1
|
Guo P, Jiang YB, Jiang T. Peptide Designs for Cell-Interfacing Assemblies. Chemistry 2025; 31:e202402880. [PMID: 39648953 DOI: 10.1002/chem.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/10/2024]
Abstract
Constructing synthetic materials to interact with cells offers significant promise for understanding natural cellular processes and manipulating cell behaviors beyond nature's capabilities. Peptide assemblies are particular promising in this regard, as they have demonstrated efficacy in promoting cell differentiation, repair, and regeneration as supportive scaffolds. However, distinct gaps persist between natural and synthetic assembly systems in various aspects. This Concept review explores representative studies focusing on developing chemical strategies to design peptide assemblies with precise control over displayed molecules, adjustable molecular dynamics to modulate cell behaviors, and responsiveness to biological stimuli. This paper would inspire more fundamental studies on molecular assemblies and foster inter-disciplinary interests in material applications, advancing the interplay between natural cells and synthetic materials.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, Collage of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, Collage of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Tao Jiang
- Department of Chemistry, Collage of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Jia F, Luo T, Zhuang JY, Guo P, Fang N, Jiang YB, Jiang T. Noncovalently Bridging Cell-Surface Proteins Using Synthetic Peptides to Modulate Cell Apoptosis. NANO LETTERS 2025; 25:268-275. [PMID: 39680928 DOI: 10.1021/acs.nanolett.4c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Controlled high-order clustering of cell-surface proteins is an essential but unmatched regulatory mechanism in living systems for the modulation of cell behavior. Here, we present a strategy for generating extended and tunable one-dimensional clusters of death receptors on live cell surfaces by employing synthetic peptides to noncovalently bridging the proteins. The on-cell assembly process is validated through super-resolution fluorescence imaging and fluorescence lifetime imaging analyses. By adjusting the number of spacing peptides between the receptors before and even after the cluster formation, receptor separation can be precisely varied at nanoscale to drive cells into apoptotic or antiapoptotic states. Remarkably, this approach results in higher levels of cell apoptosis compared to the conventional practice of using preformed ligand-appended peptide coassemblies. These results demonstrate that in situ fabrication of cell-interfacing materials with compositional control permits robust and effective manipulation of high-order clustering of cell-surface proteins, advancing our ability to regulate cell behavior.
Collapse
Affiliation(s)
- Fan Jia
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Tian Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jin-Yan Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Ning Fang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Shi K, Fu W, Farhadi Sabet Z, Ye J, Liang S, Liu T, Liu Q, Guo M, You M, Wu J, Bai R, Liu Y, Hu B, Cui X, Li J, Chen C. Hydrogel-Mediated Jamming of Exosome Communications That Counter Tumor Adaption in the Tumor Immune Microenvironment. ACS NANO 2024. [PMID: 39441690 DOI: 10.1021/acsnano.4c07603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hypoxia, a common occurrence within solid tumors, can stimulate the dissemination of deceptive tumor exosomes, which function as communicative bridges and orchestrate the recruitment of various supportive cell types for enhanced tumor adaptability in a tumor immune microenvironment. Current nanotechnology provides us intelligent strategies to combat the hypoxic tumor microenvironment. However, once exposed to external stimuli, such as chemotherapy, tumor cells simultaneously release malignant signals to develop tumor migration and immunosuppression, posing challenges to clinical practice. Taking advantage of the membrane-targeting therapeutic strategy, the application of a self-assembled short peptide (PepABS-py), affording hydrogels on tumor cell surfaces, can block exosome dissemination with fiber-like nanostructures and effectively limit the systemic adverse effects of traditional therapeutics. Moreover, PepABS-py can attenuate the hypoxic tumor microenvironment in vivo by carrying an inhibitor of the hypoxic tumor-overexpressed CA IX enzyme, where hypoxia is also a crucial regulator to induce tumor exosomes and mediate intercellular communications within the immune system. Herein, its application on jamming exosome communications can target the T cell-related signaling pathway by regulating microRNAs in exosome cargoes and ultimately enhances CD8+ T cell infiltration and alleviates inflammatory monocytes at metastasis sites. Collectively, with the capability of blocking exosome dissemination, PepABS-py can be applied as a promising tumor membrane-targeting therapeutic tool to counter tumor adaption within an immune microenvironment and further advance traditional chemotherapy.
Collapse
Affiliation(s)
- Kejian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Shijian Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Qiaolin Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
4
|
Wu C, Liao W, Zhang Y, Yan Y. Peptide-based supramolecular hydrogels and their biotherapeutic applications. Biomater Sci 2024; 12:4855-4874. [PMID: 39158039 DOI: 10.1039/d4bm00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In recent years, supramolecular hydrogels have made groundbreaking research progress in biomedical fields such as drug delivery, biosensing, imaging analysis, and tissue engineering. Peptides, with their unique characteristics of facile preparation, low immunogenicity and easy biodegradability, are commonly used as building blocks of supramolecular hydrogels. Peptide-based supramolecular hydrogels loaded with drugs, prepared via physical means or covalent crosslinking, exhibit unique three-dimensional network structures and strong water retention capacities. These properties enhance drug bioavailability and reduce side effects, enabling drug accumulation and responsive release at disease sites, significantly improving the therapeutic efficacy. Here, we review recent advancements in peptide-based supramolecular hydrogels and their biotherapeutic applications, including chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, gene therapy, antibacterial and anti-inflammatory treatments, and other biological applications. This review aims to provide new inspiration for the development of biomaterials in the therapeutic field and provide more personalized options for disease treatment. Additionally, challenges and limitations in this field are briefly discussed.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wenjie Liao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yujia Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
6
|
Wang B, Zhao WT, Xu X, Zhang C, Ding SY, Zhang Y, Wang T. Binary-Cooperative Ultrathin Porous Membrane for Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309572. [PMID: 39096076 DOI: 10.1002/adma.202309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Tai Zhao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiao Xu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Chen Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuai-Ying Ding
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
7
|
Chen Y, Zhang Q, Yang S, Li G, Shi C, Hu X, Asahina S, Asano N, Zhang Y. Formulate Adaptive Biphasic Scaffold via Sequential Protein-Instructed Peptide Co-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401478. [PMID: 38785178 PMCID: PMC11304238 DOI: 10.1002/advs.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/11/2024] [Indexed: 05/25/2024]
Abstract
To ensure compositional consistency while mitigating potential immunogenicity for stem cell therapy, synthetic scaffolds have emerged as compelling alternatives to native extracellular matrix (ECM). Substantial progress has been made in emulating specific natural traits featuring consistent chemical compositions and physical structures. However, recapitulating the dynamic responsiveness of the native ECM involving chemical transitions and physical remodeling during differentiation, remains a challenging endeavor. Here, the creation of adaptive scaffolds is demonstrated through sequential protein-instructed molecular assembly, utilizing stage-specific proteins, and incorporating in situ assembly technique. The procedure is commenced by introducing a dual-targeting peptide at the onset of stem cell differentiation. In response to highly expressed integrins and heparan sulfate proteoglycans (HSPGs) on human mesenchymal stem cell (hMSC), the peptides assembled in situ, creating customized extracellular scaffolds that adhered to hMSCs promoting osteoblast differentiation. As the expression of alkaline phosphatase (ALP) and collagen (COL-1) increased in osteoblasts, an additional peptide is introduced that interacts with ALP, initiating peptide assembly and facilitating calcium phosphate (CaP) deposition. The growth and entanglement of peptide assemblies with collagen fibers efficiently incorporated CaP into the network resulting in an adaptive biphasic scaffold that enhanced healing of bone injuries.
