1
|
Cai W, Huang Z, Sun B, Lu L, Ding X, Tao F. The differentiation of Lgr5+ progenitor cells on nanostructures of self-assembled silica beads. PLoS One 2024; 19:e0304809. [PMID: 38995923 PMCID: PMC11244819 DOI: 10.1371/journal.pone.0304809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/19/2024] [Indexed: 07/14/2024] Open
Abstract
Supporting cells(SCs) have been demonstrated to be a reliable source for regenerating hair cells(HCs). Previous research has reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo. However, there is limited knowledge about the impact of the material on Lgr5+ cells. In this study, Lgr5+ cells were isolated from neonatal Lgr5-EGFP-CreERT2 transgenic mice by flow cytometry and then plated on self-assembled silica beads (SB). Lgr5+ cell differentiation was observed by immunofluorescence. We found that in the direct differentiation assay, the SB group generated more hair cells than the control group(*p < 0.05). Especially in the SB group, Lgr5+ progenitors generated significantly more Myo7a+ HCs outside of the colony than in the control group(**p < 0.01). In the sphere differentiation assay, we found that the diameter of spheres in the SB group was significantly larger compared to those of the control group(**p < 0.01). However, the difference in the ratio of myo7a+ cell counts was not obvious(P>0.05). The experiment proved that the self-assembled silica beads could promote the differentiation of Lgr5+ progenitors in vitro. Our findings implicate that nanostructures of self-assembled silica beads can be used as vectors for stem cell research in the inner ear.
Collapse
Affiliation(s)
- Wenjun Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Zhichun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Baobin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Ling Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Feng Tao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhong Da Hospital, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Wang X, Li X, Gu N, Shao Y, Guo Y, Deng Y, Chu C, Xue F, Huang L, Tao L, Bai J. pH-responsive, self-sculptured Mg/PLGA composite microfibers for accelerated revascularization and soft tissue regeneration. BIOMATERIALS ADVANCES 2024; 158:213767. [PMID: 38227990 DOI: 10.1016/j.bioadv.2024.213767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Biodegradable Mg/polymer composite fibers offer a promising therapeutic option for tissue injury because of bioactive Mg2+ and biomimetic microstructure. However, current studies are limited to the contribution of Mg2+ and the single microstructure. In this study, we designed Mg/poly (lactic-co-glycolic acid) (Mg/PLGA) composite microfibers that significantly enhanced angiogenesis and tissue regeneration synergistically by Mg2+ and self-sculptured microstructure, due to spontaneous in situ microphase separation in response to the weakly alkaline microenvironment. Our composite microfiber patch exhibited superior performance in the adhesion, spreading, and angiogenesis functions of human umbilical vein endothelial cells (HUVECs) due to the joint contribution of the hierarchically porous microstructure and Mg2+. Genomics and proteomics analyses revealed that the Mg/PLGA composite microfibers activated the cell focal adhesion and angiogenesis-related signaling pathways. Furthermore, the repair of typical soft tissue defects, including refractory urethral wounds and easily healed skin wounds, validated that our Mg/PLGA composite microfiber patch could provide favorable surface topography and ions microenvironment for tissue infiltration and accelerated revascularization. It could cause rapid urethral tissue regeneration and recovery of rabbit urethral function within 6 weeks and accelerate rat skin wound closure within 16 days. This work provides new insight into soft tissue regeneration through the bioactive alkaline substance/block copolymer composites interactions.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Xiaoyu Li
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Nannan Gu
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Yunfei Guo
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Yongji Deng
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Liqu Huang
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China.
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China.
