1
|
Raslan AMAA, Peters RJ. Exploring evolutionary use of single residue switches for alternative product outcome in class II diterpene cyclases. PHYTOCHEMISTRY 2025; 235:114459. [PMID: 40024494 PMCID: PMC12003065 DOI: 10.1016/j.phytochem.2025.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Class II diterpene cyclases (DTCs) define the widespread labdane-related diterpenoids. These are particularly prevalent in plants due to the requisite production of gibberellin (GA) phytohormones, specifically from gene duplication and neofunctionalization of the relevant DTC. Alteration of product outcome can be predicted/engineered to some extent by changes in the ancestral histidine-asparagine catalytic base dyad found in the ent-copalyl pyrophosphate (ent-CPP) synthases (CPSs) involved in GA biosynthesis. It has been shown such changes can switch product outcome in CPSs, with substitution of alanine for either leading to incorporation of water - i.e., production of 8α-hydroxy-ent-labda-13-en-15-yl pyrophosphate (ent-LPP), while replacing the histidine with tyrosine leads to production of a rearranged product - i.e., ent-kolavenyl pyrophosphate (ent-KPP). Indeed, native ent-KPP synthases from dicots with such substitution have been found, and restoration of the ancestral residue results in production of ent-CPP. Observation of a similar ent-KPP synthase and, strikingly, an ent-LPP synthase with serine in place of the asparagine, along with another DTC with such substitution but still producing ent-CPP, was recently made in non-seed plants. Here the role of these substitutions was examined by ancestral residue restoration. Notably, while this led to the production of ent-CPP in the first two concordant cases, in the latter incongruent DTC this had little effect. This presumably reflects extended adaptation, consistent with its more distant phylogenetic relationship to those from GA biosynthesis. This demonstrates both the utility but also limitations of the ability of changes to the ancestral catalytic base dyad to affect product outcome.
Collapse
Affiliation(s)
- Ahmed M A A Raslan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
2
|
Peters RJ. Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades. J Biol Chem 2025; 301:108142. [PMID: 39732168 PMCID: PMC11795633 DOI: 10.1016/j.jbc.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024] Open
Abstract
The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the polycyclic sterol triterpenoids. In particular, these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases. Labdane-related diterpenoids are unique in their utilization of both types of reactions. With over 7000 such natural products known, this pair of reactions clearly generates privileged scaffolds, hydrocarbon backbones from which biological activity is readily derived. Moreover, the relevant enzymes serve as model systems for terpene cyclization more generally. Indeed, investigation of their enzymatic structure-function relationships has highlighted the importance of catalytic base positioning within the active site cavity in specifying product outcomes. Conversely, comparison to the cyclases for other types of terpenoid natural products suggests new directions for discovery and/or engineering of the catalytic activity of those from labdane-related diterpenoid biosynthesis.
Collapse
Affiliation(s)
- Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
3
|
Cowie AE, Pereira JH, DeGiovanni A, McAndrew RP, Palayam M, Peek JO, Muchlinski AJ, Yoshikuni Y, Shabek N, Adams PD, Zerbe P. The crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase reveals active site features controlling catalytic specificity. J Biol Chem 2024; 300:107921. [PMID: 39454950 PMCID: PMC11599460 DOI: 10.1016/j.jbc.2024.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Diterpenoid natural products serve critical functions in plant development and ecological adaptation and many diterpenoids have economic value as bioproducts. The family of class II diterpene synthases catalyzes the committed reactions in diterpenoid biosynthesis, converting a common geranylgeranyl diphosphate precursor into different bicyclic prenyl diphosphate scaffolds. Enzymatic rearrangement and modification of these precursors generate the diversity of bioactive diterpenoids. We report the crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase, GrTPS2, at 2.1 Å of resolution. GrTPS2 catalyzes the committed reaction in the biosynthesis of grindelic acid, which represents the signature metabolite in species of gumweed (Grindelia spp., Asteraceae). Grindelic acid has been explored as a potential source for drug leads and biofuel production. The GrTPS2 crystal structure adopts the conserved three-domain fold of class II diterpene synthases featuring a functional active site in the γβ-domain and a vestigial ɑ-domain. Substrate docking into the active site of the GrTPS2 apo protein structure predicted catalytic amino acids. Biochemical characterization of protein variants identified residues with impact on enzyme activity and catalytic specificity. Specifically, mutagenesis of Y457 provided mechanistic insight into the position-specific deprotonation of the intermediary carbocation to form the characteristic 7,13 double bond of 7,13-copalyl diphosphate.
Collapse
Affiliation(s)
- Anna E Cowie
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andy DeGiovanni
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ryan P McAndrew
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA
| | - Malathy Palayam
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Jedidiah O Peek
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Andrew J Muchlinski
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Yasuo Yoshikuni
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California-Davis, Davis, California, USA
| | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, California, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
4
|
Chen X, Xu M, Han J, Schmidt-Dannert M, Peters RJ, Chen F. Discovery of bifunctional diterpene cyclases/synthases in bacteria supports a bacterial origin for the plant terpene synthase gene family. HORTICULTURE RESEARCH 2024; 11:uhae221. [PMID: 39398952 PMCID: PMC11469919 DOI: 10.1093/hr/uhae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Land plants are well-known producers of terpenoids that play diverse roles in plant-environment interactions. The vast chemical diversity of terpenoids is initiated by terpene synthases. Plants contain a distinct mid-sized terpene synthase gene family termed TPS, which appears to have an ancient origin in a fused bacterial Class I (di)terpene synthase (TS) and Class II diterpene cyclase (DTC), corresponding to the catalytically relevant α-domain and βγ-didomains, respectively. However, while such fused tridomain bifunctional (Class I/II) diterpene cyclases/synthases (DCSs) have been found in plants (and fungi), no examples have been reported from bacteria, leaving the origin of the fusion event initiating the TPS gene family opaque. Here, the discovery of such tridomain bifunctional DCSs in bacteria is reported. Extensive genome mining unearthed five putative bacterial DCSs, with biochemical characterization revealing the expected bifunctional activity for three. The most intriguing was CseDCS from Candidatus sericytochromatia bacterium, which produces ent-kaurene, an intermediate in plant hormone biosynthesis, as this is the hypothesized activity for the ancestral TPS. Unlike the extant functionally equivalent TPSs, it was possible to split CseDCS into separate, independently acting DTC and TS, with the first producing the expected ent-copalyl diphosphate (CPP), serving as a CPP synthase (CPS), while the second converts this to ent-kaurene, serving as a kaurene synthase (KS). Nevertheless, sequence alignment and mutation analysis revealed intriguing similarities between this cyanobacterial fused CPS-KS and functionally equivalent TPSs. Regardless of the exact relationship, the discovery of fused bifunctional DCSs in bacteria supports the hypothesized origin of the plant TPS family from such a bacterial gene.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jin Han