Collapse
Affiliation(s)
- Yazhou Chen
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Qizheng Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shenyu Yang
- Medical 3D Printing CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Guanying Li
- Department of BiophysicsSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxi71006China
| | - Chaochen Shi
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhouHenan450003China
| | - Xunwu Hu
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shunsuke Asahina
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendai980‐8572Japan
| | - Natsuko Asano
- SM Application Planning GroupJEOL Ltd.AkishimaTokyo196‐8588Japan
| | - Ye Zhang
- Active Soft Matter GroupSongshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
8
|
Ren X, Wei J, Luo X, Liu Y, Li K, Zhang Q, Gao X, Yan S, Wu X, Jiang X, Liu M, Cao D, Wei L, Zeng X, Shi J. HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400829. [PMID: 38704695 PMCID: PMC11234452 DOI: 10.1002/advs.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Indexed: 05/07/2024]
Abstract
Self-assembling peptides have numerous applications in medicine, food chemistry, and nanotechnology. However, their discovery has traditionally been serendipitous rather than driven by rational design. Here, HydrogelFinder, a foundation model is developed for the rational design of self-assembling peptides from scratch. This model explores the self-assembly properties by molecular structure, leveraging 1,377 self-assembling non-peptidal small molecules to navigate chemical space and improve structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are generated and synthesized 17 peptides, subsequently experimentally validating the self-assembly and biophysical characteristics of nine peptides ranging from 1-10 amino acids-all achieved within a 19-day workflow. Notably, the two de novo-designed self-assembling peptides demonstrated low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This work highlights the capacity of HydrogelFinder to diversify the design of self-assembling peptides through non-peptidal small molecules, offering a powerful toolkit and paradigm for future peptide discovery endeavors.
Collapse
Affiliation(s)
- Xuanbai Ren
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xiaoli Luo
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Yuansheng Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Kenli Li
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Qiang Zhang
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310013China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Sizhe Yan
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xingyue Jiang
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Mingquan Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410003China
| | - Leyi Wei
- School of SoftwareShandong UniversityJinan250100China
- Joint SDU‐NTU Centre for Artificial Intelligence Research (C‐FAIR)Shandong UniversityJinan250100China
| | - Xiangxiang Zeng
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| |
Collapse
|
9
|
Tan W, Zhang Q, Lee M, Lau W, Xu B. Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2373045. [PMID: 39011064 PMCID: PMC11249168 DOI: 10.1080/14686996.2024.2373045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interactions. This review briefly introduces the development of using enzymatic reactions to control intermolecular interactions for generating artificial nanoarchitectures in a cellular environment. We begin the discussion with the early examples and uniqueness of enzymatically controlled self-assembly. Then, we describe examples of generating intracellular nanostructures and their relevant applications. Subsequently, we discuss cases of forming nanostructures on the cell surface via enzymatic reactions. Following that, we highlight the use of enzymatic reactions for creating intercellular nanostructures. Finally, we provide a summary and outlook on the promises and future direction of this strategy. Our aim is to give an updated introduction to the use of enzymatic reaction in regulating intermolecular interactions, a phenomenon ubiquitous in biology but relatively less explored by chemists and materials scientists. Our goal is to stimulate new developments in this simple and versatile approach for addressing societal needs.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Mikki Lee
- Department of Chemistry, Brandeis University, Waltham, MA, USA
- Department of Pharmacy and Pharmaceutical Sciences, National University ofSingapore, Singapore
| | - William Lau
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| |
Collapse
|
10
|
Liu H, Wang H. From cells to subcellular organelles: Next-generation cancer therapy based on peptide self-assembly. Adv Drug Deliv Rev 2024; 209:115327. [PMID: 38703895 DOI: 10.1016/j.addr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.