| |
Collapse
|
3
|
Park R, Kang MS, Heo G, Shin YC, Han DW, Hong SW. Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance. ACS NANO 2024; 18:1325-1344. [PMID: 38099607 DOI: 10.1021/acsnano.2c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Micro-/nanotopographical cues have emerged as a practical and promising strategy for controlling cell fate and reprogramming, which play a key role as biophysical regulators in diverse cellular processes and behaviors. Extracellular biophysical factors can trigger intracellular physiological signaling via mechanotransduction and promote cellular responses such as cell adhesion, migration, proliferation, gene/protein expression, and differentiation. Here, we engineered a highly ordered nanowrinkled graphene oxide (GO) surface via the mechanical deformation of an ultrathin GO film on an elastomeric substrate to observe specific cellular responses based on surface-mediated topographical cues. The ultrathin GO film on the uniaxially prestrained elastomeric substrate through self-assembly and subsequent compressive force produced GO nanowrinkles with periodic amplitude. To examine the acute cellular behaviors on the GO-based cell interface with nanostructured arrays of wrinkles, we cultured L929 fibroblasts and HT22 hippocampal neuronal cells. As a result, our developed cell-culture substrate obviously provided a directional guidance effect. In addition, based on the observed results, we adapted a deep learning (DL)-based data processing technique to precisely interpret the cell behaviors on the nanowrinkled GO surfaces. According to the learning/transfer learning protocol of the DL network, we detected cell boundaries, elongation, and orientation and quantitatively evaluated cell velocity, traveling distance, displacement, and orientation. The presented experimental results have intriguing implications such that the nanotopographical microenvironment could engineer the living cells' morphological polarization to assemble them into useful tissue chips consisting of multiple cell types.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio 44195, United States
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Cho W, Yoon SH, Chung TD. Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 2023; 14:4463-4479. [PMID: 37152246 PMCID: PMC10155913 DOI: 10.1039/d3sc00338h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Seamless neural interfaces conjoining neurons and electrochemical devices hold great potential for highly efficient signal transmission across neural systems and the external world. Signal transmission through chemical sensing and stimulation via electrochemistry is remarkable because communication occurs through the same chemical language of neurons. Emerging strategies based on synaptic interfaces, iontronics-based neuromodulation, and improvements in selective neurosensing techniques have been explored to achieve seamless integration and efficient neuro-electronics communication. Synaptic interfaces can directly exchange signals to and from neurons, in a similar manner to that of chemical synapses. Hydrogel-based iontronic chemical delivery devices are operationally compatible with neural systems for improved neuromodulation. In this perspective, we explore developments to improve the interface between neurons and electrodes by targeting neurons or sub-neuronal regions including synapses. Furthermore, recent progress in electrochemical neurosensing and iontronics-based chemical delivery is examined.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| |
Collapse
|
5
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
7
|
Vinzons LU, Lin SP. Facile fabrication of ordered discontinuous nanotopography on photosensitive substrates for enhanced neuronal differentiation. NANOTECHNOLOGY 2021; 32:365301. [PMID: 34015777 DOI: 10.1088/1361-6528/ac0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Controlling the development and morphology of neurons is important for basic neuroscience research as well as for applications in nerve regeneration and neural interfaces. Various studies have shown that nanoscale topographies can promote the development of neuronal cells and the differentiation of neural stem cells; however, the fabrication of these nanotopographical features often involves expensive and sophisticated techniques. Here, we employ nanosphere lens lithography combined with UV-LED technology to create nanopatterns on an SU-8 photoresist. We develop a facile method to create a reusable polystyrene nanosphere (PS-NS) lens array by the spontaneous formation of a hexagonal close-packed array of PS-NSs at a water-air interface and its subsequent transfer to a polydimethylsiloxane carrier film without using any special equipment. We show that this simple technique can create ordered arrays of nanodots on an SU-8 film, the dimensions of which can be controlled by the size of the PS-NSs. When used as a substrate for the neuronal differentiation of pheochromocytoma (PC12) cells, the nanopatterned SU-8 films exhibit enhanced differentiation parameters with respect to conventional tissue culture plastic as compared with their flat counterparts. The method proposed here can greatly facilitate the nanopatterning of various photosensitive substrates for the development of implants for nerve regeneration and neural interfacing.
Collapse
Affiliation(s)
- Lester U Vinzons
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Jeon J, Yoon SH, Oh MA, Cho W, Kim JY, Shin CI, Kim EJ, Chung TD. Neuroligin-1-Modified Electrodes for Specific Coupling with a Presynaptic Neuronal Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21944-21953. [PMID: 33909393 DOI: 10.1021/acsami.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coordination of synapses onto electrodes with high specificity and maintaining a stable and long-lasting interface have importance in the field of neural interfaces. One potential approach is to present ligands on the surface of electrodes that would be bound through a protein-protein interaction to specific areas of neuronal cells. Here, we functionalize electrode surfaces with genetically engineered neuroligin-1 protein and demonstrate the formation of a nascent presynaptic bouton upon binding to neurexin-1 β on the presynaptic membrane of neurons. The resulting synaptically connected electrode shows an assembly of presynaptic proteins and comparable exocytosis kinetics to that of native synapses. Importantly, a neuroligin-1-induced synapse-electrode interface exhibits type specificity and structural robustness. We envision that the use of synaptic adhesion proteins in modified neural electrodes may lead to new approaches in the interfacing of neural circuity and electronics.