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Mark Schmidt-Dannert
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Wu TJ, Lin CC, Ma LT, Yang CK, Ho CL, Wang SY, Chu FH. Functional identification of specialized diterpene synthases from Chamaecyparis obtusa and C. obtusa var. formosana to illustrate the putative evolution of diterpene synthases in Cupressaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112080. [PMID: 38582272 DOI: 10.1016/j.plantsci.2024.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Chamaecyparis obtusa and C. obtusa var. formosana of the Cupressaceae family are well known for their fragrance and excellent physical properties. To investigate the biosynthesis of unique diterpenoid compounds, diterpene synthase genes for specialized metabolite synthesis were cloned from C. obtusa and C. obtusa var. formosana. Using an Escherichia coli co-expression system, eight diterpene synthases (diTPSs) were characterized. CoCPS and CovfCPS are class II monofunctional (+)-copalyl diphosphate synthases [(+)-CPSs]. Class I monofunctional CoLS and CovfLS convert (+)-copalyl diphosphate [(+)-CPP] to levopimaradiene, CoBRS, CovfBRS1, and CovfBRS3 convert (+)-CPP to (-)-beyerene, and CovfSDS converts (+)-CPP to (-)-sandaracopimaradiene. These enzymes are all monofunctional diterpene syntheses in Cupressaceae family of gymnosperm, and differ from those in Pinaceae. The discovery of the enzyme responsible for the biosynthesis of tetracyclic diterpene (-)-beyerene was characterized for the first time. Diterpene synthases with different catalytic functions exist in closely related species within the Cupressaceae family, indicating that this group of monofunctional diterpene synthases is particularly prone to the evolution of new functions and development of species-specific specialized diterpenoid constituents.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Chi-Chun Lin
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Ma
- Academy of Circular Economy, National Chung-Hsing University, Taichung, Taiwan
| | - Chih-Kai Yang
- Department of Forestry, National Pingtung University of Science and Technology, Taipei, Taiwan
| | - Chen-Lung Ho
- Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Ma X, Xu H, Tong Y, Luo Y, Dong Q, Jiang T. Structural and functional investigations of syn-copalyl diphosphate synthase from Oryza sativa. Commun Chem 2023; 6:240. [PMID: 37932442 PMCID: PMC10628199 DOI: 10.1038/s42004-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
The large superfamily of labdane-related diterpenoids is defined by the cyclization of linear geranylgeranyl pyrophosphate (GGPP), catalyzed by copalyl diphosphate synthases (CPSs) to form the basic decalin core, the copalyl diphosphates (CPPs). Three stereochemically distinct CPPs have been found in plants, namely (+)-CPP, ent-CPP and syn-CPP. Here, we used X-ray crystallography and cryo-EM methods to describe different oligomeric structures of a syn-copalyl diphosphate synthase from Oryza sativa (OsCyc1), and provided a cryo-EM structure of OsCyc1D367A mutant in complex with the substrate GGPP. Further analysis showed that tetramers are the dominant form of OsCyc1 in solution and are not necessary for enzyme activity in vitro. Through rational design, we identified an OsCyc1 mutant that can generate ent-CPP in addition to syn-CPP. Our work provides a structural and mechanistic basis for comparing different CPSs and paves the way for further enzyme design to obtain diterpene derivatives with specific chirality.
Collapse
Affiliation(s)
- Xiaoli Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Haifeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qinghua Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
10
|
Tong Y, Ma X, Hu T, Chen K, Cui G, Su P, Xu H, Gao W, Jiang T, Huang L. Structural and mechanistic insights into the precise product synthesis by a bifunctional miltiradiene synthase. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:165-175. [PMID: 36161753 PMCID: PMC9829396 DOI: 10.1111/pbi.13933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.
Collapse
Affiliation(s)
- Yuru Tong
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
| | - Xiaoli Ma
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Tianyuan Hu
- School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
| | - Kang Chen
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Guanghong Cui
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Su
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Haifeng Xu
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wei Gao
- Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
11
|
Pan X, Du W, Zhang X, Lin X, Li FR, Yang Q, Wang H, Rudolf JD, Zhang B, Dong LB. Discovery, Structure, and Mechanism of a Class II Sesquiterpene Cyclase. J Am Chem Soc 2022; 144:22067-22074. [PMID: 36416740 PMCID: PMC10064485 DOI: 10.1021/jacs.2c09412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terpene cyclases (TCs), extraordinary enzymes that create the structural diversity seen in terpene natural products, are traditionally divided into two classes, class I and class II. Although the structural and mechanistic features of class I TCs are well-known, the corresponding details in class II counterparts have not been fully characterized. Here, we report the genome mining discovery and structural characterization of two class II sesquiterpene cyclases (STCs) from Streptomyces. These drimenyl diphosphate synthases (DMSs) are the first STCs shown to possess β,γ-didomain architecture. High-resolution X-ray crystal structures of DMS from Streptomyces showdoensis (SsDMS) in complex with both a farnesyl diphosphate and Mg2+ unveiled an induced-fit mechanism, with an unprecedented Mg2+ binding mode, finally solving one of the lingering questions in class II TC enzymology. This study supports continued genome mining for novel bacterial TCs and provides new mechanistic insights into canonical class II TCs that will lead to advances in TC engineering and synthetic biology.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
12
|
Sarkar A, Foderaro T, Kramer L, Markley AL, Lee J, Traylor MJ, Fox JM. Evolution-Guided Biosynthesis of Terpenoid Inhibitors. ACS Synth Biol 2022; 11:3015-3027. [PMID: 35984356 DOI: 10.1021/acssynbio.2c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Andrew L Markley
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
13
|
Lemke C, Roach K, Ortega T, Tantillo DJ, Siegel JB, Peters RJ. Investigation of Acid–Base Catalysis in Halimadienyl Diphosphate Synthase Involved in Mycobacterium tuberculosis Virulence. ACS BIO & MED CHEM AU 2022; 2:490-498. [PMID: 36281298 PMCID: PMC9585517 DOI: 10.1021/acsbiomedchemau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The devastating human
pathogenMycobacterium tuberculosis (Mtb)
is able to parasitize phagosomal compartments within alveolar
macrophage cells due, in part, to the activity of its cell-surface
lipids. Prominent among these is 1-tuberculosinyl-adenosine (1-TbAd),
a derivative of the diterpenoid tuberculosinyl (halima-5,13-dienyl)
diphosphate produced by the class II diterpene cyclase encoded by
Rv3377c, termed here MtHPS. Given the demonstrated ability of 1-TbAd
to act as a virulence factor for Mtb and the necessity for Rv3377c
for its production, there is significant interest in MtHPS activity.
