1
|
Schneider A, Lystbæk TB, Markthaler D, Hansen N, Hauer B. Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis. Nat Commun 2024; 15:4925. [PMID: 38858373 PMCID: PMC11165016 DOI: 10.1038/s41467-024-48993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.
Collapse
Affiliation(s)
- Andreas Schneider
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Thomas B Lystbæk
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Daniel Markthaler
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany.
| |
Collapse
|
2
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Schell K, Li H, Lauterbach L, Taizoumbe KA, Dickschat JS, Hauer B. Alternative Active Site Confinement in Squalene–Hopene Cyclase Enforces Substrate Preorganization for Cyclization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Schneider A, Ruppert J, Lystbæk TB, Bastian S, Hauer B. Expanding the Cation Cage: Squalene-Hopene Cyclase-Mediated Enantioselective Semipinacol Rearrangement. ACS Catal 2023. [DOI: 10.1021/acscatal.2c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Andreas Schneider
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart-Vaihingen, Germany
| | - Jacqueline Ruppert
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart-Vaihingen, Germany
| | - Thomas B. Lystbæk
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart-Vaihingen, Germany
| | - Silke Bastian
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart-Vaihingen, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart-Vaihingen, Germany
| |
Collapse
|
6
|
Sarkar A, Foderaro T, Kramer L, Markley AL, Lee J, Traylor MJ, Fox JM. Evolution-Guided Biosynthesis of Terpenoid Inhibitors. ACS Synth Biol 2022; 11:3015-3027. [PMID: 35984356 DOI: 10.1021/acssynbio.2c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Andrew L Markley
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
7
|
Lawal MM, Vaissier Welborn V. Structural dynamics support electrostatic interactions in the active site of Adenylate Kinase. Chembiochem 2022; 23:e202200097. [PMID: 35303385 DOI: 10.1002/cbic.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Abstract
Electrostatic preorganization as well as structural and dynamic heterogeneity are often used to rationalize the remarkable catalytic efficiency of enzymes. However, they are often presented as incompatible because the generation of permanent electrostatic effects implies that the protein structure remains rigid. Here, we use a metric, electric fields, that can treat electrostatic contributions and dynamics effects on equal footing, for a unique perspective on enzymatic catalysis. We find that the residues that contribute the most to electrostatic interactions with the substrate in the active site of Adenylate Kinase (our working example) are also the most flexible residues. Further, entropy-tuning mutations raise flexibility at the picosecond timescale where more conformations can be visited on short time periods, thereby softening the sharp heterogeneity normally visible at the microsecond timescale.
Collapse
Affiliation(s)
| | - Valerie Vaissier Welborn
- Virginia Polytechnic Institute and State University, Chemistry, Davidson 421A, 1040 Drillfield Drive, 24073, Blacksburg, UNITED STATES
| |
Collapse
|
8
|
Chen D, Li Y, Li X, Hong X, Fan X, Savidge T. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme–substrate binding. Chem Sci 2022; 13:8193-8202. [PMID: 35919436 PMCID: PMC9278421 DOI: 10.1039/d2sc01994a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The origin of the enormous catalytic power of enzymes has been extensively studied through experimental and computational approaches. Although precise mechanisms are still subject to much debate, enzymes are thought to catalyze reactions by stabilizing transition states (TSs) or destabilizing ground states (GSs). By exploring the catalysis of various types of enzyme–substrate noncovalent interactions, we found that catalysis by TS stabilization and the catalysis by GS destabilization share common features by reducing the free energy barriers (ΔG‡s) of reactions, but are different in attaining the requirement for ΔG‡ reduction. Irrespective of whether enzymes catalyze reactions by TS stabilization or GS destabilization, they reduce ΔG‡s by enhancing the charge densities of catalytic atoms that experience a reduction in charge density between GSs and TSs. Notably, in TS stabilization, the charge density of catalytic atoms is enhanced prior to enzyme–substrate binding; whereas in GS destabilization, the charge density of catalytic atoms is enhanced during the enzyme–substrate binding. Results show that TS stabilization and GS destabilization are not contradictory to each other and are consistent in reducing the ΔG‡s of reactions. The full mechanism of enzyme catalysis includes the mechanism of reducing ΔG‡ and the mechanism of enhancing atomic charge densities. Our findings may help resolve the debate between TS stabilization and GS destabilization and assist our understanding of catalysis and the design of artificial enzymes. Transition state stabilization and ground state destabilization utilize the same molecular mechanism when lowering the free energy barriers (ΔG‡s) of reactions, but differ in achieving the requirement for ΔG‡ reduction.![]()