Collapse
Affiliation(s)
- Huayang Liu
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
11
|
Yi M, Ashton-Rickardt G, Tan W, Liu Z, He H, Hsieh JT, Xu B. Accelerating Cellular Uptake with Unnatural Amino Acid for Inhibiting Immunosuppressive Cancer Cells. Chemistry 2024; 30:e202400691. [PMID: 38527252 PMCID: PMC11132931 DOI: 10.1002/chem.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Targeting immunosuppressive metastatic cancer cells is a key challenge in therapy. We recently have shown that a rigid-rod aromatic, pBP-NBD, that responds to enzymes and kill immunosuppressive metastatic osteosarcoma (mOS) and castration resistant prostate cancer (CRPC) cells in mimetic bone microenvironment. However, pBP-NBD demonstrated moderate efficacy against CRPC cells. To enhance activity, we incorporated the unnatural amino acid L- or D-4,4'-biphenylalanine (L- or D-BiP) into pBP-NBD, drastically increasing cellular uptake and CRPC inhibition. Specifically, we inserted BiP into pBP-NBD to target mOS (Saos2 and SJSA1) and CRPC (VCaP and PC3) cells with overexpressed phosphatases. Our results show that the D-peptide backbone with an aspartate methyl diester at the C-terminal offers the highest activity against these immunosuppressive mOS and CRPC cells. Importantly, imaging shows that the peptide assemblies almost instantly enter the cells and accumulate primarily within the endoplasmic reticulum of Saos2, SJSA1, and PC3 cells and at the lysosomes of VCaP cells. By using BiP to boost cellular uptake and self-assembly within cancer cells, this work illustrates an unnatural hydrophobic amino acid as a versatile and effective residue to boost endocytosis of synthetic peptides for intracellular self-assembly.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jer-Tsong Hsieh
- Department of Urology, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
12
|
Vishnevetskii DV, Andrianova YV, Polyakova EE, Ivanova AI, Mekhtiev AR. Fluoride-Ion-Responsive Sol-Gel Transition in an L-Cysteine/AgNO 3 System: Self-Assembly Peculiarities and Anticancer Activity. Gels 2024; 10:332. [PMID: 38786249 PMCID: PMC11121661 DOI: 10.3390/gels10050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called "soft" materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine-silver sol-CSS) with sodium halides. Modern instrumental techniques such as viscosimetry, UV spectroscopy, dynamic light scattering, zeta potential measurements, SEM and EDS identified that adding fluoride anions to CSS is able to form stable hydrogels of a thixotropic nature, while Cl-, Br- and I- lead to precipitation. The self-assembly process proceeds using a narrow concentration range of F-. An increase in the fluoride anion content in the system leads to a change in the gel network morphology from elongated structures to spherical ones. This fact is reflected in a decrease in the gel viscosity and a number of gel-sol-gel transition cycles. The mechanism of F-'s interaction with hydrosol includes the condensation of anions on the positive surface of the CSS nanoparticles, their binding via electrostatic forces and the formation of a resulting gel carcass. In vitro analysis showed that the hydrogels suppressed human squamous carcinoma cells at a micromolar sample concentration. The obtained soft gels could have potential applications against cutaneous malignancy and as carriers for fluoride anion and other bioactive substance delivery.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (Y.V.A.); (E.E.P.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Yana V. Andrianova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (Y.V.A.); (E.E.P.)
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (Y.V.A.); (E.E.P.)
| | - Alexandra I. Ivanova
- Department of Applied Physics, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| |
Collapse
|
13
|
Wu X, Hu JJ, Yoon J. Cell Membrane as A Promising Therapeutic Target: From Materials Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400249. [PMID: 38372669 DOI: 10.1002/anie.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
15
|
Hu JJ, Lin N, Zhang Y, Xia F, Lou X. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202313139. [PMID: 37889872 DOI: 10.1002/anie.202313139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Niya Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yunfan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
16
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Zhang H, Xu T, Liang J, Wu B, Yang X, Wang J, Zhou Z, Wang H. Controlling Supramolecular Fiber Formation of Nucleopeptide by Guanosine Triphosphate. Biomacromolecules 2023; 24:5678-5686. [PMID: 37934694 DOI: 10.1021/acs.biomac.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cells use dynamic self-assembly to construct functional structures for maintaining cellular homeostasis. However, using a natural biological small molecule to mimic this phenomenon remains challenging. This work reports the dynamic microfiber formation of nucleopeptide driven by guanosine triphosphate, the small molecule that controls microtubule polymerization in living cells. Deactivation of GTP by enzyme dissociates the fibers, which could be reactivated by adding GTP. Molecular dynamic simulation unveils the mystery of microfiber formation of GBM-1 and GTP. Moreover, the microfiber formation can also be controlled by diffusion-driven GTP gradients across a semipermeable membrane in bulk conditions and the microfluidic method in the defined droplets. This study provides a new platform to construct dynamic self-assembly materials of molecular building blocks driven by GTP.
Collapse
Affiliation(s)
- Hongyue Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Tengyan Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Juan Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Ziao Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Li CY, Liang Z, Liu L, Kuang Y. Intracellular Molecules Induced Extracellular Peptide Self-Assembly for Efficient and Effective In Situ Cell Purification. Angew Chem Int Ed Engl 2023; 62:e202306533. [PMID: 37483172 DOI: 10.1002/anie.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Synthetic messenger RNA (mRNA) switches are powerful tools for in situ cell purification, especially for cells derived from stem cells. However, the retention effectiveness of the target cells is limited by the leaky expression of toxic protein. The elimination efficiency of non-target cells is also constrained due to the lack of signal amplification. In this study, we designed a novel approach that uses synthetic mRNA switch to convey intracellular marker molecule information into spatially controlled extracellular toxic assembly formation. The approach bypasses the use of toxic protein to ensure high target cell recovery effectiveness. Meanwhile, the marker molecule information is amplified at multiple levels to ensure high non-target cell elimination effectiveness. Our approach can be tailored to meet various in situ cell purification needs, promising high-quality in situ cell purification for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong
| | - Lejian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Hong Kong
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong
| |
Collapse
|
19
|
Guo P, Wang D, Zhang S, Cheng D, Wu S, Zuo X, Jiang YB, Jiang T. Reassembly of Peptide Nanofibrils on Live Cell Surfaces Promotes Cell-Cell Interactions. NANO LETTERS 2023. [PMID: 37399537 DOI: 10.1021/acs.nanolett.3c01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Nature regulates cellular interactions through the cell-surface molecules and plasma membranes. Despite advances in cell-surface engineering with diverse ligands and reactive groups, modulating cell-cell interactions through scaffolds of the cell-binding cues remains a challenging endeavor. Here, we assembled peptide nanofibrils on live cell surfaces to present the ligands that bind to the target cells. Surprisingly, with the same ligands, reducing the thermal stability of the nanofibrils promoted cellular interactions. Characterizations of the system revealed a thermally induced fibril disassembly and reassembly pathway that facilitated the complexation of the fibrils with the cells. Using the nanofibrils of varied stabilities, the cell-cell interaction was promoted to different extents with free-to-bound cell conversion ratios achieved at low (31%), medium (54%), and high (93%) levels. This study expands the toolbox to generate desired cell behaviors for applications in many areas and highlights the merits of thermally less stable nanoassemblies in designing functional materials.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Di Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Shumin Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Dan Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Siyu Wu
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
20
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
21
|
Zhao C, Li X, Bian S, Zeng W, Ronca A, D’Amora U, Raucci MG, Liang J, Sun Y, Jiang Q, Fan Y, Ambrosio L, Zhang X. Nanofibrous polypeptide hydrogels with collagen-like structure as biomimetic extracellular matrix. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-022-00110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSupramolecular peptides exhibit obvious similarities with collagen fibers in terms of self-assembly characteristics, nanofibrous structure, and responsiveness to external stimuli. Here, a series of supramolecular peptides were developed by altering the amino acid sequence, enabling the self-assembly of three types of 4-biphenylacetic acid (BPAA)-tripeptides into fibrous hydrogel through hydrogen bonding and π–π stacking under the influence of ion induction. Transmission electron and scanning electron microscopies revealed that the diameter of the fiber within nanofibrous hydrogels was ~ 10 and ~ 40 nm, respectively, which was similar with the self-assembled collagen fibers. For this reason, these hydrogels could be considered as a biomimetic extracellular substitute. Meanwhile, the gelation concentration induced by ions was even lower than 0.66 wt%, with an elastic modulus of ~ 0.27 kPa, corresponding to a water content of 99.34 wt%. In addition, the three supramolecular hydrogels were found to be good substrates for L929 cell adhesion and MC-3T3 cell proliferation. The overall results implied that BPAA-based hydrogels have a lucrative application potential as cell carriers.
