1
|
Li C, Li M, Gao W, Zhang T, Liu Z, Miao M. Biosynthesis of Sialyllacto- N-tetraose c in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39508523 DOI: 10.1021/acs.jafc.4c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable interest for their vital role in supporting infant health. Among these, sialyllacto-N-tetraose c (LST c), a pentasaccharide with the structure Neu5Ac(α2,6)Gal(β1,4)GlcNAc(β1,3)Gal(β1,4)Glc, stands out due to its critical importance in the development and application of complex HMOs. In this study, we employed multivariate modular metabolic engineering (MMME) to screen for efficient sialyltransferases and balance metabolic fluxes, successfully constructing strains capable of LST c biosynthesis. Additionally, by blocking competing pathway genes, enhancing the supply of UDP-GlcNAc and UDP-Gal precursors, and establishing a CTP cofactor regeneration system, we developed a high-yielding Escherichia coli strain, W15. This strain achieved an LST c titer of 220.9 mg/L in shake flask cultures. In a 3-L fed-batch fermentation, the LST c concentration reached 922.2 mg/L, with a productivity of 10.25 mg/L/h and a specific yield of 38.70 mg/g DCW. This research provides an effective strategy for producing LST c in microbial cell factories.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Bao S, Shen T, Shabahang MH, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024:e202411863. [PMID: 39223086 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad Hossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Pei C, Peng X, Wu Y, Jiao R, Li T, Jiao S, Zhou L, Li J, Du Y, Qian EW. Characterization and application of active human α2,6-sialyltransferases ST6GalNAc V and ST6GalNAc VI recombined in Escherichia coli. Enzyme Microb Technol 2024; 177:110426. [PMID: 38503081 DOI: 10.1016/j.enzmictec.2024.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Eukaryotic sialyltransferases play key roles in many physiological and pathological events. The expression of active human recombinant sialyltransferases in bacteria is still challenging. In the current study, the genes encoding human N-acetylgalactosaminide α2,6-sialyltransferase V (hST6GalNAc V) and N-acetylgalactosaminide α2,6-sialyltransferase VI (hST6GalNAc VI) lacking the N-terminal transmembrane domains were cloned into the expression vectors, pET-32a and pET-22b, respectively. Soluble and active forms of recombinant hST6GalNAc V and hST6GalNAc VI when coexpressed with the chaperone plasmid pGro7 were successfully achieved in Escherichia coli. Further, lactose (Lac), Lacto-N-triose II (LNT II), lacto-N-tetraose (LNT), and sialyllacto-N-tetraose a (LSTa) were used as acceptor substrates to investigate their activities and substrate specificities. Unexpectedly, both can transfer sialic acid onto all those substrates. Compared with hST6GalNAc V expressed in the mammalian cells, the recombinant two α2,6-sialyltransferases in bacteria displayed flexible substrate specificities and lower enzymatic efficiency. In addition, an important human milk oligosaccharide disialyllacto-N-tetraose (DSLNT) can be synthesized by both human α2,6-sialyltransferases expressed in E. coli using LSTa as an acceptor substrate. To the best of our knowledge, these two active human α2,6-sialyltransferases enzymes were expressed in bacteria for the first time. They showed a high potential to be applied in biotechnology and investigating the molecular mechanisms of biological and pathological interactions related to sialylated glycoconjugates.
Collapse
Affiliation(s)
- Caixia Pei
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runmiao Jiao
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China.