Class II diterpene cyclases catalyze a general acid–base-mediated
carbocation cascade reaction initiated by protonation of the terminal
alkene in the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate and terminated by deprotonation of the
final cyclized (and sometimes also rearranged) intermediate. Here,
structure-guided mutagenesis was applied to characterize the various
residues contributing to activation of the enzymatic acid, as well
as identify the enzymatic base in MtHPS. Particularly given the ability
of conservative substitution for the enzymatic base (Y479F) to generate
an alternative product (labda-7,13-dienyl diphosphate) via deprotonation
of an earlier unrearranged intermediate, further mutational analysis
was carried out to introduce potential alternative catalytic bases.
The results were combined with mechanistic molecular modeling to elucidate
how these mutations affect the catalytic activity of this important
enzyme. This not only provided detailed structure–function
insight into MtHPS but also further emphasized the inert nature of
the active site of MtHPS and class II diterpene cyclases more generally.
Collapse
Affiliation(s)
- Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Kristin Roach
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Teresa Ortega
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
Abstract
As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene–producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.
Collapse
|
15
|
|
16
|
Mechanistic analysis for the origin of diverse diterpenes in Tripterygium wilfordii. Acta Pharm Sin B 2022; 12:2923-2933. [PMID: 35755287 PMCID: PMC9214345 DOI: 10.1016/j.apsb.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Tripterygium wilfordii is a valuable medicinal plant rich in biologically active diterpenoids, but there are few studies on the origins of these diterpenoids in its secondary metabolism. Here, we identified three regions containing tandemly duplicated diterpene synthase genes on chromosomes (Chr) 17 and 21 of T. wilfordii and obtained 11 diterpene synthases with different functions. We further revealed that these diterpene synthases underwent duplication and rearrangement at approximately 2.3–23.7 million years ago (MYA) by whole-genome triplication (WGT), transposon mediation, and tandem duplication, followed by functional divergence. We first demonstrated that four key amino acids in the sequences of TwCPS3, TwCPS5, and TwCPS6 were altered during evolution, leading to their functional divergence and the formation of diterpene secondary metabolites. Then, we demonstrated that the functional divergence of three TwKSLs was driven by mutations in two key amino acids. Finally, we discovered the mechanisms of evolution and pseudogenization of miltiradiene synthases in T. wilfordii and elucidated that the new function in TwMS1/2 from the terpene synthase (TPS)-b subfamily was caused by progressive changes in multiple amino acids after the WGT event. Our results provide key evidence for the formation of diverse diterpenoids during the evolution of secondary metabolites in T. wilfordii.
Collapse
|
17
|
Yang R, Du Z, Qiu T, Sun J, Shen Y, Huang L. Discovery and Functional Characterization of a Diverse Diterpene Synthase Family in the Medicinal Herb Isodon lophanthoides Var. gerardiana. PLANT & CELL PHYSIOLOGY 2021; 62:1423-1435. [PMID: 34133748 DOI: 10.1093/pcp/pcab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Isodon lophanthoides var. gerardiana (Lamiaceae), also named xihuangcao, is a traditional Chinese medicinal herb that exhibits a broad range of pharmacological activities. Abietane-type diterpenoids are the characteristic constituents of I. lophanthoides, yet their biosynthesis has not been elucidated. Although the aerial parts are the most commonly used organs of I. lophanthoides, metabolite profiling by gas chromatography-mass spectrometry showed the underground parts also contain large amounts of labdane diterpenoids including abietatriene, miltiradiene and ferruginol, which are distinct from the 13-hydroxy-8(14)-abietene detected in the aerial parts. Comparative transcriptome analysis of root and leaf samples identified a diverse diterpene synthase family including 6 copalyl diphosphate synthase (IlCPS1-6) and 5 kaurene synthase-like (IlKSL1-5). Here we report the functional characterization of six of these enzymes using yeast heterologous expression system. Both IlCPS1 and IlCPS3 synthesized (+)-copalyl diphosphate (CPP), in combination with IlKSL1 resulted in miltiradiene, precursor of abietane-type diterpenoids, while coupling with IlKSL5 led to the formation of hydroxylated diterpene scaffold nezukol. Expression profiling and phylogenetic analysis further support the distinct evolutionary relationship and spatial distribution of IlCPS1 and IlCPS3. IlCPS2 converted GGPP into labda-7,13E-dien-15-ol diphosphate. IlCPS6 was identified as ent-CPS, indicating a role in gibberellin metabolism. We further identified a single residue that determined the water addition of nezukol synthase IlKSL5. Substitution of alanine 513 with isoleucine completely altered the product outcome from hydroxylated nezukol to isopimara-7,15-diene. Together, these findings elucidated the early steps of bioactive abietane-type diterpenoid biosynthesis in I. lophanthoides and the catalytic mechanism of nezukol synthase.
Collapse
Affiliation(s)
- Ruikang Yang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
| | - Zuying Du
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Qiu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of biotechnology and bioengineering, Zhejiang University of Technology, 18 Chaowang Rd Hangzhou 310014, Zhejiang, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| | - Lili Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| |
Collapse
|
18
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Chen R, Bu Y, Ren J, Pelot KA, Hu X, Diao Y, Chen W, Zerbe P, Zhang L. Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in Artemisia annua. THE NEW PHYTOLOGIST 2021; 230:2387-2403. [PMID: 33740256 DOI: 10.1111/nph.17351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/11/2021] [Indexed: 05/27/2023]
Abstract
Plants synthesize diverse diterpenoids with numerous functions in organ development and stress resistance. However, the role of diterpenoids in glandular trichome (GT) development and GT-localized biosynthesis in plants remains unknown. Here, the identification of 10 diterpene synthases (diTPSs) revealed the diversity of diterpenoid biosynthesis in Artemisia annua. Protein-protein interactions (PPIs) between AaKSL1 and AaCPS2 in the plastids highlighted their potential functions in modulating metabolic flux to gibberellins (GAs) or ent-isopimara-7,15-diene-derived metabolites (IDMs) through metabolic engineering. A phenotypic analysis of transgenic plants suggested a complex repertoire of diterpenoids in Artemisia annua with important roles in GT formation, artemisinin accumulation and stress resilience. Metabolic engineering of diterpenoids simultaneously increased the artemisinin yield and stress resistance. Transcriptome and metabolic profiling suggested that bioactive GA4 /GA1 promote GT formation. Collectively, these results expand our knowledge of diterpenoids and show the potential of diterpenoids to simultaneously improve both the GT-localized metabolite yield and stress resistance, in planta.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuejuan Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Junze Ren
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kyle A Pelot
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, 362021, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
20
|
Wang L, Liang J, Xie X, Liu J, Shen Q, Li L, Wang Q. Direct formation of the sesquiterpeonid ether liguloxide by a terpene synthase in Senecio scandens. PLANT MOLECULAR BIOLOGY 2021; 105:55-64. [PMID: 32915351 DOI: 10.1007/s11103-020-01068-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens. Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC-MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.