Graphical Abstract
Collapse
|
22
|
Ma Y, Wang A, Li J, Li Q, Han Q, Jing Y, Zheng X, Cao H, Yan X, Bai S. Surface Self-Assembly of Dipeptides on Porous CaCO 3 Particles Promoting Cell Internalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2486-2497. [PMID: 36580635 DOI: 10.1021/acsami.2c21447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembling behavior of peptides and derivatives is crucial in the natural process to construct various architectures and achieve specific functions. However, the surface or interfacial self-assembly, in particular, on the surface of micro- or nanoparticles is even less systematically investigated. Here, uniform porous CaCO3 microparticles were prepared with different charged, hydrophobic and hydrophilic surfaces to assess the self-assembling behavior of dipeptides composed of various sequences. Experimental results indicate that dipeptides with a negative charge in an aqueous solution preferred to self-assemble on the hydrophobic and positively charged surface of CaCO3 particles, which can be ascribed to the electrostatic and hydrophobic interaction between dipeptides and CaCO3 particles. Meanwhile, the Log p (lipid-water partition coefficient) of dipeptides has a significant effect on the self-assembling behavior of dipeptides on the surface of porous CaCO3; dipeptides with high Log p preferred to self-assemble on the surface of CaCO3 particles, resulting in the improved cell internalization efficiency of particles with low cytotoxicity. After loading with a model drug (doxorubicin), the particles show obvious antitumor activity in animal experiments and can reduce Dox side effects effectively.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yafeng Jing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefang Zheng
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
23
|
Wang Z, Hao D, Wang Y, Zhao J, Zhang J, Rong X, Zhang J, Min J, Qi W, Su R, He M. Peptidyl Virus-Like Nanovesicles as Reconfigurable "Trojan Horse" for Targeted siRNA Delivery and Synergistic Inhibition of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204959. [PMID: 36372545 DOI: 10.1002/smll.202204959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of peptidyl virus-like nanovesicles (pVLNs) composed of highly ordered peptide bilayer membranes that encapsulate the small interfering RNA (siRNA) is reported. The targeting and enzyme-responsive sequences on the bilayer's surface allow the pVLNs to enter cancer cells with high efficiency and control the release of genetic drugs in response to the subcellular environment. By transforming its structure in response to the highly expressed enzyme matrix metalloproteinase 7 (MMP-7) in cancer cells, it helps the siRNA escape from the lysosomes, resulting in a final silencing efficiency of 92%. Moreover, the pVLNs can serve as reconfigurable "Trojan horse" by transforming into membranes triggered by the MMP-7 and disrupting the cytoplasmic structure, thereby achieving synergistic anticancer effects and 96% cancer cell mortality with little damage to normal cells. The pVLNs benefit from their biocompatibility, targeting, and enzyme responsiveness, making them a promising platform for gene therapy and anticancer therapy.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongzhao Hao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jinwu Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiaojiao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Mingxia He
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
24
|
Lin F, Jia C, Wu FG. Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196557. [PMID: 36235094 PMCID: PMC9571778 DOI: 10.3390/molecules27196557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable. In this article, we carefully review the advances in the applications of IEISAP, including the development of various bioimaging techniques, such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, positron-emission tomography imaging, radiation imaging, and multimodal imaging, which are successfully leveraged in visualizing cancer tissues and cells, bacteria, and enzyme activity. We also summarize the utilization of IEISAP in disease treatments, including anticancer, antibacterial, and antiinflammation applications, among others. We present the design, action modes, structures, properties, functions, and performance of IEISAP materials, such as nanofibers, nanoparticles, nanoaggregates, and hydrogels. Finally, we conclude with an outlook towards future developments of IEISAP materials for biomedical applications. It is believed that this review may foster the future development of IEISAP with better performance in the biomedical field.
Collapse
|
25
|
Wang T, Gao Z, Zhang Y, Hong Y, Tang Y, Shan K, Kong X, Wang Z, Shi Y, Ding D. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. J Control Release 2022; 351:272-283. [PMID: 36116581 DOI: 10.1016/j.jconrel.2022.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
Abstract
Triple negative breast cancer (TNBC) is an immunosuppressive "cold" tumor that lacks immune cell infiltration and activation, resulting in a poor response to immune checkpoint blockade (ICB) therapies. In addition, TNBC is poorly responsive to targeted therapies due to the absence of efficient molecular targets. A strategy that can block molecular signal transduction, stimulate immunogenicity, and activate the immune response is a promising approach to achieve ideal clinical benefit. Herein, we designed and synthesized an aggregation-induced emission luminogen (AIEgen)-conjugated self-assembling peptide that targets epidermal growth factor receptor (EGFR), named TPA-FFG-LA. TPA-FFG-LA peptides form nanoassemblies on the surface of EGFR-positive TNBC cells and are internalized into cells through endocytosis, which inhibit EGFR signaling transduction and provoke lysosomal membrane permeabilization (LMP). Upon light irradiation, the aggregated AIEgens produce massive reactive oxygen species (ROS) to exacerbate LMP and trigger immunogenic cell death (ICD), resulting in elimination of residual EGFR-negative tumor cells and exerting long-term antitumor effects. The in vitro and in vivo experiments verified that TPA-FFG-LA nanoassemblies suppress tumor growth, provoke immune cell activation and infiltration, and cause EGFR degradation and LMP. These results suggest that the combination of supramolecular assembly induced molecular targeting effects and lysosome dysfunction with ICD-stimulated immune activation is a plausible strategy for the efficient therapy of immunosuppressive TNBC.