Collapse
Affiliation(s)
- Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Joong Kim
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Seo J, Lanara C, Choi JY, Kim J, Cho H, Chang Y, Kang K, Stratakis E, Choi IS. Neuronal Migration on Silicon Microcone Arrays with Different Pitches. Adv Healthc Mater 2021; 10:e2000583. [PMID: 32815647 DOI: 10.1002/adhm.202000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/10/2022]
Abstract
Neuronal migration is a complicated but fundamental process for proper construction and functioning of neural circuits in the brain. Many in vivo studies have suggested the involvement of environmental physical features of a neuron in its migration, but little effort has been made for the in vitro demonstration of topography-driven neuronal migration. This work investigates migratory behaviors of primary hippocampal neurons on a silicon microcone (SiMC) array that presents 14 different pitch domains (pitch: 2.5-7.3 µm). Neuronal migration becomes the maximum at the pitch of around 3 µm, with an upper migration threshold of about 4 µm. Immunocytochemical studies indicate that the speed and direction of migration, as well as its probability of occurrence, are correlated with the morphology of the neuron, which is dictated by the pitch and shape of underlying SiMC structures. In addition to the effects on neuronal migration, the real-time imaging of migrating neurons on the topographical substrate reveals new in vitro modes of neuronal migration, which have not been observed on the conventional flat culture plate, but been suggested by in vivo studies.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Christina Lanara
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Ji Yu Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Young‐Tae Chang
- Department of Chemistry POSTECH Center for Self‐Assembly and Complexity Institute for Basic Science (IBS) Pohang 37673 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry Kyung Hee University Yongin Gyeonggi 17104 Korea
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
- Department of Bio and Brain Engineering KAIST Daejeon 34141 Korea
| |
Collapse
|
10
|
Chen YJ, Huang YA, Ho CT, Yang JM, Chao JI, Li MC, Hwang E. A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Yung-An Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Chris T. Ho
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jui-I Chao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Ming-Chia Li
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| |
Collapse
|
11
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Moon HC, Choi H, Kikionis S, Seo J, Youn W, Ioannou E, Han SY, Cho H, Roussis V, Choi IS. Fabrication and Characterization of Neurocompatible Ulvan-Based Layer-by-Layer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11610-11617. [PMID: 32964713 DOI: 10.1021/acs.langmuir.0c02173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of extracellular matrix-mimetic nanofilms has considerable potential in biomedical and nanomedicinal fields. In this work, we fabricated neurocompatible layer-by-layer (LbL) films based on ulvan (ULV), a highly sulfated polysaccharide having compositional similarity to glycosaminoglycans that play important functional roles in the brain. ULV was durably assembled as a film with chitosan, another marine-derived polysaccharide, and the film enabled the stable adhesion of primary hippocampal neurons with high viability, comparable to the conventional poly-d-lysine surface. Notably, the ULV-based LbL films accelerated neurite outgrowth and selectively suppressed the adhesion of astrocytes, highlighting its potential as an advanced platform for neural implants and devices.
Collapse
Affiliation(s)
- Hee Chul Moon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Jeongyeon Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | | | | | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
13
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020; 59:15626-15632. [PMID: 32168409 PMCID: PMC7487060 DOI: 10.1002/anie.202002593] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Indexed: 12/21/2022]
Abstract
We report a simple method based upon coaxial electrospinning for the fabrication of aligned microfibers engraved with nanoscale grooves to promote neurite outgrowth and cell migration. The success of this method relies on the immiscibility between poly(ϵ-caprolactone) (PCL) and poly(vinyl pyrrolidone) (PVP) in 2,2,2-trifluoroethanol (TFE) for the generation of PVP/TFE pockets on the surface of a PCL jet. The pockets are stretched and elongated along with the jet, eventually resulting in the formation of nanoscale grooves upon the removal of PVP. The presence of nanoscale grooves greatly enhances the outgrowth of neurites from both PC12 cells and chick embryonic dorsal root ganglia (DRG) bodies, as well as the migration of Schwann cells. The enhancements can be maximized by optimizing the dimensions of the grooves for potential use in applications involving neurite extension and wound closure.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
15
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
16
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|
17
|
Park YS, Kim G, Lee JS. Anisotropic Silicification of Nanostructured Surfaces by Local Liquid-Phase Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12656-12664. [PMID: 31490695 DOI: 10.1021/acs.langmuir.9b01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploration of the bioinspired silicification of artificial scaffolds is crucial to understanding and engineering the hierarchically complex and elaborate three-dimensional (3D) frustules of diatoms, which have high porosity and mechanical stability with related gas diffusion and storage properties. Herein, we report on the bioinspired silicification of the nanostructured surfaces of hexagonally close-packed silica bead (hc-SB) arrays using a liquid-phase deposition (LPD) method. This process, governed by the kinetics of silicification, was controlled using the concentration of the reactants and the reaction temperature and monitored in real time using a quartz-crystal microbalance, which allowed the investigation of the silicification on the surface during the LPD reaction. These heterogeneous LPD reactions on hc-SB arrays were optimized to mimic natural 3D hierarchical structures. Anisotropic silicification of the nanostructures occurred owing to differences in the energy and local concentration of silicic acid on the nanostructured surface. A 3D hierarchical pore network was realized via a heterogeneous LPD reaction by controlling the size, location, and arrangement of the SBs. We believe that our silicification process on nanostructured surfaces can lead to great improvements in the bioinspired morphogenesis-based engineering of 3D hierarchical structures.