Collapse
Affiliation(s)
- Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xun Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xiaolin Fan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tor Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Microbiome Center, Texas Childrens Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Mitusińska K, Raczyńska A, Bzówka M, Bagrowska W, Góra A. Applications of water molecules for analysis of macromolecule properties. Comput Struct Biotechnol J 2020; 18:355-365. [PMID: 32123557 PMCID: PMC7036622 DOI: 10.1016/j.csbj.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 01/12/2023] Open
Abstract
Water molecules maintain proteins' structures, functions, stabilities and dynamics. They can occupy certain positions or pass quickly via a protein's interior. Regardless of their behaviour, water molecules can be used for the analysis of proteins' structural features and biochemical properties. Here, we present a list of several software programs that use the information provided by water molecules to: i) analyse protein structures and provide the optimal positions of water molecules for protein hydration, ii) identify high-occupancy water sites in order to analyse ligand binding modes, and iii) detect and describe tunnels and cavities. The analysis of water molecules' distribution and trajectories sheds a light on proteins' interactions with small molecules, on the dynamics of tunnels and cavities, on protein composition and also on the functionality, transportation network and location of functionally relevant residues. Finally, the correct placement of water molecules in protein crystal structures can significantly improve the reliability of molecular dynamics simulations.
Collapse
Affiliation(s)
| | | | | | | | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| |
Collapse
|
10
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
11
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
13
|
Mitusińska K, Magdziarz T, Bzówka M, Stańczak A, Gora A. Exploring Solanum tuberosum Epoxide Hydrolase Internal Architecture by Water Molecules Tracking. Biomolecules 2018; 8:biom8040143. [PMID: 30424576 PMCID: PMC6315908 DOI: 10.3390/biom8040143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Several different approaches are used to describe the role of protein compartments and residues in catalysis and to identify key residues suitable for the modification of the activity or selectivity of the desired enzyme. In our research, we applied a combination of molecular dynamics simulations and a water tracking approach to describe the water accessible volume of Solanum tuberosum epoxide hydrolase. Using water as a molecular probe, we were able to identify small cavities linked with the active site: (i) one made up of conserved amino acids and indispensable for the proper positioning of catalytic water and (ii) two others in which modification can potentially contribute to enzyme selectivity and activity. Additionally, we identified regions suitable for de novo tunnel design that could also modify the catalytic properties of the enzyme. The identified hot-spots extend the list of the previously targeted residues used for modification of the regioselectivity of the enzyme. Finally, we have provided an example of a simple and elegant process for the detailed description of the network of cavities and tunnels, which can be used in the planning of enzyme modifications and can be easily adapted to the study of any other protein.
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Tomasz Magdziarz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Agnieszka Stańczak
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Artur Gora
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
14
|
Eriksson A, Kürten C, Syrén P. Protonation-Initiated Cyclization by a Class II Terpene Cyclase Assisted by Tunneling. Chembiochem 2017; 18:2301-2305. [PMID: 28980755 PMCID: PMC5725671 DOI: 10.1002/cbic.201700443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 02/03/2023]
Abstract
Terpenes represent one of the most diversified classes of natural products with potent biological activities. The key to the myriad of polycyclic terpene skeletons with crucial functions in organisms from all kingdoms of life are terpene cyclase enzymes. These biocatalysts enable stereospecific cyclization of relatively simple, linear, prefolded polyisoprenes by highly complex, partially concerted, electrophilic cyclization cascades that remain incompletely understood. Herein, additional mechanistic light is shed on terpene biosynthesis by kinetic studies in mixed H2 O/D2 O buffers of a class II bacterial ent-copalyl diphosphate synthase. Mass spectrometry determination of the extent of deuterium incorporation in the bicyclic product, reminiscent of initial carbocation formation by protonation, resulted in a large kinetic isotope effect of up to seven. Kinetic analysis at different temperatures confirmed that the isotope effect was independent of temperature, which is consistent with hydrogen tunneling.