Collapse
Affiliation(s)
- Liping Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Xie
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
21
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
22
|
Antibacterial Natural Halimanes: Potential Source of Novel Antibiofilm Agents. Molecules 2020; 25:molecules25071707. [PMID: 32276434 PMCID: PMC7180734 DOI: 10.3390/molecules25071707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
The development of new agents against bacteria is an urgent necessity for human beings. The structured colony of bacterial cells, called the biofilm, is used to defend themselves from biocide attacks. For this reason, it is necessary to know their structures, develop new agents to eliminate them and to develop new procedures that allow an early diagnosis, by using biomarkers. Among natural products, some derivatives of diterpenes with halimane skeleton show antibacterial activity. Some halimanes have been isolated from marine organisms, structurally related with halimanes isolated from Mycobacterium tuberculosis. These halimanes are being evaluated as virulence factors and as tuberculosis biomarkers, this disease being one of the major causes of mortality and morbidity. In this work, the antibacterial halimanes will be reviewed, with their structural characteristics, activities, sources and the synthesis known until now.
Collapse
|
23
|
Zhang J, Zhang Y, Xing J, Yu H, Zhang R, Chen Y, Zhang D, Yin P, Tian X, Wang Q, Duan L, Zhang M, Peters RJ, Li Z. Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. NATURE PLANTS 2020; 6:67-72. [PMID: 32015514 PMCID: PMC7194013 DOI: 10.1038/s41477-019-0582-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/17/2019] [Indexed: 05/26/2023]
Abstract
Use of growth retardants enables post-planting optimization of vegetative growth, which is particularly important given ongoing climate change. Mepiquat chloride is an economical and safe retardant widely applied in cotton farming, but it is not uniformly effective. Here, identification of its molecular target as the ent-copalyl diphosphate synthase that initiates gibberellin biosynthesis enabled the introduction of selective agrochemical inhibition, leaving intact more specialized metabolism important for resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haiyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yiyao Chen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agriculture University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agriculture University, Wuhan, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China.
| |
Collapse
|
24
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
25
|
Conserved bases for the initial cyclase in gibberellin biosynthesis: from bacteria to plants. Biochem J 2019; 476:2607-2621. [PMID: 31484677 DOI: 10.1042/bcj20190479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
All land plants contain at least one class II diterpene cyclase (DTC), which utilize an acid-base catalytic mechanism, for the requisite production of ent-copalyl diphosphate (ent-CPP) in gibberellin A (GA) phytohormone biosynthesis. These ent-CPP synthases (CPSs) are hypothesized to be derived from ancient bacterial origins and, in turn, to have given rise to the frequently observed additional DTCs utilized in more specialized plant metabolism. However, such gene duplication and neo-functionalization has occurred repeatedly, reducing the utility of phylogenetic analyses. Support for evolutionary scenarios can be found in more specific conservation of key enzymatic features. While DTCs generally utilize a DxDD motif as the catalytic acid, the identity of the catalytic base seems to vary depending, at least in part, on product outcome. The CPS from Arabidopsis thaliana has been found to utilize a histidine-asparagine dyad to ligate a water molecule that serves as the catalytic base, with alanine substitution leading to the production of 8β-hydroxy-ent-CPP. Here this dyad and effect of Ala substitution is shown to be specifically conserved in plant CPSs involved in GA biosynthesis, providing insight into plant DTC evolution and assisting functional assignment. Even more strikingly, while GA biosynthesis arose independently in plant-associated bacteria and fungi, the catalytic base dyad also is specifically found in the relevant bacterial, but not fungal, CPSs. This suggests functional conservation of CPSs from bacteria to plants, presumably reflecting an early role for derived diterpenoids in both plant development and plant-microbe interactions, eventually leading to GA, and a speculative evolutionary scenario is presented.
Collapse
|
26
|
Jia M, Mishra SK, Tufts S, Jernigan RL, Peters RJ. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases. Metab Eng 2019; 55:44-58. [PMID: 31220664 DOI: 10.1016/j.ymben.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
Abstract
Terpene synthases are capable of mediating complex reactions, but fundamentally simply catalyze lysis of allylic diphosphate esters with subsequent deprotonation. Even with the initially generated tertiary carbocation this offers a variety of product outcomes, and deprotonation further can be preceded by the addition of water. This is particularly evident with labdane-related diterpenes (LRDs) where such lysis follows bicyclization catalyzed by class II diterpene cyclases (DTCs) that generates preceding structural variation. Previous investigation revealed that two diterpene synthases (DTSs), one bacterial and the other plant-derived, exhibit extreme substrate promiscuity, but yet still typically produce exo-ene or tertiary alcohol LRD derivatives, respectively (i.e., demonstrating high catalytic specificity), enabling rational combinatorial biosynthesis. Here two DTSs that produce either cis or trans endo-ene LRD derivatives, also plant and bacterial (respectively), were examined for their potential analogous utility. Only the bacterial trans-endo-ene forming DTS was found to exhibit significant substrate promiscuity (with moderate catalytic specificity). This further led to investigation of the basis for substrate promiscuity, which was found to be more closely correlated with phylogenetic origin than reaction complexity. Specifically, bacterial DTSs exhibited significantly more substrate promiscuity than those from plants, presumably reflecting their distinct evolutionary context. In particular, plants typically have heavily elaborated LRD metabolism, in contrast to the rarity of such natural products in bacteria, and the lack of potential substrates presumably alleviates selective pressure against such promiscuity. Regardless of such speculation, this work provides novel biosynthetic access to almost 19 LRDs, demonstrating the power of the combinatorial approach taken here.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sambit K Mishra
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Samuel Tufts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
27
|
Sun W, Leng L, Yin Q, Xu M, Huang M, Xu Z, Zhang Y, Yao H, Wang C, Xiong C, Chen S, Jiang C, Xie N, Zheng X, Wang Y, Song C, Peters RJ, Chen S. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:841-857. [PMID: 30444296 PMCID: PMC7252214 DOI: 10.1111/tpj.14162] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 05/09/2023]
Abstract