Collapse
Affiliation(s)
- Yi-Seul Park
- Materials and Life Science Research Division , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- Department of Chemistry , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| | - Gyuri Kim
- Department of Chemistry , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| | - Jin Seok Lee
- Department of Chemistry , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| |
Collapse
|
18
|
Bjørge IM, Choi IS, Correia CR, Mano JF. Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. NANOSCALE 2019; 11:16214-16221. [PMID: 31454016 DOI: 10.1039/c9nr06267j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grooved topographical features have effectively modulated cell differentiation on two-dimensional substrates. To transpose patterning into a 3D environmment, nanogrooved microdiscs, "topodiscs", are produced as cell carriers for bottom-up cell-mediated assembly. While enhancing cell proliferation, topodiscs led to the formation of bone-like aggregates, even in culture medium lacking osteoinductive factors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Insung S Choi
- Korea Adv Inst Sci & Technol, Dept Chem, Ctr Cell Encapsulat Res, Daejeon 34141, South Korea
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Jang YH, Park YS, Nam JS, Yang Y, Lee JE, Lee KH, Kang M, Chialastri A, Noh H, Park J, Lee JS, Lim KI. Nanotopography-based engineering of retroviral DNA integration patterns. NANOSCALE 2019; 11:5693-5704. [PMID: 30865198 DOI: 10.1039/c8nr07029f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the interactions between cells and viruses is critical for treating infected patients, preventing viral infections, and improving virus-based therapeutics. Chemical methods using small molecules and biological methods using proteins and nucleic acids are employed for achieving this control, albeit with limitations. We found, for the first time, that retroviral DNA integration patterns in the human genome, the result of complicated interactions between cells and viruses, can be engineered by adapting cells to the defined nanotopography of silica bead monolayers. Compared with cells on a flat glass surface, cells on beads with the highest curvature harbored retroviral DNAs at genomic sites near transcriptional start sites and CpG islands during infections at more than 50% higher frequencies. Furthermore, cells on the same type of bead layers contained retroviral DNAs in the genomic regions near cis-regulatory elements at frequencies that were 2.6-fold higher than that of cells on flat glass surfaces. Systems-level genetic network analysis showed that for cells on nanobeads with the highest curvature, the genes that would be affected by cis-regulatory elements near the retroviral integration sites perform biological functions related to chromatin structure and antiviral activities. Our unexpected observations suggest that novel engineering approaches based on materials with specific nanotopography can improve control over viral events.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04310, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xue J, Wu T, Li J, Zhu C, Xia Y. Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angew Chem Int Ed Engl 2019; 58:3948-3951. [PMID: 30681757 PMCID: PMC7758907 DOI: 10.1002/anie.201814474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Controlling the outgrowth of neurites is important for enhancing the repair of injured nerves and understanding the development of nervous systems. Herein we report a simple strategy for enhancing the outgrowth of neurites through a unique integration of topographical guidance and a chemical cue. We use electrospray to easily functionalize the surface of a substrate with microparticles of natural fatty acids at a controllable density. Through a synergistic effect from the surface roughness arising from the microparticles and the chemical cue offered by the fatty acids, the outgrowth of neurites from PC12 cells is greatly enhanced. We also functionalize the surfaces of uniaxially aligned, electrospun microfibers with the microparticles and further demonstrate that the substrates can guide and enhance directional outgrowth of neurites from both PC12 multicellular spheroids and chick embryonic dorsal root ganglia bodies.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jianhua Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
21
|
Xue J, Wu T, Li J, Zhu C, Xia Y. Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jianhua Li
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and BiochemistrySchool of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
22
|
Lee SH, Lee HB, Kim Y, Jeong JR, Lee MH, Kang K. Neurite Guidance on Laser-Scribed Reduced Graphene Oxide. NANO LETTERS 2018; 18:7421-7427. [PMID: 29995427 DOI: 10.1021/acs.nanolett.8b01651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes a one-step, chemical-free method to generate micropatterned in vitro neuronal networks on chemically unmodified reduced graphene oxide. The suggested method relies on infrared-based photothermal reduction of graphene oxide, which concurrently leads to the formation of submicrometer-scale surface roughness that promotes neuronal adhesion and guides neurite outgrowth. A commercially available laser source (LightScribe DVD drive) controlled by a computer software can be used to reduce graphene oxide (GO), and its repetitive scribing to a GO film brings about gradual increase and decrease in electrical conductivity and neurite guiding ability of the scribed regions, respectively. Our results also indicate that the observed adhesion-promoting and neurite guiding effect originate from the contrast in surface nanotopography, but not that in conductivity. This method is readily applicable to diverse graphene-based biomedical devices.
