1
|
Review of FRET biosensing and its application in biomolecular detection. Am J Transl Res 2023; 15:694-709. [PMID: 36915763 PMCID: PMC10006758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Life science research is advancing rapidly in the 21st century. Many innovative technologies and methodologies are being applied in various fields of the life sciences to reveal how macromolecules interact with each other. The technology of using fluorescent molecules in biomedical research has contributed immensely to progress in this field. Fluorescence-based optical biosensors, which show high specificity, exhibit huge potential for clinical diagnosis and treatment of many of the life-changing diseases. Fluorescence resonance energy transfer (FRET), is a technique that has been widely employed in biosensing ever since its discovery. It is a classic fluorescence technique, and an important biosensing research tool extensively utilized in the fields of toxicology, pharmacology, and biomedicine; many biosensor designs are based on FRET. Radiometric imaging of biological molecules, biomolecular interactions, and cellular processes are extensively performed using FRET biosensors. This review focuses on the selection of FRET donors and acceptors used for biosensing, and presents an overview of different FRET technologies. Furthermore, it highlights the progress in the application for FRET in nucleic acid and protein biosensing, and provides a viewpoint for future developmental trends using FRET technology.
Collapse
|
2
|
You S, Lee HG, Kim K, Yoo J. Improved Parameterization of Protein-DNA Interactions for Molecular Dynamics Simulations of PCNA Diffusion on DNA. J Chem Theory Comput 2020; 16:4006-4013. [PMID: 32543861 DOI: 10.1021/acs.jctc.0c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the field of molecular dynamics simulation utilizing the force fields is moving toward more complex systems, the accuracy of intermolecular interactions has become a central issue of the field. Here, we quantitatively evaluate the accuracy of the protein-DNA interactions in AMBER and CHARMM force fields by comparing experimental and simulated diffusion coefficients of proliferating cell nuclear antigen. We find that both force fields underestimate diffusion coefficients by at least an order of magnitude because the interactions between basic amino acids and DNA phosphate groups are too attractive. Then, we propose Lennard-Jones parameters optimized using the experimental osmotic pressure data of model chemicals, by using which one can reproduce the experimental diffusion coefficients. Newly optimized parameters will have a broad impact on general protein-DNA interactions.
Collapse
Affiliation(s)
- Seonju You
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong-Guen Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Jejoong Yoo
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea.,Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Thornburg ZR, Melo MCR, Bianchi D, Brier TA, Crotty C, Breuer M, Smith HO, Hutchison CA, Glass JI, Luthey-Schulten Z. Kinetic Modeling of the Genetic Information Processes in a Minimal Cell. Front Mol Biosci 2019; 6:130. [PMID: 31850364 PMCID: PMC6892953 DOI: 10.3389/fmolb.2019.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493 genes. For this slow growing minimal cell with a 105 min doubling time, we recently established the essential metabolism including the transport of required nutrients from the environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding genes, 143 are assigned to metabolism and 212 are assigned to genetic information processing. Using genome-wide proteomics and experimentally measured kinetic parameters from the literature we present here kinetic models for the genetic information processes of DNA replication, replication initiation, transcription, and translation which are solved stochastically and averaged over 1,000 replicates/cells. The model predicts the time required for replication initiation and DNA replication to be 8 and 50 min on average respectively and the number of proteins and ribosomal components to be approximately doubled in a cell cycle. The model of genetic information processing when combined with the essential metabolic and cell growth networks will provide a powerful platform for studying the fundamental principles of life.
Collapse
Affiliation(s)
- Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcelo C R Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Machine Biology Group, Department of Psychiatry, Microbiology, and Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cole Crotty
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marian Breuer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Hamilton O Smith
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clyde A Hutchison
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - John I Glass
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Park J, Jergic S, Jeon Y, Cho WK, Lee R, Dixon NE, Lee JB. Dynamics of Proofreading by the E. coli Pol III Replicase. Cell Chem Biol 2017; 25:57-66.e4. [PMID: 29104063 DOI: 10.1016/j.chembiol.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023]
Abstract
The αɛθ core of Escherichia coli DNA polymerase III (Pol III) associates with the β2 sliding clamp to processively synthesize DNA and remove misincorporated nucleotides. The α subunit is the polymerase while ɛ is the 3' to 5' proofreading exonuclease. In contrast to the polymerase activity of Pol III, dynamic features of proofreading are poorly understood. We used single-molecule assays to determine the excision rate and processivity of the β2-associated Pol III core, and observed that both properties are enhanced by mutational strengthening of the interaction between ɛ and β2. Thus, the ɛ-β2 contact is maintained in both the synthesis and proofreading modes. Remarkably, single-molecule real-time fluorescence imaging revealed the dynamics of transfer of primer-template DNA between the polymerase and proofreading sites, showing that it does not involve breaking of the physical interaction between ɛ and β2.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Won-Ki Cho
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea.
| |
Collapse
|
5
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
6
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
7
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
8
|
Abstract
A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders.
Collapse
|
9
|
Klahn P, Brönstrup M. New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development. Curr Top Microbiol Immunol 2016; 398:365-417. [PMID: 27704270 DOI: 10.1007/82_2016_501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel β-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|