Collapse
Affiliation(s)
- Tianjiao Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Youhong Tang
- Australia-China Joint Centre for Personal Health Technologies, Medical Device Research Institute, Flinders University, South Australia 5042, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Shi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
27
|
Yi M, Wang F, Tan W, Hsieh JT, Egelman EH, Xu B. Enzyme Responsive Rigid-Rod Aromatics Target "Undruggable" Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. J Am Chem Soc 2022; 144:13055-13059. [PMID: 35849554 PMCID: PMC9339482 DOI: 10.1021/jacs.2c05491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone metastasis remains a challenge in cancer treatment. Here we show enzymatic responsive rigid-rod aromatics acting as the substrates of "undruggable" phosphatases to kill cancer cells in a mimetic bone microenvironment. By phosphorylation and conjugating nitrobenzoxadiazole (NBD) to hydroxybiphenylcarboxylate (BP), we obtained pBP-NBD (1P) as a substrate of both acid and alkaline phosphatases. 1P effectively kills both metastatic castration-resistant prostate cancer cells (mCRPCs) and osteoblast mimic cells in their coculture. 1P enters Saos2 almost instantly to target the endoplasmic reticulum (ER) of the cells. Co-culturing with Saos2 cells boosts the cellular uptake of 1P by mCRPCs. Cryo-EM reveals the nanotube structures of both 1P (2.4 Å resolution, pH 5.6) and 1 (2.2 Å resolution, pH 7.4). The helical packing of both nanotubes is identical, held together by strong pi-stacking interactions. Besides reporting the atomistic structure of nanotubes formed by the assembly of rigid-rod aromatics, this work expands the pool of molecules for designing EISA substrates that selectively target TME.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jer-Tsong Hsieh
- Department of Urology, Southwestern Medical Center, University of Texas, Dallas, Texas 75235, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
28
|
Self-Assembled Peptide Nanostructures for ECM Biomimicry. NANOMATERIALS 2022; 12:nano12132147. [PMID: 35807982 PMCID: PMC9268130 DOI: 10.3390/nano12132147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Collapse
|
29
|
Mañas‐Torres MC, Illescas‐Lopez S, Gavira JA, de Cienfuegos LÁ, Marchesan S. Interactions Between Peptide Assemblies and Proteins for Medicine. Isr J Chem 2022. [DOI: 10.1002/ijch.202200018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mari C. Mañas‐Torres
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - Sara Illescas‐Lopez
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR) Avenida de las Palmeras 4 18100 Armilla, UEQ Granada Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
- Instituto de Investigación Biosanitaria ibs Granada Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department University of Trieste Via L. Giorgieri 1 Trieste 34127 Italy
| |
Collapse
|
30
|
Li X, Wang Y, Zhang Y, Yang Z, Gao J, Shi Y. Enzyme-instructed self-assembly (EISA) assists the self-assembly and hydrogelation of hydrophobic peptides. J Mater Chem B 2022; 10:3242-3247. [PMID: 35437539 DOI: 10.1039/d2tb00182a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enzyme-instructed self-assembly (EISA) has several advantages in the preparation of supramolecular self-assembly materials for biomedical applications. In this study, we demonstrated that the enzyme-instructed self-assembly (EISA) strategy could assist the self-assembly and hydrogelation of two hydrophobic and bioactive peptides, tyroservatide (YSV) and laminin pentapeptide (YIGSR). We first synthesized the peptide derivatives of Nap-GFFYSV (peptide 1) and Nap-GFFYIGSR (peptide 2) and found that both peptides could not self-assemble into hydrogels due to their poor solubility. We therefore designed the phosphorylated precursors of the two hydrophobic peptides, Nap-GFFpYSV (precursor 1) and Nap-GFFpYIGSR (precursor 2), respectively, which had good solubility and can be dephosphorylated by alkaline phosphatase (ALP) to form supramolecular hydrogels. In addition, we found that the EISA could also occur on the surface of cells that overexpress ALP. The EISA strategy was a powerful method to generate hydrogels of hydrophobic compounds. We envision the big promise of the strategy in the preparation of biomaterials and nanomaterials of hydrophobic bioactive molecules.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Youzhi Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Yiming Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Yang Shi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
31
|
Jiang Z, Liu Y, Shi R, Feng X, Xu W, Zhuang X, Ding J, Chen X. Versatile Polymer-Initiating Biomineralization for Tumor Blockade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110094. [PMID: 35202501 DOI: 10.1002/adma.202110094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Tumor blockade therapy is a promising penetration-independent antitumor modality, which effectively inhibits the exchange of nutrients, oxygen, and information between the tumor and surrounding microenvironments. However, the current blockade therapy strategies have limited antitumor efficacy due to defects of inadequate tumor obstruction, possible side effects, and short duration. For these reasons, a facilely synthesized versatile polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-alendronate (DSPE-PEG-ALN, DPA) is developed to initiate the formation of biomineral shell around osteosarcoma as a potent physical barrier. The DSPE moiety shares a similar chemical structure with the cytomembrane, allowing the membrane insertion of DPA. The bisphosphonic acid groups in ALN attract ions to realize biomineralization around cells. After injection in the invasive osteosarcoma tissue, DPA inserts into the cytomembrane, induces continuous mineral deposition, and ultimately builds a physical barrier around the tumor. Meanwhile, ALN in DPA alleviates bone destruction by suppressing the activity of osteoclasts. Through hindering the exchange of necessary substances, the biomineralization coating inhibits the growth of primary osteosarcoma and pulmonary metastasis simultaneously. Therefore, the multifunctional polymer-initiating blockade therapy provides a promising modality for tumor inhibition in clinics with high efficacy and negligible side effects.