Collapse
Affiliation(s)
- Sang Hwa Lee
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| | - Han Byeol Lee
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| | - Yoonyoung Kim
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| | - Jae Ryeol Jeong
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| | - Min Hyung Lee
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry , Kyung Hee University , Yongin , Gyeonggi 17104 , South Korea
| |
Collapse
|
23
|
Huang Y, Ho CT, Lin Y, Lee C, Ho S, Li M, Hwang E. Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration. Macromol Biosci 2018; 18:e1800335. [DOI: 10.1002/mabi.201800335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Yun‐An Huang
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
| | - Chris T. Ho
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Yu‐Hsuan Lin
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Chen‐Ju Lee
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
| | - Szu‐Mo Ho
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
| | - Ming‐Chia Li
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Chiao Tung University Hsinchu 300 Taiwan
| | - Eric Hwang
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 300 Taiwan
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung University Hsinchu 300 Taiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
24
|
Kim BJ, Park M, Park JH, Joo S, Kim MH, Kang K, Choi IS. Pioneering Effects and Enhanced Neurite Complexity of Primary Hippocampal Neurons on Hierarchical Neurotemplated Scaffolds. Adv Healthc Mater 2018; 7:e1800289. [PMID: 30088694 DOI: 10.1002/adhm.201800289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Indexed: 12/14/2022]
Abstract
In this work, the use of scaffolds is reported, templated from live neurons as an advanced culture platform for primary neurons. Hippocampal neurons cultured on neurotemplated scaffolds exhibit an affinity for templated somas, revealing a preference for micrometric structures amidst nanotopographical features. It is also reported, for the first time, that neurite complexity can be topographically controlled by increasing the density of nanometric features on neurotemplated scaffolds. Neurotemplated scaffolds are versatile, hierarchical topographies that feature biologically relevant structures, in both form and scale, and capture the true complexity of an in vivo environment. The introduction and implementation of neurotemplated scaffolds is sure to advance research in the fields of neurodevelopment, network development, and neuroregeneration.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Ji Hun Park
- Department of Science Education; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Sunghoon Joo
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
25
|
Seo J, Kim J, Joo S, Choi JY, Kang K, Cho WK, Choi IS. Nanotopography-Promoted Formation of Axon Collateral Branches of Hippocampal Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801763. [PMID: 30028572 DOI: 10.1002/smll.201801763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Axon collateral branches, as a key structural motif of neurons, allow neurons to integrate information from highly interconnected, divergent networks by establishing terminal boutons. Although physical cues are generally known to have a comprehensive range of effects on neuronal development, their involvement in axonal branching remains elusive. Herein, it is demonstrated that the nanopillar arrays significantly increase the number of axon collateral branches and also promote their growth. Immunostaining and biochemical analyses indicate that the physical interactions between the nanopillars and the neurons give rise to lateral filopodia at the axon shaft via cytoskeletal changes, leading to the formation of axonal branches. This report, demonstrates that nanotopography regulates axonal branching, and provides a guideline for the design of sophisticated neuron-based devices and scaffolds for neuro-engineering.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Juan Kim
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Sunghoon Joo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Ji Yu Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Insung S Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
26
|
Kim MH, Park JH, Joo S, Hong D, Park M, Choi JY, Moon HW, Kim YG, Kang K, Choi IS. Accelerated Development of Hippocampal Neurons and Limited Adhesion of Astrocytes on Negatively Charged Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1767-1774. [PMID: 29278669 DOI: 10.1021/acs.langmuir.7b03132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work examines the development of primary neurons and astrocytes on thoroughly controlled functional groups. Negatively charged surfaces presenting carboxylate (COO-) or sulfonate (SO3-) groups prove beneficial to neuronal behavior, in spite of their supposed repulsive electrostatic interactions with cellular membranes. The adhesion and survival of primary hippocampal neurons on negatively charged surfaces are comparable to or slightly better than those on positively charged (poly-d-lysine-coated) surfaces, and neuritogenesis and neurite outgrowth are accelerated on COO- and SO3- surfaces. Moreover, such favorable influences of the negatively charged surfaces are only seen in neurons but not for astrocytes. Our results indicate that the in vitro developmental behavior of primary hippocampal neurons is sophisticatedly modulated by angstrom-sized differences in chemical structure or the charge density of the surface. We believe that this work provides new implications for understanding neuron-material interfaces as well as for establishing new ways to fabricate neuro-active surfaces.