Andrographis paniculata is a herbaceous dicot plant widely used for its anti-inflammatory and anti-viral properties across its distribution in China, India and other Southeast Asian countries. A. paniculata was used as a crucial therapeutic treatment during the influenza epidemic of 1919 in India, and is still used for the treatment of infectious disease in China. A. paniculata produces large quantities of the anti-inflammatory diterpenoid lactones andrographolide and neoandrographolide, and their analogs, which are touted to be the next generation of natural anti-inflammatory medicines for lung diseases, hepatitis, neurodegenerative disorders, autoimmune disorders and inflammatory skin diseases. Here, we report a chromosome-scale A. paniculata genome sequence of 269 Mb that was assembled by Illumina short reads, PacBio long reads and high-confidence (Hi-C) data. Gene annotation predicted 25 428 protein-coding genes. In order to decipher the genetic underpinning of diterpenoid biosynthesis, transcriptome data from seedlings elicited with methyl jasmonate were also obtained, which enabled the identification of genes encoding diterpenoid synthases, cytochrome P450 monooxygenases, 2-oxoglutarate-dependent dioxygenases and UDP-dependent glycosyltransferases potentially involved in diterpenoid lactone biosynthesis. We further carried out functional characterization of pairs of class-I and -II diterpene synthases, revealing the ability to produce diversified labdane-related diterpene scaffolds. In addition, a glycosyltransferase able to catalyze O-linked glucosylation of andrograpanin, yielding the major active product neoandrographolide, was also identified. Thus, our results demonstrate the utility of the combined genomic and transcriptomic data set generated here for the investigation of the production of the bioactive diterpenoid lactone constituents of the important medicinal herb A. paniculata.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - MeiMei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Mingkun Huang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Zhichao Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Yujun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., 341008, Ganzhou, China
| | - Xilong Zheng
- Hainan Branch, Institute of Medicinal Plant Development, 570311, Wanning, China
| | - Ying Wang
- Wuhan Benagen Tech Solutions Company Limited, 430070, Wuhan, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011-1079, USA
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070, Beijing, China
| |
Collapse
|
28
|
Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, Evolutionary Mint Genomics Consortium, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J Biol Chem 2019; 294:1349-1362. [PMID: 30498089 PMCID: PMC6349103 DOI: 10.1074/jbc.ra118.006025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the mint family (Lamiaceae) accumulate a wide variety of industrially and medicinally relevant diterpenes. We recently sequenced leaf transcriptomes from 48 phylogenetically diverse Lamiaceae species. Here, we summarize the available chemotaxonomic and enzyme activity data for diterpene synthases (diTPSs) in the Lamiaceae and leverage the new transcriptomes to explore the diTPS sequence and functional space. Candidate genes were selected with an intent to evenly sample the sequence homology space and to focus on species in which diTPS transcripts were found, yet from which no diterpene structures have been previously reported. We functionally characterized nine class II diTPSs and 10 class I diTPSs from 11 distinct plant species and found five class II activities, including two novel activities, as well as a spectrum of class I activities. Among the class II diTPSs, we identified a neo-cleroda-4(18),13E-dienyl diphosphate synthase from Ajuga reptans, catalyzing the likely first step in the biosynthesis of a variety of insect-antifeedant compounds. Among the class I diTPSs was a palustradiene synthase from Origanum majorana, leading to the discovery of specialized diterpenes in that species. Our results provide insights into the diversification of diterpene biosynthesis in the mint family and establish a comprehensive foundation for continued investigation of diterpene biosynthesis in the Lamiaceae.
Collapse
Affiliation(s)
- Sean R Johnson
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Wajid Waheed Bhat
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824; Pharmacology and Toxicology, East Lansing, Michigan 48824
| | - Jacob Bibik
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Aiko Turmo
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Britta Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | | | - Björn Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824.
| |
Collapse
|
29
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
30
|
Pelot KA, Chen R, Hagelthorn DM, Young CA, Addison JB, Muchlinski A, Tholl D, Zerbe P. Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass. PLANT PHYSIOLOGY 2018; 178:54-71. [PMID: 30008447 PMCID: PMC6130043 DOI: 10.1104/pp.18.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 05/06/2023]
Abstract
Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize (Zea mays) and rice (Oryza sativa), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (Panicum virgatum). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to ent-copalyl diphosphate (CPP) and ent-kaurene synthases predictably involved in gibberellin biosynthesis, we identified syn-CPP and ent-labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13E-dienyl diphosphate (8,13-CPP) and ent-neo-cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and ent-neo-CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of ent-CPP, ent-LPP, syn-CPP, and ent-neo-CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9β-hydroxy-syn-pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.
Collapse
Affiliation(s)
- Kyle A Pelot
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ruibing Chen
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, 200433 Shanghai, China
| | - David M Hagelthorn
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cari A Young
- Department of Plant Biology, University of California, Davis, California 95616
| | - J Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
31
|
Schulte S, Potter KC, Lemke C, Peters RJ. Catalytic Bases and Stereocontrol in Lamiaceae Class II Diterpene Cyclases. Biochemistry 2018; 57:3473-3479. [PMID: 29787239 DOI: 10.1021/acs.biochem.8b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.
Collapse
Affiliation(s)
- Samuel Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
32
|
Huang AC, Hong YJ, Bond AD, Tantillo DJ, Osbourn A. Diverged Plant Terpene Synthases Reroute the Carbocation Cyclization Path towards the Formation of Unprecedented 6/11/5 and 6/6/7/5 Sesterterpene Scaffolds. Angew Chem Int Ed Engl 2018; 57:1291-1295. [PMID: 29194888 PMCID: PMC5814883 DOI: 10.1002/anie.201711444] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 11/16/2022]
Abstract
Sesterterpenoids are a relatively rare class of plant terpenes. Sesterterpene synthase (STS)-mediated cyclization of the linear C25 isoprenoid precursor geranylfarnesyl diphosphate (GFPP) defines sesterterpene scaffolds. So far only a very limited number of STSs have been characterized. The discovery of three new plant STSs is reported that produce a suite of sesterterpenes with unprecedented 6/11/5 and 6/6/7/5 fused ring systems when transiently co-expressed with a GFPP synthase in Nicotiana benthamiana. Structural elucidation, feeding experiments, and quantum chemical calculations suggest that these STSs catalyze an unusual cyclization path involving reprotonation, intramolecular 1,6 proton transfer, and concerted but asynchronous bicyclization events. The cyclization is diverted from those catalyzed by the characterized plant STSs by forming unified 15/5 bicyclic sesterterpene intermediates. Mutagenesis further revealed a conserved amino acid residue implicated in reprotonation.
Collapse
Affiliation(s)
- Ancheng C. Huang
- Department of Metabolic BiologyJohn Innes CentreColney Lane, Norwich Research ParkNorwichNR4 7UHUK
| | - Young J. Hong
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Andrew D. Bond
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Dean J. Tantillo
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Anne Osbourn
- Department of Metabolic BiologyJohn Innes CentreColney Lane, Norwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
33
|
Roncero AM, Tobal IE, Moro RF, Díez D, Marcos IS. Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep 2018; 35:955-991. [DOI: 10.1039/c8np00016f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diterpenes with a halimane skeleton constitute a small group of natural products that can be biogenetically considered as being between labdane and clerodane diterpenoids.