Collapse
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- School of Life Science and Technology, South Campus, Changchun University of Science and Technology, 7168 Weixing Street, Changchun, 130022, P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
32
|
Wang J, Zhou Q, Li X, Dutta D, Ge Z. Glutathione-Triggered Mitochondria-Targeting Reassembly from Polymeric Micelles to Nanofibers for a Synergistic Anticancer Effect. ACS Macro Lett 2022; 11:543-548. [PMID: 35575322 DOI: 10.1021/acsmacrolett.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofibers self-assembled from peptides have attracted much attention to inhibit cancer cells. However, there are still some disadvantages, including high concentration for self-assembly and incapability to load drugs, which limit their applications. In this report, we rationally integrate self-assembled peptides, glutathione-sensitive disulfide bonds, and mitochondrial targeting moieties into the amphiphilic block copolymer to construct the nanocarriers, which can be used to load anticancer drug doxorubicin (DOX). After cellular internalization, the nanocarriers can reassemble from micelles to nanofibers under the trigger by glutathione and locate in mitochondria. The released DOX and nanofibers induce mitochondrial dysfunction and activate the apoptosis pathway to synergistically inhibit tumor cells. This organelle-specific drug delivery system with reassembly capability from micelles to nanofibers shows great potential for effectively killing cancer cells.
Collapse
Affiliation(s)
- Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
33
|
Wang HB, Tao BB, Wu NN, Zhang HD, Liu YM. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120948. [PMID: 35104744 DOI: 10.1016/j.saa.2022.120948] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
A simple and highly selective fluorescence biosensor has been exploited for p-nitrophenol (p-NP) and alkaline phosphatase (ALP) activity detection based on the glutathione-stabilized copper nanoclusters (GSH-CuNCs) mediated-inner filter effect (IFE). The GSH-CuNCs were prepared by employing GSH as stabilizer and ascorbic acid (AA) as reductant. The obtained GSH-CuNCs exhibited a strong blue fluorescence emission at 420 nm with an excitation wavelength of 365 nm, which overlapped largely with the absorption spectra of p-nitrophenol (p-NP). Therefore, the luminescence of GSH-CuNCs could be quenched by p-NP through inner filter effect. In addition, ALP catalyzed the substrate p-nitrophenyl phosphate (p-NPP) to form p-nitrophenol (p-NP), which also leading to the fluorescence quenching of GSH-CuNCs. The fluorescent strategy was realized for the sensitive determination of p-NP and ALP activity with the promising limit of detection of 20 nM (for p-NP) and 0.003 mU⋅mL-1 (for ALP). Furthermore, the method could be applied to detect the p-NP content in river water samples and ALP activity in human serum samples.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
34
|
Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104165. [PMID: 35142093 PMCID: PMC8981472 DOI: 10.1002/advs.202104165] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Wound healing is a long-term, multistage biological process that includes hemostasis, inflammation, proliferation, and tissue remodeling and requires intelligent designs to provide comprehensive and convenient treatment. The complexity of wounds has led to a lack of adequate wound treatment materials, which must systematically regulate unique wound microenvironments. Hydrogels have significant advantages in wound treatment due to their ability to provide spatiotemporal control over the wound healing process. Self-assembling peptide-based hydrogels are particularly attractive due to their innate biocompatibility and biodegradability along with additional advantages including ligand-receptor recognition, stimulus-responsive self-assembly, and the ability to mimic the extracellular matrix. The ability of peptide-based materials to self-assemble in response to the physiological environment, resulting in functionalized microscopic structures, makes them conducive to wound treatment. This review introduces several self-assembling peptide-based systems with various advantages and emphasizes recent advances in self-assembling peptide-based hydrogels that allow for precise control during different stages of wound healing. Moreover, the development of multifunctional self-assembling peptide-based hydrogels that can regulate and remodel the wound immune microenvironment in wound therapy with spatiotemporal control has also been summarized. Overall, this review sheds light on the future clinical and practical applications of self-assembling peptide-based hydrogels.
Collapse
Affiliation(s)
- Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| |
Collapse
|
35
|
Zhang Q, Tan W, Xu B. Enzymatic Noncovalent Synthesis for Targeting Subcellular Organelles. Chempluschem 2022; 87:e202200060. [PMID: 35420712 PMCID: PMC9508291 DOI: 10.1002/cplu.202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Enzymatic noncovalent synthesis (ENS) exploits enzymatic reactions to produce spatially organized higher-order supramolecular assemblies that modulate cellular processes. While ENS is a general mechanism to create higher-order assemblies of proteins for diverse cellular functions, the exploration of ENS of other bioactive molecules, such as peptides or small organic molecules, is rather limited. Since ENS generates non-diffusive supramolecular assemblies locally, it provides a unique approach to targeting subcellular organelles. In this Review, we highlight the recent progress of the application of ENS of peptide assemblies for targeting subcellular organelles. After a brief introduction of the concept of ENS, we introduce the case of generating artificial filaments by ENS in cell cytosol, then discuss the use of ENS for targeting endoplasmic reticulum, mitochondria, Golgi apparatus, and lysosomes, and finally we describe the targeting of nucleus by ENS. We hope to illustrate the promise of ENS, as a localized molecular process in an open system, for understanding diseases, controlling cell behaviors, and developing new therapeutics.
Collapse
Affiliation(s)
- Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
36
|
Kim BJ. Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications. Chem Asian J 2022; 17:e202200094. [PMID: 35213091 DOI: 10.1002/asia.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Enzyme-instructed self-assembly, integrating enzymatic reaction and molecular self-assembly, has drawn noticeable attention over the last decade with the intension of being used in valuable applications. Recent advances in the field allow it possible to spatiotemporally control peptide self-assembly in cellular milieu, broadening the potential applications of peptide assemblies to cancer therapy and subcellular delivery. In this minireview, the concept of enzyme-instructed self-assembly of peptide, containing enzymatic trigger and spatiotemporal control, is described. Representative applications in cells are also discussed, followed by outlook on the field of enzyme-instructed self-assembly.