Collapse
Affiliation(s)
- Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Sunghoon Joo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University , Busan 46241, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Hye Won Moon
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University , Suwon, Gyeonggi 16419, Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi 17104, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST , Daejeon 34141, Korea
| |
Collapse
|
27
|
Zhao X, Xu L, Sun M, Ma W, Wu X, Xu C, Kuang H. Tuning the interactions between chiral plasmonic films and living cells. Nat Commun 2017; 8:2007. [PMID: 29222410 PMCID: PMC5722823 DOI: 10.1038/s41467-017-02268-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Designing chiral materials to manipulate the biological activities of cells has been an important area not only in chemistry and material science, but also in cell biology and biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films modified with L- or D-penicillamine (Pen) to be developed for cell growth, differentiation, and retrieval. The monolayer films display high chiroptical activity, with circular dichroism values of 3.5 mdeg at 550 nm and 26.8 mdeg at 775 nm. The L-Pen-NP films accelerate cell proliferation, whereas the D -Pen-NP films have the opposite effect. Remote irradiation with light is chosen to noninvasively collect the cells. The results demonstrate that left circularly polarized light improves the efficiency of cell detachment up to 91.2% for L-Pen-NP films. These findings will facilitate the development of cell culture in biomedical application and help to understand natural homochirality.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
28
|
Marcus M, Baranes K, Park M, Choi IS, Kang K, Shefi O. Interactions of Neurons with Physical Environments. Adv Healthc Mater 2017. [PMID: 28640544 DOI: 10.1002/adhm.201700267] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Koby Baranes
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Korea
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
29
|
Dinh ND, Luo R, Christine MTA, Lin WN, Shih WC, Goh JCH, Chen CH. Effective Light Directed Assembly of Building Blocks with Microscale Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28481437 DOI: 10.1002/smll.201700684] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 05/14/2023]
Abstract
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing.
Collapse
Affiliation(s)
- Ngoc-Duy Dinh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Rongcong Luo
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | | | - Weikang Nicholas Lin
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Wei-Chuan Shih
- Departments of Electrical and Computer Engineering, Biomedical Engineering and Chemistry, University of Houston, 4800 Calhoun Rd, Houston, TX, 77004, USA
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| |
Collapse
|
30
|
Toma M, Belu A, Mayer D, Offenhäusser A. Flexible Gold Nanocone Array Surfaces as a Tool for Regulating Neuronal Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700629. [PMID: 28464550 DOI: 10.1002/smll.201700629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 05/20/2023]
Abstract
Accelerated neurite outgrowth of rat cortical neurons on a flexible and inexpensive substrate functionalized with gold nanocone arrays is reported. The gold nanocone arrays are fabricated on Teflon films by a bottom-up approach based on colloidal lithography followed by deposition of a thin gold layer. The geometry of nanocone arrays including height and pitch is controlled by the overall etching time and template polystyrene beads size. Fluorescence microscopy studies reveal high viability and significant morphological changes of the neurons on the structured surfaces. The elongation degree of neurite is maximized on the nanocone arrays created with 1 µm polystyrene beads by a factor of two with respect to the control. Furthermore, the interface between the neurons and the nanocones is investigated by scanning electron microscopy and focused ion beam cross-sectioning. The detailed observation of the neuron/nanocone interfaces reveals the morphological similarity between the nanocone tips and the neuronal processes, the existence of interspace at the interface between the cell body and the nanocones, and neurite bridging among the neighboring structures, which may induce the acceleration of neurite outgrowth. The flexible gold nanocone arrays can be a good supporting substrate of neuron culture with noble electrical and optical properties.