Collapse
Affiliation(s)
- Alejandro M. Roncero
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Ignacio E. Tobal
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Rosalina F. Moro
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - David Díez
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Isidro S. Marcos
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| |
Collapse
|
34
|
Murphy KM, Ma LT, Ding Y, Schmelz EA, Zerbe P. Functional Characterization of Two Class II Diterpene Synthases Indicates Additional Specialized Diterpenoid Pathways in Maize ( Zea mays). FRONTIERS IN PLANT SCIENCE 2018; 9:1542. [PMID: 30405674 PMCID: PMC6206430 DOI: 10.3389/fpls.2018.01542] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 05/18/2023]
Abstract
As a major staple food, maize (Zea mays) is critical to food security. Shifting environmental pressures increasingly hamper crop defense capacities, causing expanded harvest loss. Specialized labdane-type diterpenoids are key components of maize chemical defense and ecological adaptation. Labdane diterpenoid biosynthesis most commonly requires the pairwise activity of class II and class I diterpene synthases (diTPSs) that convert the central precursor geranylgeranyl diphosphate into distinct diterpenoid scaffolds. Two maize class II diTPSs, ANTHER EAR 1 and 2 (ZmAN1/2), have been previously identified as catalytically redundant ent-copalyl diphosphate (CPP) synthases. ZmAN1 is essential for gibberellin phytohormone biosynthesis, whereas ZmAN2 is stress-inducible and governs the formation of defensive kauralexin and dolabralexin diterpenoids. Here, we report the biochemical characterization of the two remaining class II diTPSs present in the maize genome, COPALYL DIPHOSPHATE SYNTHASE 3 (ZmCPS3) and COPALYL DIPHOSPHATE SYNTHASE 4 (ZmCPS4). Functional analysis via microbial co-expression assays identified ZmCPS3 as a (+)-CPP synthase, with functionally conserved orthologs occurring in wheat (Triticum aestivum) and numerous dicot species. ZmCPS4 formed the unusual prenyl diphosphate, 8,13-CPP (labda-8,13-dien-15-yl diphosphate), as verified by mass spectrometry and nuclear magnetic resonance. As a minor product, ZmCPS4 also produced labda-13-en-8-ol diphosphate (LPP). Root gene expression profiles did not indicate an inducible role of ZmCPS3 in maize stress responses. By contrast, ZmCPS4 showed a pattern of inducible gene expression in roots exposed to oxidative stress, supporting a possible role in abiotic stress responses. Identification of the catalytic activities of ZmCPS3 and ZmCPS4 clarifies the first committed reactions controlling the diversity of defensive diterpenoids in maize, and suggests the existence of additional yet undiscovered diterpenoid pathways.
Collapse
Affiliation(s)
- Katherine M. Murphy
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Li-Ting Ma
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Eric A. Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- *Correspondence: Philipp Zerbe,
| |
Collapse
|
35
|
Huang AC, Hong YJ, Bond AD, Tantillo DJ, Osbourn A. Diverged Plant Terpene Synthases Reroute the Carbocation Cyclization Path towards the Formation of Unprecedented 6/11/5 and 6/6/7/5 Sesterterpene Scaffolds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ancheng C. Huang
- Department of Metabolic Biology; John Innes Centre; Colney Lane, Norwich Research Park Norwich NR4 7UH UK
| | - Young J. Hong
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Andrew D. Bond
- Department of Chemistry; University of Cambridge; Lensfield Rd Cambridge CB2 1EW UK
| | - Dean J. Tantillo
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Anne Osbourn
- Department of Metabolic Biology; John Innes Centre; Colney Lane, Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
36
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
37
|
Systematic identification of functional residues of Artemisia annua amorpha-4,11-diene synthase. Biochem J 2017; 474:2191-2202. [DOI: 10.1042/bcj20170060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
Terpene synthases (TPSs) are responsible for the extremely diversified and complex structure of terpenoids. Amorpha-4,11-diene synthase (ADS) has a high (90%) fidelity in generating the sesquiterpene precursor for the biosynthesis of artemisinin, an antimalarial drug, however, little is known about how active site residues of ADS are involved in carbocation rearrangement and cyclization reactions. Here, we identify seven residues that are key to most of the catalytic steps in ADS. By structural modeling and amino acid sequence alignments of ADS with two functionally relevant sesquiterpene synthases from Artemisia annua, we performed site-directed mutagenesis and found that a single substitution, T296V, impaired the ring closure activity almost completely, and tetra-substitutions (L374Y/L404V/L405I/G439S) led to an enzyme generating 80% monocyclic bisabolyl-type sesquiterpenes, whereas a double mutant (T399L/T447G) showed compromised activity in regioselective deprotonation to yield 34.7 and 37.7% normal and aberrant deprotonation products, respectively. Notably, Thr296, Leu374, Gly439, Thr399, and Thr447, which play a major role in directing catalytic cascades, are located around conserved metal-binding motifs and function through impacting the folding of the substrate/intermediate, implying that residues surrounding the two motifs could be valuable targets for engineering TPS activity. Using this knowledge, we substantially increased amorpha-4,11-diene production in a near-additive manner by engineering Thr399 and Thr447 for product release. Our results provide new insight for the rational design of enzyme activity using synthetic biology.
Collapse
|
38
|
Hansen NL, Nissen JN, Hamberger B. Two residues determine the product profile of the class II diterpene synthases TPS14 and TPS21 of Tripterygium wilfordii. PHYTOCHEMISTRY 2017; 138:52-56. [PMID: 28279524 DOI: 10.1016/j.phytochem.2017.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 05/22/2023]
Abstract
The medicinal plant Tripterygium wilfordii (Celastraceae) contains a pair of class II diterpene synthases (diTPS) of specialized labdane-type metabolism that, despite remarkably close homology, form strikingly different products. TwTPS21 catalyzes bicyclization of the linear C20 precursor geranylgeranyl diphosphate to ent-copal-8-ol diphosphate, while TwTPS14 forms kolavenyl diphosphate. To determine the amino acid signature controlling the functional divergence of the homologues, we modeled their structures based on an existing crystal structure of the Arabidopsis ent-copalyl diphosphate synthase, archetypal of diTPSs in general metabolism of gibberellin phytohormones. Of the residues differing between TwTPS21 and TwTPS14 two located to the predicted active site, and we hypothesized that these are responsible for the functional differentiation of the enzymes. Using site-directed mutagenesis, we generated a panel of six variants, where one, or both positions were exchanged between the enzymes. In coupled heterologous assays with a corresponding class I diTPS, TwTPS2, complete product interchange was observed in variants with both reciprocal mutations, while substitutions of either residue gave mixed product profiles. Two mutants, TwTPS14:Y265H and TwTPS21:A325V, also produced ent-copalyl diphosphate, highlighting the evolutionary potential of enzymes of this family to drive rapid diversification of plant diterpene biosynthesis through neo-functionalization. Our study contributes to the understanding of structure-function relation in plant class II diTPSs and complements previous mutational studies of Arabidopsis ent-copalyl diphosphate synthase with additional examples from the specialized metabolism of T. wilfordii.