Collapse
Affiliation(s)
- Beom Jin Kim
- University of Ulsan, Chemistry, 12, Techno Industrial Complex-ro, 55 beon-gil, 4776, Ulsan, KOREA, REPUBLIC OF
| |
Collapse
|
37
|
Sun Y, Li X, Zhao M, Chen Y, Xu Y, Wang K, Bian S, Jiang Q, Fan Y, Zhang X. Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering. Bioact Mater 2022; 8:396-408. [PMID: 34541409 PMCID: PMC8429915 DOI: 10.1016/j.bioactmat.2021.05.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Supramolecular nanofiber peptide assemblies had been used to construct functional hydrogel biomaterials and achieved great progress. Here, a new class of biphenyl-tripeptides with different C-terminal amino acids sequences transposition were developed, which could self-assemble to form robust supramolecular nanofiber hydrogels from 0.7 to 13.8 kPa at ultra-low weight percent (about 0.27 wt%). Using molecular dynamics simulations to interrogate the physicochemical properties of designed biphenyl-tripeptide sequences in atomic detail, reasonable hydrogen bond interactions and "FF" brick (phenylalanine-phenylalanine) promoted the formation of supramolecular fibrous hydrogels. The biomechanical properties and intermolecular interactions were also analyzed by rheology and spectroscopy analysis to optimize amino acid sequence. Enhanced L929 cells adhesion and proliferation demonstrated good biocompatibility of the hydrogels. The storage modulus of BPAA-AFF with 10 nm nanofibers self-assembling was around 13.8 kPa, and the morphology was similar to natural extracellular matrix. These supramolecular nanofiber hydrogels could effectively support chondrocytes spreading and proliferation, and specifically enhance chondrogenic related genes expression and chondrogenic matrix secretion. Such biomimetic supramolecular short peptide biomaterials hold great potential in regenerative medicine as promising innovative matrices because of their simple and regular molecular structure and excellent biological performance.
Collapse
Affiliation(s)
- Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Shaoquan Bian
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Qing Jiang
- College of Materials Science and Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| |
Collapse
|
38
|
Zhang Q, Tan W, Xu B. Synthesis and bioactivity of pyrrole-conjugated phosphopeptides. Beilstein J Org Chem 2022; 18:159-166. [PMID: 35186152 PMCID: PMC8822458 DOI: 10.3762/bjoc.18.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Here we report the synthesis and effect on the cell viability of pyrrole-conjugated phosphopeptides. Encouraged by the selective inhibition of cancer cells by a naphthyl-capped phosphopeptide (Nap-ffpy, 1), we conjugated the heteroaromatic dipyrrole or tripyrrole motif at the N-terminal of short peptides containing phosphotyrosine or phosphoserine and examined the bioactivity of the resulting phosphopeptides (2-10). Although most of the phosphopeptides exhibit comparable activities with that of 1 against HeLa cells at 200 μM, they, differing from 1, are largely compatible with HeLa cells at 400 μM. Enzymatic dephosphorylation of 2-10, at 400 μM is unable to induce a dramatic morphological transition of the peptide assemblies observed in the case of 1. These results suggest that a heteroaromatic motif at the N-terminal of peptides likely disfavors the formation of extensive nanofibers or morphological changes during enzymatic self-assembly, thus provide useful insights for the development of phosphopeptides as substrates of phosphatases for controlling cell fate.
Collapse
Affiliation(s)
- Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
39
|
Kwek G, Lingesh S, Chowdhury SZ, Xing B. Tumour enzyme affinity mediated peptide molecular crowding for targeted disruption of hyperactivated glucose uptake. Chem Commun (Camb) 2022; 58:1350-1353. [PMID: 34986211 DOI: 10.1039/d1cc06049j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unconventional environment-responsive molecular crowding via specific binding between small molecule peptide inhibitor derivatives and an overexpressed tumour enzyme has been developed. Assemblies of such short peptides selectively localize on tumour surfaces and exhibited unique functions in disrupting hyperactivated glucose uptake, providing novel insights towards strategic tumour treatment.
Collapse
Affiliation(s)
- Germain Kwek
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Shonya Lingesh
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Sayba Zafrin Chowdhury
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
40
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
41
|
Wu C, Wang C, Zhang T, Gao G, Wei M, Chen Y, Li X, Wang F, Liang G. Lysosome-Targeted and Fluorescence-Turned "On" Cytotoxicity Induced by Alkaline Phosphatase-Triggered Self-Assembly. Adv Healthc Mater 2022; 11:e2101346. [PMID: 34624168 DOI: 10.1002/adhm.202101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/04/2021] [Indexed: 01/03/2023]
Abstract
Selectively inducing lysosomal membrane permeabilization (LMP) is a promising strategy for cancer therapy. But integrating alkaline phosphatase (ALP)-instructed self-assembly and lysosome-targeting to induce LMP for selective killing of cancer cells was not reported. Herein, a pyrene-peptide conjugate Py-Phe-Phe-Glu-Tyr(H2 PO3 )-Gly-lyso (Py-Yp-Lyso) is rationally designed and demonstrated for its lysosome-targeting cytotoxicity on cancer cells, together with its pyrene (Py) excimer fluorescence turning "on" at 480 nm. In vitro results showed that, Py-Yp-Lyso is efficiently dephosphorylated by ALP to yield Py-Phe-Phe-Glu-Tyr-Gly-lyso (Py-Y-Lyso) which self-assembles into nanofibers. Cell experiments verified that, after being taken up by HeLa cells, the excimer fluorescence of Py-Yp-Lyso assemblies has turned "on" and the assemblies specifically target the lysosomes, inducing LMP and ultimate cancer cell death. In vivo experiments indicated that Py-Yp-Lyso has the highest inhibition effect on HeLa tumors among the four compounds studied. This is anticipated for applying Py-Yp-Lyso to treat cancers in the clinic in the future.