Collapse
Affiliation(s)
- Adam Eriksson
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
| | - Charlotte Kürten
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| | - Per‐Olof Syrén
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| |
Collapse
|
15
|
Gustafsson C, Vassiliev S, Kürten C, Syrén PO, Brinck T. MD Simulations Reveal Complex Water Paths in Squalene-Hopene Cyclase: Tunnel-Obstructing Mutations Increase the Flow of Water in the Active Site. ACS OMEGA 2017; 2:8495-8506. [PMID: 31457386 PMCID: PMC6645472 DOI: 10.1021/acsomega.7b01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 06/10/2023]
Abstract
Squalene-hopene cyclase catalyzes the cyclization of squalene to hopanoids. A previous study has identified a network of tunnels in the protein, where water molecules have been indicated to move. Blocking these tunnels by site-directed mutagenesis was found to change the activation entropy of the catalytic reaction from positive to negative with a concomitant lowering of the activation enthalpy. As a consequence, some variants are faster and others are slower than the wild type (wt) in vitro under optimal reaction conditions for the wt. In this study, molecular dynamics (MD) simulations have been performed for the wt and the variants to investigate how the mutations affect the protein structure and the water flow in the enzyme, hypothetically influencing the activation parameters. Interestingly, the tunnel-obstructing variants are associated with an increased flow of water in the active site, particularly close to the catalytic residue Asp376. MD simulations with the substrate present in the active site indicate that the distance for the rate-determining proton transfer between Asp376 and the substrate is longer in the tunnel-obstructing protein variants than in the wt. On the basis of the previous experimental results and the current MD results, we propose that the tunnel-obstructing variants, at least partly, could operate by a different catalytic mechanism, where the proton transfer may have contributions from a Grotthuss-like mechanism.
Collapse
Affiliation(s)
- Camilla Gustafsson
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
| | - Serguei Vassiliev
- Department
of Biological Sciences, Brock University, Mackenzie Chown F 234, 1812 Sir
Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Charlotte Kürten
- Science
for Life Laboratory, Stockholm—School of Biotechnology, Division
of Proteomics and Nanobiotechnology, KTH
Royal Institute of Technology, Tomtebodavägen 23a, 171 65 Solna, Sweden
| | - Per-Olof Syrén
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
- Science
for Life Laboratory, Stockholm—School of Biotechnology, Division
of Proteomics and Nanobiotechnology, KTH
Royal Institute of Technology, Tomtebodavägen 23a, 171 65 Solna, Sweden
| | - Tore Brinck
- Applied
Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 36, 100 44 Stockholm, Sweden
| |
Collapse
|
16
|
Kühnel LC, Nestl BM, Hauer B. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants. Chembiochem 2017; 18:2222-2225. [PMID: 28898524 DOI: 10.1002/cbic.201700449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/07/2022]
Abstract
Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products.
Collapse
Affiliation(s)
- Lisa C Kühnel
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bettina M Nestl
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
17
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
18
|
Marsden SR, Gjonaj L, Eustace SJ, Hanefeld U. Separating Thermodynamics from Kinetics-A New Understanding of the Transketolase Reaction. ChemCatChem 2017; 9:1808-1814. [PMID: 28919932 PMCID: PMC5573996 DOI: 10.1002/cctc.201601649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/17/2017] [Indexed: 11/20/2022]
Abstract
Transketolase catalyzes asymmetric C−C bond formation of two highly polar compounds. Over the last 30 years, the reaction has unanimously been described in literature as irreversible because of the concomitant release of CO2 if using lithium hydroxypyruvate (LiHPA) as a substrate. Following the reaction over a longer period of time however, we have now found it to be initially kinetically controlled. Contrary to previous suggestions, for the non‐natural conversion of synthetically more interesting apolar substrates, the complete change of active‐site polarity is therefore not necessary. From docking studies it was revealed that water and hydrogen‐bond networks are essential for substrate binding, thus allowing aliphatic aldehydes to be converted in the charged active site of transketolase.