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
4
|
Wu Y, Sun Y, Pei C, Peng X, Liu X, Qian EW, Du Y, Li JJ. Automated chemoenzymatic modular synthesis of human milk oligosaccharides on a digital microfluidic platform. RSC Adv 2024; 14:17397-17405. [PMID: 38813121 PMCID: PMC11134329 DOI: 10.1039/d4ra01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Glycans, along with proteins, nucleic acids, and lipids, constitute the four fundamental classes of biomacromolecules found in living organisms. Generally, glycans are attached to proteins or lipids to form glycoconjugates that perform critical roles in various biological processes. Automatic synthesis of glycans is essential for investigation into structure-function relationships of glycans. In this study, we presented a method that integrated magnetic bead-based manipulation and modular chemoenzymatic synthesis of human milk oligosaccharides (HMOs), on a DMF (Digital Microfluidics) platform. On the DMF platform, enzymatic modular reactions were conducted in solution, and purification of products or intermediates was achieved by using DEAE magnetic beads, circumventing the intricate steps required for traditional solid-phase synthesis. With this approach, we have successfully synthesized eleven HMOs with highest yields of up to >90% on the DMF platform. This study would not only lay the foundation for OPME synthesis of glycans on the DMF platform, but also set the stage for developing automated enzymatic glycan synthesizers based on the DMF platform.
Collapse
Affiliation(s)
- Yiran Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunze Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Caixia Pei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianming Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Jian-Jun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
5
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
7
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Chen X. Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates. Acc Chem Res 2024; 57:234-246. [PMID: 38127793 PMCID: PMC10795189 DOI: 10.1021/acs.accounts.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
9
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
10
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
11
|
Li T, Wang X, Dong P, Yu P, Zhang Y, Meng X. Chemoenzymatic synthesis and biological evaluation of ganglioside GM3 and lyso-GM3 as potential agents for cancer therapy. Carbohydr Res 2021; 509:108431. [PMID: 34492428 DOI: 10.1016/j.carres.2021.108431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
A highly efficient chemoenzymatic method for synthesizing ganglioside GM3 and lyso-GM3 was reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient one-pot multienzyme (OPME) reaction allowed glycosylation to be carried out in aqueous solutions realizing the greening of reactions. Ganglioside GM3 was synthesized through 10 steps with a total yield of 22%. Lyso-GM3 was very useful for kinds of derivatization. The anti-proliferation activity studies demonstrated that these compounds 14-16 with sphingosine exhibited more potency than the corresponding lyso-GM3 with ceramide. All ganglioside GM3 and lyso-GM3 can effectively inhibit the migration of melanoma B16-F10 cells. These chemoenzymaticlly synthesized GM3 and lyso-GM3 exhibited antitumor activities, which can provide valuable sights to search new antitumor agents for cancer therapy.
Collapse
Affiliation(s)
- Tingshen Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Xiaodan Wang
- School of Pharmaceutical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, PR China
| | - Peijie Dong
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China
| | - Yongmin Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 Place Jussieu, 75005, Paris, France
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Abstract
Few classes of natural products rival the structural audacity of oligosaccharides. Their complexity, however, has stood as an immense roadblock to translational research, as access to homogeneous material from nature is challenging. Thus, while carbohydrates are critical to the myriad functional and structural aspects of the biological sciences, their behavior is largely descriptive. This challenge presents an attractive opportunity for synthetic chemistry, particularly in the area of human milk science. First, there is an inordinate need for synthesizing homogeneous human milk oligosaccharides (HMOs). Superimposed on this goal is the mission of conducting syntheses at scale to enable animal studies. Herein, we present a personalized rumination of our involvement, and that of our colleagues, which has led to the synthesis and characterization of HMOs and mechanistic probes. Along the way, we highlight chemical, chemoenzymatic, and synthetic biology based approaches. We close with a discussion on emergent challenges and opportunities for synthesis, broadly defined, in human milk science.