Collapse
Affiliation(s)
- Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tong Zhang
- School of Life Sciences University of Science and Technology of China 443 Huangshan Road Hefei Anhui 230027 China
| | - Ge Gao
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 China
| | - Mengxing Wei
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yinglu Chen
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xiaoyan Li
- Analysis Center Nanjing Medical University 140 Hanzhong Road Nanjing Jiangsu 210029 China
| | - Fuqiang Wang
- Analysis Center Nanjing Medical University 140 Hanzhong Road Nanjing Jiangsu 210029 China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 China
| |
Collapse
|
42
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
43
|
Gong Z, Zhou B, Liu X, Cao J, Hong Z, Wang J, Sun X, Yuan X, Tan H, Ji H, Bai J. Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55913-55927. [PMID: 34784165 DOI: 10.1021/acsami.1c17917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temporal persistence is as important for nanocarriers as spatial accuracy. However, because of the insufficient aggreagtion and short retention time of chemotherapy drugs in tumors, their clinical application is greatly limited. A drug delivery approach dependent on the sensitivity to an enzyme present in the microenvironment of the tumor is designed to exhibit different sizes in different sites, achieving enhanced drug permeability and retention to improve tumor nanotherapy efficacy. In this work, we report a small-molecule peptide drug delivery system containing both tumor-targeting groups and enzyme response sites. This system enables the targeted delivery of peptide nanocarriers to tumor cells and a unique response to alkaline phosphatase (ALP) in the tumor microenvironment to activate morphological transformation and drug release. The amphiphilic peptide AYR self-aggregated into a spherical nanoparticle structure after encapsulating the lipid-soluble model drug doxorubicin (DOX) and rapidly converted to nanofibers via the induction of ALP. This morphological transformation toward a high aspect ratio allowed rapid, as well as effective drug release to tumor location while enhancing specific toxicity to tumor cells. Interestingly, this "transformer"-like drug delivery strategy can enhance local drug accumulation and effectively inhibit drug efflux. In vitro along with in vivo experiments further proved that the permeability and retention of antitumor drugs in tumor cells and tissues were significantly enhanced to reduce toxic side effects, and the therapeutic effect was remarkably improved compared with that of nondeformable drug-loaded peptide nanocarriers. The developed AYR nanoparticles with the ability to undergo morphological transformation in situ can improve local drug aggregation and retention time at the tumor site. Our findings provide a new and simple method for nanocarrier morphology transformation in novel cancer treatments.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Zexin Hong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingye Wang
- Department of Pathology, Weifang Maternal and Child Health Hospital, Weifang 261000, China
| | - Xirui Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaomeng Yuan
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Hongjie Ji
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
44
|
Xiao X, Qiao Y, Xu Z, Wu T, Wu Y, Ling Z, Yan Y, Huang J. Enzyme-Responsive Aqueous Two-Phase Systems in a Cationic-Anionic Surfactant Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13125-13131. [PMID: 34714092 DOI: 10.1021/acs.langmuir.1c02303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme-instructed self-assembly is an increasingly attractive topic owing to its broad applications in biomaterials and biomedicine. In this work, we report an approach to construct enzyme-responsive aqueous surfactant two-phase (ASTP) systems serving as enzyme substrates by using a cationic surfactant (myristoylcholine chloride) and a series of anionic surfactants. Driven by the hydrophobic interaction and electrostatic attraction, self-assemblies of cationic-anionic surfactant mixtures result in biphasic systems containing condensed lamellar structures and coexisting dilute solutions, which turn into homogeneous aqueous phases in the presence of hydrolase (cholinesterase). The enzyme-sensitive ASTP systems reported in this work highlight potential applications in the active control of biomolecular enrichment/release and visual detection of cholinesterase.
Collapse
Affiliation(s)
- Xiao Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhirui Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunxue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
45
|
|
46
|
Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticulate drug delivery systems (nano-DDSs) are required to reliably arrive and persistently reside at the tumor site with minimal off-target side effects for clinical theranostics. However, due to the complicated environment and high interstitial pressure in tumor tissue, they can return to the bloodstream and cause secondary side effects in normal organs. Recently, a number of nanogatekeepers have been engineered via structure-transformable/stable strategies to overcome this undesirable dilemma. The emerging structure-transformable nanogatekeepers for tumor imaging and therapy are first overviewed here, particularly for nanogatekeepers undergoing structural transformation in tumor microenvironments, cell membranes, and organelles. Thereafter, intelligent structure-stable nanogatekeepers through reversible activation and artificial individualization receptors are overviewed. Finally, the ongoing challenges and prospects of nanogatekeepers for clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xunfa Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xian He
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| |
Collapse
|
47
|
Yang X, Lu H, Tao Y, Zhou L, Wang H. Spatiotemporal Control over Chemical Assembly in Living Cells by Integration of Acid-Catalyzed Hydrolysis and Enzymatic Reactions. Angew Chem Int Ed Engl 2021; 60:23797-23804. [PMID: 34473893 DOI: 10.1002/anie.202109729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 02/04/2023]
Abstract
Spatiotemporal control of chemical assembly in living cells remains challenging. We have now developed an efficient and general platform to precisely control the formation of assemblies in living cells. We introduced an O-[bis(dimethylamino)phosphono]tyrosine protection strategy in the self-assembly motif as the Trojan horse, whereby the programmed precursors resist hydrolysis by phosphatases on and inside cells because the unmasking of the enzymatic cleavage site occurs selectively in the acidic environment of lysosomes. After demonstrating the multistage self-assembly processes in vitro by liquid chromatography/mass spectrometry (LC-MS), cryogenic electron microscopy (Cryo-EM), and circular dichroism (CD), we investigated the formation of site-specific self-assembly in living cells using confocal laser scanning microscopy (CLSM), LC-MS, and biological electron microscopy (Bio-EM). Controlling chemical assembly in living systems spatiotemporally may have applications in supramolecular chemistry, materials science, synthetic biology, and chemical biology.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yinghua Tao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Laicheng Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Yang X, Lu H, Tao Y, Zhou L, Wang H. Spatiotemporal Control over Chemical Assembly in Living Cells by Integration of Acid‐Catalyzed Hydrolysis and Enzymatic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yinghua Tao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Laicheng Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Westlake Laboratory of Life Sciences and Biomedicine School of Life Sciences Westlake University Hangzhou Zhejiang China
| |
Collapse
|
49
|
Yi M, Guo J, He H, Tan W, Harmon N, Ghebreyessus K, Xu B. Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. SOFT MATTER 2021; 17:8590-8594. [PMID: 34545895 PMCID: PMC8600407 DOI: 10.1039/d1sm01221e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Enzyme-instructed self-assembly (EISA) and hydrogelation is a versatile approach for generating soft materials. Most of the substrates for alkaline phosphatase catalysed EISA utilize phosphotyrosine (pTyr) as the enzymatic trigger for EISA and hydrogelation. Here we show the first example of phosphonaphthyl (pNP) and phosphobiphenyl (pBP) motifs acting as faster enzymatic triggers than phosphotyrosine for EISA and hydrogelation. This work illustrates novel enzyme triggers for rapid enzymatic self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Nya Harmon
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Kesete Ghebreyessus
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| |
Collapse
|
50
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|