Collapse
Affiliation(s)
- Stefan R Marsden
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Lorina Gjonaj
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Stephen J Eustace
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| |
Collapse
|
19
|
Fink MJ, Syrén PO. Redesign of water networks for efficient biocatalysis. Curr Opin Chem Biol 2017; 37:107-114. [DOI: 10.1016/j.cbpa.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 01/28/2023]
|
20
|
Hammer SC, Syrén PO, Hauer B. Substrate Pre-Folding and Water Molecule Organization Matters for Terpene Cyclase Catalyzed Conversion of Unnatural Substrates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stephan C. Hammer
- Division of Chemistry; Chemical Engineering; California Institute of Technology; Pasadena, CA 91125 USA
| | - Per-Olof Syrén
- School of Chemical Science and Engineering; Division of Applied Physical Chemistry; KTH Royal Institute of Technology; 100 44 Stockholm Sweden
| | - Bernhard Hauer
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 D-70569 Stuttgart Germany
| |
Collapse
|
21
|
Squalene-hopene cyclases-evolution, dynamics and catalytic scope. Curr Opin Struct Biol 2016; 41:73-82. [PMID: 27336183 DOI: 10.1016/j.sbi.2016.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/19/2023]
Abstract
Herein we highlight recent mechanistic findings on the impact of solvent dynamics on catalysis displayed by squalene-hopene cyclases (SHCs). These fascinating biocatalysts that appeared early during the evolution of terpene biosynthetic machineries exploit a catalytic aspartic acid donating the anti-oriented proton to the terminal CC double bond of pre-folded isoprenoid substrates. We review how the unusual strength of this Brønsted acid can be used to harness a plethora of non-natural protonation-driven reactions in a plastic enzyme fold. Moreover, recent results underline how the reaction termination by deprotonation or water addition is governed by the spatial location of water in the active site. Site-directed mutagenesis of amino acids located in the hydrophobic binding pocket allows for the generation of novel catalytic function by active site reshaping with relatively small enzyme libraries. A deepened understanding of triterpene cyclase dynamics in concert with chemical expertise thus have a great potential to allow for the biocatalytic manufacturing of tailored building bricks that would expand the chemical repertoire currently found in nature.
Collapse
|
22
|
Kürten C, Syrén PO. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes. J Vis Exp 2016:e53168. [PMID: 26862836 PMCID: PMC4781653 DOI: 10.3791/53168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Enzyme catalysis evolved in an aqueous environment. The influence of solvent dynamics on catalysis is, however, currently poorly understood and usually neglected. The study of water dynamics in enzymes and the associated thermodynamical consequences is highly complex and has involved computer simulations, nuclear magnetic resonance (NMR) experiments, and calorimetry. Water tunnels that connect the active site with the surrounding solvent are key to solvent displacement and dynamics. The protocol herein allows for the engineering of these motifs for water transport, which affects specificity, activity and thermodynamics. By providing a biophysical framework founded on theory and experiments, the method presented herein can be used by researchers without previous expertise in computer modeling or biophysical chemistry. The method will advance our understanding of enzyme catalysis on the molecular level by measuring the enthalpic and entropic changes associated with catalysis by enzyme variants with obstructed water tunnels. The protocol can be used for the study of membrane-bound enzymes and other complex systems. This will enhance our understanding of the importance of solvent reorganization in catalysis as well as provide new catalytic strategies in protein design and engineering.
Collapse
Affiliation(s)
- Charlotte Kürten
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology
| | - Per-Olof Syrén
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology;
| |
Collapse
|
23
|
Kürten C, Uhlén M, Syrén PO. Overexpression of functional human oxidosqualene cyclase in Escherichia coli. Protein Expr Purif 2015; 115:46-53. [DOI: 10.1016/j.pep.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
|
24
|
Hendil-Forssell P, Martinelle M, Syrén PO. Exploring water as building bricks in enzyme engineering. Chem Commun (Camb) 2015; 51:17221-4. [DOI: 10.1039/c5cc07162c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A de novo designed water pattern is used to achieve a 34-fold accelerated promiscuous enzyme catalysis by efficient transition state stabilization.
Collapse
Affiliation(s)
- Peter Hendil-Forssell
- KTH Royal Institute of Technology
- Division of Industrial Biotechnology
- AlbaNova University Centre
- 106 91 Stockholm
- Sweden
| | - Mats Martinelle
- KTH Royal Institute of Technology
- Division of Industrial Biotechnology
- AlbaNova University Centre
- 106 91 Stockholm
- Sweden
| | - Per-Olof Syrén
- KTH Royal Institute of Technology
- Division of Proteomics & Nanobiotechnology
- Science for Life Laboratory
- 171 21 Stockholm
- Sweden
| |
Collapse
|
25
|
Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat Chem Biol 2014; 11:121-6. [DOI: 10.1038/nchembio.1719] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 10/08/2014] [Indexed: 11/08/2022]
|