Collapse
Affiliation(s)
- Lianyan L Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Zhu Y, Luo G, Wan L, Meng J, Lee SY, Mu W. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- N-tetraose, and lacto- N-neotetraose. Crit Rev Biotechnol 2021; 42:578-596. [PMID: 34346270 DOI: 10.1080/07388551.2021.1944973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human milk oligosaccharides (HMOs) have recently attracted ever-increasing interest because of their versatile physiological functions. In HMOs, two tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), constitute the essential components, each accounting 6% (w/w) of total HMOs. Also, they serve as core structures for fucosylation and sialylation, generating functional derivatives and elongation generating longer chains of core structures. LNT, LNnT, and their fucosylated and/or sialylated derivatives account for more than 30% (w/w) of total HMOs. For derivatization, LNT and LNnT can be modified into a series of complex fucosylated and/or sialylated HMOs by transferring fucose residues at α1,2-, α1,3-, and α1,3/4-linkage and/or sialic acid residues at α2,3- and α2,6-linkage. Such structural diversity allows these HMOs to possess great commercial value and an application potential in the food and pharmaceutical industries. In this review, we first elaborate the physiological functions of these tetrasaccharides and derivatives. Next, we extensively review recent developments in the biosynthesis of LNT, LNnT, and their derivatives in vitro and in vivo by employing advanced enzymatic reaction systems and metabolic engineering strategies. Finally, future perspectives in the synthesis of these HMOs using enzymatic and metabolic engineering approaches are presented.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Karimi Alavijeh M, Meyer AS, Gras SL, Kentish SE. Synthesis of N-Acetyllactosamine and N-Acetyllactosamine-Based Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7501-7525. [PMID: 34152750 DOI: 10.1021/acs.jafc.1c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetyllactosamine (LacNAc) or more specifically β-d-galactopyranosyl-1,4-N-acetyl-d-glucosamine is a unique acyl-amino sugar and a key structural unit in human milk oligosaccharides, an antigen component of many glycoproteins, and an antiviral active component for the development of effective drugs against viruses. LacNAc is useful itself and as a basic building block for producing various bioactive oligosaccharides, notably because this synthesis may be used to add value to dairy lactose. Despite a significant amount of information in the literature on the benefits, structures, and types of different LacNAc-derived oligosaccharides, knowledge about their effective synthesis for large-scale production is still in its infancy. This work provides a comprehensive analysis of existing production strategies for LacNAc and important LacNAc-based structures, including sialylated LacNAc as well as poly- and oligo-LacNAc. We conclude that direct extraction from milk is too complex, while chemical synthesis is also impractical at an industrial scale. Microbial routes have application when multiple step reactions are needed, but the major route to large-scale biochemical production will likely lie with enzymatic routes, particularly those using β-galactosidases (for LacNAc synthesis), sialidases (for sialylated LacNAc synthesis), and β-N-acetylhexosaminidases (for oligo-LacNAc synthesis). Glycosyltransferases, especially for the biosynthesis of extended complex LacNAc structures, could also play a major role in the future. In these cases, immobilization of the enzyme can increase stability and reduce cost. Processing parameters, such as substrate concentration and purity, acceptor/donor ratio, water activity, and temperature, can affect product selectivity and yield. More work is needed to optimize these reaction parameters and in the development of robust, thermally stable enzymes to facilitate commercial production of these important bioactive substances.
Collapse
Affiliation(s)
- M Karimi Alavijeh
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - A S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark
| | - S L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S E Kentish
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
16
|
Christian P, Smith ER, Lee SE, Vargas AJ, Bremer AA, Raiten DJ. The need to study human milk as a biological system. Am J Clin Nutr 2021; 113:1063-1072. [PMID: 33831952 PMCID: PMC8106761 DOI: 10.1093/ajcn/nqab075] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.