Collapse
Affiliation(s)
- Mana Toma
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andreea Belu
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dirk Mayer
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics ICS-8/PGI-8, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
31
|
Simitzi C, Ranella A, Stratakis E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomater 2017; 51:21-52. [PMID: 28069509 DOI: 10.1016/j.actbio.2017.01.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Unlike other tissue types, like epithelial tissue, which consist of cells with a much more homogeneous structure and function, the nervous tissue spans in a complex multilayer environment whose topographical features display a large spectrum of morphologies and size scales. Traditional cell cultures, which are based on two-dimensional cell-adhesive culture dishes or coverslips, are lacking topographical cues and mainly simulate the biochemical microenvironment of the cells. With the emergence of micro- and nano-fabrication techniques new types of cell culture platforms are developed, where the effect of various topographical cues on cellular morphology, proliferation and differentiation can be studied. Different approaches (regarding the material, fabrication technique, topographical characteristics, etc.) have been implemented. The present review paper aims at reviewing the existing body of literature on the use of artificial micro- and nano-topographical features to control neuronal and neuroglial cells' morphology, outgrowth and neural network topology. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized. STATEMENT OF SIGNIFICANCE There is increasing evidence that physical cues, such as topography, can have a significant impact on the neural cell functions. With the aid of micro-and nanofabrication techniques, new types of cell culture platforms are developed and the effect of surface topography on the cells has been studied. The present review article aims at reviewing the existing body of literature reporting on the use of various topographies to study and control the morphology and functions of cells from nervous tissue, i.e. the neuronal and the neuroglial cells. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized.
Collapse
Affiliation(s)
- C Simitzi
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - A Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - E Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece.
| |
Collapse
|
32
|
Jang YH, Yoon SY, Cho YH, Lee D, Lee JS, Lim KI. Filopodia Formation and Proliferation of Mammalian Cells Are Increased on Closely Packed Silica Nanobeads. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoon-ha Jang
- Department of Medical and Pharmaceutical Sciences; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Seo Young Yoon
- Department of Chemistry; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Young-hoo Cho
- Department of Medical and Pharmaceutical Sciences; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Dahyun Lee
- Department of Chemistry; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Jin Seok Lee
- Department of Chemistry; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Kwang-il Lim
- Department of Medical and Pharmaceutical Sciences; Sookmyung Women's University; Seoul 140-742 South Korea
- Department of Chemical and Biological Engineering; Sookmyung Women's University; Seoul 140-742 South Korea
| |
Collapse
|
33
|
Tonazzini I, Meucci S, Van Woerden GM, Elgersma Y, Cecchini M. Impaired Neurite Contact Guidance in Ubiquitin Ligase E3a (Ube3a)-Deficient Hippocampal Neurons on Nanostructured Substrates. Adv Healthc Mater 2016; 5:850-62. [PMID: 26845073 DOI: 10.1002/adhm.201500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Recent discoveries indicate that during neuronal development the signaling processes that regulate extracellular sensing (e.g., adhesion, cytoskeletal dynamics) are important targets for ubiquitination-dependent regulation, in particular through E3 ubiquitin ligases. Among these, Ubiquitin E3a ligase (UBE3A) has a key role in brain functioning, but its function and how its deficiency results in the neurodevelopmental disorder Angelman syndrome is still unclear. Here, the role of UBE3A is investigated in neurite contact guidance during neuronal development, in vitro. The microtopography sensing of wild-type and Ube3a-deficient hippocampal neurons is studied by exploiting gratings with different topographical characteristics, with the aim to compare their capabilities to read and follow physical directional stimuli. It is shown that neuronal contact guidance is defective in Ube3a-deficient neurons, and this behavior is linked to an impaired activation of the focal adhesion signaling pathway. Taken together, the results suggest that the neuronal contact sensing machinery might be affected in Angelman syndrome.
Collapse
Affiliation(s)
- I. Tonazzini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 20122 Milano Italy
| | - S. Meucci
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| | - G. M. Van Woerden
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - Y. Elgersma
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - M. Cecchini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| |
Collapse
|
34
|
Park M, Oh E, Seo J, Kim MH, Cho H, Choi JY, Lee H, Choi IS. Control over Neurite Directionality and Neurite Elongation on Anisotropic Micropillar Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1148-52. [PMID: 26395860 DOI: 10.1002/smll.201501896] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Indexed: 05/20/2023]
Abstract
Control over neurite orientation in primary hippocampal neurons is achieved by using interrupted, anisotropic micropillar arrays as a cell culture platform. Both neurite orientation and neurite length are controlled by a function of interpillar distance.