Collapse
Affiliation(s)
- Nikolaj L Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Denmark; Center for Synthetic Biology "bioSYNergy" and Copenhagen Plant Sciences Centre, Denmark
| | - Jakob N Nissen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Denmark; Center for Synthetic Biology "bioSYNergy" and Copenhagen Plant Sciences Centre, Denmark
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Denmark; Center for Synthetic Biology "bioSYNergy" and Copenhagen Plant Sciences Centre, Denmark.
| |
Collapse
|
39
|
Pelot KA, Hagelthorn LM, Addison JB, Zerbe P. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases. PLoS One 2017; 12:e0176507. [PMID: 28445526 PMCID: PMC5405970 DOI: 10.1371/journal.pone.0176507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023] Open
Abstract
Plants produce an immense diversity of natural products (i.e. secondary or specialized metabolites) that offer a rich source of known and potentially new pharmaceuticals and other desirable bioproducts. The Traditional Chinese Medicinal plant Isodon rubescens (Lamiaceae) contains an array of bioactive labdane-related diterpenoid natural products. Of these, the ent-kauranoid oridonin is the most prominent specialized metabolite that has been extensively studied for its potent antimicrobial and anticancer efficacy. Mining of a previously established transcriptome of I. rubescens leaf tissue identified seven diterpene synthase (diTPSs) candidates. Here we report the functional characterization of four I. rubescens diTPSs. IrTPS5 and IrTPS3 were identified as an ent-copalyl diphosphate (CPP) synthase and a (+)-CPP synthase, respectively. Distinct transcript abundance of IrTPS5 and the predicted ent-CPP synthase IrTPS1 suggested a role of IrTPS5 in specialized ent-kaurene metabolism possibly en route to oridonin. Nicotiana benthamiana co-expression assays demonstrated that IrTPS4 functions sequentially with IrTPS3 to form miltiradiene. In addition, IrTPS2 converted the IrTPS3 product (+)-CPP into the hydroxylated tricyclic diterpene nezukol not previously identified in I. rubescens. Metabolite profiling verified the presence of nezukol in I. rubescens leaf tissue. The proposed IrTPS2-catalyzed reaction mechanism proceeds via the common ionization of the diphosphate group of (+)-CPP, followed by formation of an intermediary pimar-15-en-8-yl+ carbocation and neutralization of the carbocation by water capture at C-8 to yield nezukol, as confirmed by nuclear magnetic resonance (NMR) analysis. Oxygenation activity is rare for the family of class I diTPSs and offers new catalysts for developing metabolic engineering platforms to produce a broader spectrum of bioactive diterpenoid natural products.
Collapse
Affiliation(s)
- Kyle A. Pelot
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| | - Lynne M. Hagelthorn
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| | - J. Bennett Addison
- Department of Chemistry, University of California-Davis, Davis, California, United States of America
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
40
|
Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis. Sci Rep 2017; 7:43311. [PMID: 28266568 PMCID: PMC5339715 DOI: 10.1038/srep43311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/25/2017] [Indexed: 11/08/2022] Open
Abstract
Scoparia dulcis biosynthesize bioactive diterpenes, such as scopadulcic acid B (SDB), which are known for their unique molecular skeleton. Although the biosynthesis of bioactive diterpenes is catalyzed by a sequence of class II and class I diterpene synthases (diTPSs), the mechanisms underlying this process are yet to be fully identified. To elucidate these biosynthetic machinery, we performed a high-throughput RNA-seq analysis, and de novo assembly of clean reads revealed 46,332 unique transcripts and 40,503 two unigenes. We found diTPSs genes including a putative syn-copalyl diphosphate synthase (SdCPS2) and two kaurene synthase-like (SdKSLs) genes. Besides them, total 79 full-length of cytochrome P450 (CYP450) genes were also discovered. The expression analyses showed selected CYP450s associated with their expression pattern of SdCPS2 and SdKSL1, suggesting that CYP450 candidates involved diterpene modification. SdCPS2 represents the first predicted gene to produce syn-copalyl diphosphate in dicots. In addition, SdKSL1 potentially contributes to the SDB biosynthetic pathway. Therefore, these identified genes associated with diterpene biosynthesis lead to the development of genetic engineering focus on diterpene metabolism in S. dulcis.
Collapse
|
41
|
Pelot KA, Mitchell R, Kwon M, Hagelthorn LM, Wardman JF, Chiang A, Bohlmann J, Ro DK, Zerbe P. Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the Salvia divinorum clerodienyl diphosphate synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:885-897. [PMID: 27865008 DOI: 10.1111/tpj.13427] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Salvia divinorum commonly known as diviner's sage, is an ethnomedicinal plant of the mint family (Lamiaceae). Salvia divinorum is rich in clerodane-type diterpenoids, which accumulate predominantly in leaf glandular trichomes. The main bioactive metabolite, salvinorin A, is the first non-nitrogenous natural compound known to function as an opioid-receptor agonist, and is undergoing clinical trials for potential use in treating neuropsychiatric diseases and drug addictions. We report here the discovery and functional characterization of two S. divinorum diterpene synthases (diTPSs), the ent-copalyl diphosphate (ent-CPP) synthase SdCPS1, and the clerodienyl diphosphate (CLPP) synthase SdCPS2. Mining of leaf- and trichome-specific transcriptomes revealed five diTPSs, two of which are class II diTPSs (SdCPS1-2) and three are class I enzymes (SdKSL1-3). Of the class II diTPSs, transient expression in Nicotiana benthamiana identified SdCPS1 as an ent-CPP synthase, which is prevalent in roots and, together with SdKSL1, exhibits a possible dual role in general and specialized metabolism. In vivo co-expression and in vitro assays combined with nuclear magnetic resonance (NMR) analysis identified SdCPS2 as a CLPP synthase. A role of SdCPS2 in catalyzing the committed step in salvinorin A biosynthesis is supported by its biochemical function, trichome-specific expression and absence of additional class II diTPSs in S. divinorum. Structure-guided mutagenesis revealed four catalytic residues that enabled the re-programming of SdCPS2 activity to afford four distinct products, thus advancing our understanding of how neo-functionalization events have shaped the array of different class II diTPS functions in plants, and may promote synthetic biology platforms for a broader spectrum of diterpenoid bioproducts.
