Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dewen Zhou
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
38
|
Chen JLY, Pezzato C, Scrimin P, Prins LJ. Chiral Nanozymes-Gold Nanoparticle-Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination. Chemistry 2016; 22:7028-32. [PMID: 26919202 DOI: 10.1002/chem.201600853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/08/2022]
Abstract
Enantioselectivity in RNA cleavage by a synthetic metalloenzyme has been demonstrated for the first time. Thiols containing chiral Zn(II) -binding head groups have been self-assembled on the surface of gold nanoparticles. This results in the spontaneous formation of chiral bimetallic catalytic sites that display different activities (kcat ) towards the enantiomers of an RNA model substrate. Substrate selectivity is observed when the nanozyme is applied to the cleavage of the dinucleotides UpU, GpG, ApA, and CpC, and remarkable differences in reactivity are observed for the cleavage of the enantiomerically pure dinucleotide UpU.
Collapse
Affiliation(s)
- Jack L-Y Chen
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Cristian Pezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
39
|
Xue SS, Zhao M, Ke ZF, Cheng BC, Su H, Cao Q, Cao ZK, Wang J, Ji LN, Mao ZW. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes. Sci Rep 2016; 6:22080. [PMID: 26916830 PMCID: PMC4768151 DOI: 10.1038/srep22080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/05/2016] [Indexed: 11/30/2022] Open
Abstract
It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.
Collapse
Affiliation(s)
- Shan-Shan Xue
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bei-Chen Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hua Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhen-Kun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
40
|
Zhang X, Liu X, Phillips DL, Zhao C. Mechanistic Insights Into the Factors That Influence the DNA Nuclease Activity of Mononuclear Facial Copper Complexes Containing Hetero-Substituted Cyclens. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xueping Liu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
41
|
Shi H, Wang R, Yang J, Ren H, Liu S, Guo T. Novel imprinted nanocapsule with highly enhanced hydrolytic activity for organophosphorus pesticide degradation and elimination. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Yu L, Li FZ, Wu JY, Xie JQ, Li S. Development of the aza-crown ether metal complexes as artificial hydrolase. J Inorg Biochem 2015; 154:89-102. [PMID: 26460062 DOI: 10.1016/j.jinorgbio.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/05/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023]
Abstract
Hydrolases play a crucial role in the biochemical process, which can catalyze the hydrolysis of various compounds like carboxylic esters, phosphoesters, amides, nucleic acids, peptides, and so on. The design of artificial hydrolases has attracted extensive attention due to their scientific significance and potential applications in the field of gene medicine and molecular biology. Numerous macrocyclic metal complexes have been used as artificial hydrolase in the catalytic hydrolysis of the organic substrate. Aza-crown ether for this comment is a special class of the macrocyclic ligand containing both the nitrogen atoms and oxygen atoms in the ring. The studies showed that the aza-crown complexes exhibited high activity of hydrolytic enzyme. However, the aza-crown ether metal complex as artificial hydrolase is still very limited because of its difficulty in synthesis. This review summarizes the development of the aza-crown ether metal complexes as the artificial hydrolase, including the synthesis and catalysis of the transition metal complexes and lanthanide metal complexes of aza-crown ethers. The purpose of this review is to highlight: (1) the relationship between the structure and hydrolytic activity of synthetic hydrolase; (2) the synergistic effect of metal sites and ligands in the course of organic compound hydrolysis; and (3) the design strategies of the aza-crown ethers as hydrolase.
Collapse
Affiliation(s)
- Lan Yu
- College of Chemistry and Chemical Engineering,Chongqing University of Technology, Chongqing 400054, PR China
| | - Fang-zhen Li
- College of Chemistry and Chemical Engineering,Chongqing University of Technology, Chongqing 400054, PR China
| | - Jiao-yi Wu
- College of Chemistry and Molecular Engineering, Peking University, Peking 100871, PR China
| | - Jia-qing Xie
- College of Chemistry and Chemical Engineering,Chongqing University of Technology, Chongqing 400054, PR China
| | - Shuo Li
- College of Chemistry and Chemical Engineering,Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
43
|
Tirel EY, Williams NH. Enhancing Phosphate Diester Cleavage by a Zinc Complex through Controlling Nucleophile Coordination. Chemistry 2015; 21:7053-6. [PMID: 25787696 DOI: 10.1002/chem.201500619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/11/2022]
Abstract
Metal-ion complexes are the most effective artificial catalysts capable of cleaving phosphate diesters under mild aqueous conditions. A central strategy for making these complexes highly reactive has been to use ligand-based alcohols that are coordinated to the ion, providing an ionised nucleophile under neutral conditions but at the expense of deactivating it. We have created a highly reactive Zn complex that is 350-fold more reactive than an alcohol analogue by preventing the nucleophile binding to the metal ion. This strategy successfully delivers the benefits of efficient nucleophile delivery without strongly deactivating the metal ion Lewis acidity nor the oxyanion nucleophilicity. Varying the leaving group reveals that the transition state of the reaction is much further advanced than the reaction with hydroxide.
Collapse
Affiliation(s)
- Emmanuel Y Tirel
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF (UK)
| | | |
Collapse
|
44
|
Li FZ, Xie JQ, Feng FM. Copper and zinc complexes of a diaza-crown ether as artificial nucleases for the efficient hydrolytic cleavage of DNA. NEW J CHEM 2015. [DOI: 10.1039/c4nj02193b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper and zinc complexes of a diaza-crown ether, serving as artificial nucleases, exhibited high nuclease activities towards the hydrolytic cleavage of DNA.
Collapse
Affiliation(s)
- Fang-zhen Li
- College of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Jia-qing Xie
- College of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Fa-mei Feng
- College of Chemistry & Pharmaceutical Engineering
- Sichuan University of Science & Engineering
- Zigong, Sichuan 643000
- P. R. China
| |
Collapse
|