Collapse
Affiliation(s)
- Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Eunkyul Oh
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul, 133-791, South Korea
| | - Jeongyeon Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| | - Haiwon Lee
- Department of Chemistry, College of Natural Science, Hanyang University, Seoul, 133-791, South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 305-701, South Korea
| |
Collapse
|
35
|
Kang K, Park YS, Park M, Jang MJ, Kim SM, Lee J, Choi JY, Jung DH, Chang YT, Yoon MH, Lee JS, Nam Y, Choi IS. Axon-First Neuritogenesis on Vertical Nanowires. NANO LETTERS 2016; 16:675-80. [PMID: 26645112 DOI: 10.1021/acs.nanolett.5b04458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we report that high-density, vertically grown silicon nanowires (vg-SiNWs) direct a new in vitro developmental pathway of primary hippocampal neurons. Neurons on vg-SiNWs formed a single, extremely elongated major neurite earlier than minor neurites, which led to accelerated polarization. Additionally, the development of lamellipodia, which generally occurs on 2D culture coverslips, was absent on vg-SiNWs. The results indicate that surface topography is an important factor that influences neuronal development and also provide implications for the role of topography in neuronal development in vivo.
Collapse
Affiliation(s)
- Kyungtae Kang
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST , Daejeon 34141, Korea
- Department of Bio and Brain Engineering, KAIST , Daejeon 34141, Korea
| | - Yi-Seul Park
- Department of Chemistry, Sookmyung Women's University , Seoul 04310, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Min Jee Jang
- Department of Bio and Brain Engineering, KAIST , Daejeon 34141, Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Korea
| | - Juno Lee
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Ji Yu Choi
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST , Daejeon 34141, Korea
| | - Da Hee Jung
- Department of Chemistry, Sookmyung Women's University , Seoul 04310, Korea
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore , Singapore 117543, Singapore
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Korea
| | - Jin Seok Lee
- Department of Chemistry, Sookmyung Women's University , Seoul 04310, Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, KAIST , Daejeon 34141, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST , Daejeon 34141, Korea
- Department of Bio and Brain Engineering, KAIST , Daejeon 34141, Korea
| |
Collapse
|
36
|
Tagaya M. Effective segregation of cytocompatible chitosan molecules in a silica-surfactant nanostructure formation process. RSC Adv 2016. [DOI: 10.1039/c5ra26241k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Segregated nanostructures of Chi molecules by a silica-surfactant self-assembly film formation process were successfully prepared, and it is shown that their self-organization affects the cytocompatibility.
Collapse
Affiliation(s)
- M. Tagaya
- Department of Materials Science and Technology
- Nagaoka University of Technology
- Nagaoka, Japan
- Top Runner Incubation Center for Academica-Industry Fusion
- Nagaoka University of Technology
| |
Collapse
|
37
|
Yoon SY, Park YS, Lee JS. Local liquid phase deposition of silicon dioxide on hexagonally close-packed silica beads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:249-253. [PMID: 25494033 DOI: 10.1021/la5041536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Liquid phase deposition (LPD) is a useful method for the production of oxide film with low reaction temperature and production cost. With the report that the LPD of oxide films is conformally processed with uniform thickness and composition, there has been significant attention given to investigating its kinetic controls and growth mechanism on the flat surface. In this work, we explored the LPD of silicon dioxide on the hexagonally close-packed silica beads array as a nanostructured surface. The deposition and etching reactions of SiO2 occurred locally and simultaneously on silica beads, and were distinguished from the amount of fumed silica added in LPD solution. From locally competitive reactions, we obtained the anisotropic morphology of close-packed silica beads, and proposed a mechanism for the local LPD of SiO2 driven by nanostructured surfaces. This work contributes highly to improve metal oxide-based engineering, and also provide greater insight into the topography-driven LPD.
Collapse
Affiliation(s)
- Seo Young Yoon
- Department of Chemistry, Sookmyung Women's University , Seoul 140-742, South Korea
| | | | | |
Collapse
|
38
|
Xie X, Zhao W, Lee HR, Liu C, Ye M, Xie W, Cui B, Criddle CS, Cui Y. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. ACS NANO 2014; 8:11958-11965. [PMID: 25415858 DOI: 10.1021/nn504898p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological cells often interact with their local environment through subcellular structures at a scale of tens to hundreds of nanometers. This study investigated whether topographic features fabricated at a similar scale would impact cellular functions by promoting the interaction between subcellular structures and nanomaterials. Crinkling of carbon nanotube films by solvent-induced swelling and shrinkage of substrate resulted in the formation of ridge features at the subcellular scale on both flat and three-dimensional substrates. Biological cells grown upon these crinkled CNT films had enhanced activity: neuronal cells grew to higher density and displayed greater cell polarization; exoelectrogenic micro-organisms transferred electrons more efficiently. The results indicate that crinkling of thin CNT films creates secondary mesoscale features that enhance attachment, growth, and electron transfer.
Collapse
Affiliation(s)
- Xing Xie
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | | | | | | | | | | | | | | | | |
Collapse
|