Collapse
Affiliation(s)
- Kyle A Pelot
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rod Mitchell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada
| | - Lynne M Hagelthorn
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Jacob F Wardman
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
42
|
Chen X, Berim A, Dayan FE, Gang DR. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1109-1122. [PMID: 28204567 PMCID: PMC5441855 DOI: 10.1093/jxb/erw493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Franck E Dayan
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| |
Collapse
|
43
|
Jia M, Peters RJ. Extending a Single Residue Switch for Abbreviating Catalysis in Plant ent-Kaurene Synthases. FRONTIERS IN PLANT SCIENCE 2016; 7:1765. [PMID: 27920791 PMCID: PMC5118566 DOI: 10.3389/fpls.2016.01765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/09/2016] [Indexed: 05/23/2023]
Abstract
Production of ent-kaurene as a precursor for important signaling molecules such as the gibberellins seems to have arisen early in plant evolution, with corresponding cyclase(s) present in all land plants (i.e., embryophyta). The relevant enzymes seem to represent fusion of the class II diterpene cyclase that produces the intermediate ent-copalyl diphosphate (ent-CPP) and the subsequently acting class I diterpene synthase that produces ent-kaurene, although the bifunctionality of the ancestral gene is only retained in certain early diverging plants, with gene duplication and sub-functionalization leading to distinct ent-CPP synthases and ent-kaurene synthases (KSs) generally observed. This evolutionary scenario implies that plant KSs should have conserved structural features uniquely required for production of ent-kaurene relative to related enzymes that have alternative function. Notably, substitution of threonine for a conserved isoleucine has been shown to "short-circuit" the complex bicyclization and rearrangement reaction catalyzed by KSs after initial cyclization, leading to predominant production of ent-pimaradiene, at least in KSs from angiosperms. Here this effect is shown to extend to KSs from earlier diverging plants (i.e., bryophytes), including a bifunctional/KS. In addition, attribution of the dramatic effect of this single residue "switch" on product outcome to electrostatic stabilization of the ent-pimarenyl carbocation intermediate formed upon initial cyclization by the hydroxyl introduced by threonine substitution has been called into question by the observation of similar effects from substitution of alanine. Here further mutational analysis and detailed product analysis is reported that supports the importance of electrostatic stabilization by a hydroxyl or water.
Collapse
|
44
|
Mafu S, Fischer E, Addison JB, Riberio Barbosana I, Zerbe P. Substitution of Two Active-Site Residues Alters C9-Hydroxylation in a Class II Diterpene Synthase. Chembiochem 2016; 17:2304-2307. [PMID: 27735121 DOI: 10.1002/cbic.201600419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/06/2022]
Abstract
Diterpenes form a vast and diverse class of natural products of both ecological and economic importance. Class II diterpene synthase (diTPS) enzymes control the committed biosynthetic reactions underlying diterpene chemical diversity. Homology modelling with site-directed mutagenesis identified two active-site residues in the horehound (Marrubium vulgare) class II diTPS peregrinol diphosphate synthase (MvCPS1); residue substitutions abolished the unique MvCPS1-catalysed water-capture reaction at C9 and redirected enzyme activity toward formation of an alternative product, halima-5(10),13-dienyl diphosphate. These findings contributed new insight into the steric interactions that govern diTPS-catalysed regiospecific oxygenation reactions and highlight the feasibility of diTPS engineering to provide a broader spectrum of bioactive diterpene natural products.
Collapse
Affiliation(s)
- Sibongile Mafu
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Emil Fischer
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Present address: The Scripps Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - J Bennett Addison
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Isabel Riberio Barbosana
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Present address: Federal University of Ceara, Mister Hull Avenue, 60455-760, Fortaleza, Brazil
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
45
|
Hammer SC, Syrén PO, Hauer B. Substrate Pre-Folding and Water Molecule Organization Matters for Terpene Cyclase Catalyzed Conversion of Unnatural Substrates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stephan C. Hammer
- Division of Chemistry; Chemical Engineering; California Institute of Technology; Pasadena, CA 91125 USA
| | - Per-Olof Syrén
- School of Chemical Science and Engineering; Division of Applied Physical Chemistry; KTH Royal Institute of Technology; 100 44 Stockholm Sweden
| | - Bernhard Hauer
- Institute of Technical Biochemistry; Universitaet Stuttgart; Allmandring 31 D-70569 Stuttgart Germany
| |
Collapse
|
46
|
A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases. Proc Natl Acad Sci U S A 2016; 113:E4407-14. [PMID: 27412861 DOI: 10.1073/pnas.1605509113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.
Collapse
|
47
|
Arendt P, Pollier J, Callewaert N, Goossens A. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:16-37. [PMID: 26867713 DOI: 10.1111/tpj.13138] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids.
Collapse
Affiliation(s)
- Philipp Arendt
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
- VIB Medical Biotechnology Center, B-9000, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
48
|
Jia M, Potter KC, Peters RJ. Extreme promiscuity of a bacterial and a plant diterpene synthase enables combinatorial biosynthesis. Metab Eng 2016; 37:24-34. [PMID: 27060773 DOI: 10.1016/j.ymben.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Diterpenes are widely distributed across many biological kingdoms, where they serve a diverse range of physiological functions, and some have significant industrial utility. Their biosynthesis involves class I diterpene synthases (DTSs), whose activity can be preceded by that of class II diterpene cyclases (DTCs). Here, a modular metabolic engineering system was used to examine the promiscuity of DTSs. Strikingly, both a bacterial and plant DTS were found to exhibit extreme promiscuity, reacting with all available precursors with orthogonal activity, producing an olefin or hydroxyl group, respectively. Such DTS promiscuity enables combinatorial biosynthesis, with remarkably high yields for these unoptimized non-native enzymatic combinations (up to 15mg/L). Indeed, it was possible to readily characterize the 13 unknown products. Notably, 16 of the observed diterpenes were previously inaccessible, and these results provide biosynthetic routes that are further expected to enable assembly of more extended pathways to produce additionally elaborated 'non-natural' diterpenoids.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
49
|
Potter KC, Jia M, Hong YJ, Tantillo D, Peters RJ. Product Rearrangement from Altering a Single Residue in the Rice syn-Copalyl Diphosphate Synthase. Org Lett 2016; 18:1060-3. [PMID: 26878189 PMCID: PMC4782720 DOI: 10.1021/acs.orglett.6b00181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Through
site-directed mutagenesis targeted at identification of
the catalytic base in the rice (Oryza sativa) syn-copalyl diphosphate synthase OsCPS4, changes to a single
residue (H501) were found to induce rearrangement rather than immediate
deprotonation of the initially formed bicycle, leading to production
of the novel compound syn-halimadienyl diphosphate.
These mutational results are combined with quantum chemical calculations
to provide insight into the underlying reaction mechanism.
Collapse
Affiliation(s)
- Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Young J Hong
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Dean Tantillo
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
50
|
Potter KC, Zi J, Hong YJ, Schulte S, Malchow B, Tantillo DJ, Peters RJ. Blocking Deprotonation with Retention of Aromaticity in a Plant ent
-Copalyl Diphosphate Synthase Leads to Product Rearrangement. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|