Collapse
Affiliation(s)
| | - Emily R Smith
- Milken Institute School of Public Health, The George Washington University, Departments of Global Health and Exercise and Nutrition Sciences, Washington, DC, USA
| | - Sun Eun Lee
- The Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Ashley J Vargas
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew A Bremer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutr Metab (Lond) 2021; 18:5. [PMID: 33407596 PMCID: PMC7789326 DOI: 10.1186/s12986-020-00534-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) remains a fatal gastrointestinal disorder in neonates and has very limited therapeutic options. Sialylated human milk oligosaccharides (SHMOs) improve pathological changes in experimental NEC models. The objectives of this study were to investigate the involvement of NLRP3 inflammasome in NEC pathology and to explore the effects of SHMOs on toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/NLRP3 inflammatory pathway in experimental NEC. Methods The intestinal-tissue segments were collected from NEC infants, NLRP3 and caspase-1 positive cell were examined by immunohistochemistry. Newborn rats were hand-fed with formula containing or non-containing SHMOs (1500 mg/L) and exposed to hypoxia/cold stress to induce experimental NEC. The NEC pathological scores were evaluated; ileum protein expression of membrane TLR4 (mTLR4), inhibitor κB-α (IκB-α), NF-κB p65 subunit and phospho-NF-κB p65, as well as NLRP3 and caspase-1 were analyzed; ileum concentrations of interleukin-1β, interleukin-6, tumor necrosis factor-α (TNF-α) were also measured. Human colon epithelial Caco-2 cells were pre-treated with or without SHMOs and stimulated with TLR4 activator, lipopolysaccharide. Cell viabilities, mitochondrial membrane potential and supernatant matrix metalloprotease 2 (MMP-2) activities were analyzed. Results Increased frequencies of NLRP3 and caspase-1 positive cells were found in the lamina propria of damaged intestinal area of NEC neonates. SHMOs supplementation reduced NEC incidence and pathological damage scores of rats challenged with hypoxia/cold stress. Accumulation of interleukin-1β, interleukin-6 and TNF-α in NEC group were attenuated in SHMOs + NEC group. Protein expression of mTLR4, NLRP3 and caspase-1 were elevated, cytoplasmic IκB-α were reduced, nuclear phospho-NF-κB p65 were increased in the ileum of NEC rats. SHMOs supplementation ameliorated the elevation of mTLR4, NLRP3 and caspase-1, restored IκB-α in the cytoplasmic fraction and reduced phospho-NF-κB p65 in the nuclear fraction in the ileum of NEC rats. SHMOs pre-treatment improved Caco-2 cell viability, mitigated loss of mitochondrial membrane potential and modulated MMP-2 activities in the presence of lipopolysaccharide in-vitro. Conclusions This study provided clinical evidence of involvement of NLRP3 inflammasome in NEC pathology, and demonstrated the protective actions of SHMOs might be owing to the suppression of TLR4/NF-κB/NLRP3-mediated inflammation in NEC.
Collapse
|
18
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
19
|
Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, Salazar-Pereda V, Bautista-Ávila M, Cruz-Guerrero AE, Flores-Aguilar JF, González-Olivares LG. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr 2020; 62:181-214. [DOI: 10.1080/10408398.2020.1813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel Pérez-Escalante
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Sergio Alatorre-Santamaría
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Araceli Castañeda-Ovando
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Verónica Salazar-Pereda
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Mirandeli Bautista-Ávila
- Universidad Autónoma del Estado de Hidalgo. Área Académica de Farmacia, Instituto de Ciencias de la Salud. Ex-Hacienda la Concepción. San Agustín Tlaxiaca, Hidalgo, México
| | - Alma Elizabeth Cruz-Guerrero
- Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud. Departamento de Biotecnología, Colonia Vicentina AP 09340, Ciudad de México, México
| | - Juan Francisco Flores-Aguilar
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| | - Luis Guillermo González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química. Ciudad del Conocimiento, Carretera Pachuca-Tulancingo km 4.5, Colonia Carboneras. CP. 42184. Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
20
|
Deng J, Lv X, Li J, Du G, Chen J, Liu L. Recent advances and challenges in microbial production of human milk oligosaccharides. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00004-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, van't Land B, Willemsen LEM. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol 2020; 11:801. [PMID: 32457747 PMCID: PMC7221186 DOI: 10.3389/fimmu.2020.00801] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence and incidence of allergic diseases is rising and these diseases have become the most common chronic diseases during childhood in Westernized countries. Early life forms a critical window predisposing for health or disease. Therefore, this can also be a window of opportunity for allergy prevention. Postnatally the gut needs to mature, and the microbiome is built which further drives the training of infant's immune system. Immunomodulatory components in breastmilk protect the infant in this crucial period by; providing nutrients that contain substrates for the microbiome, supporting intestinal barrier function, protecting against pathogenic infections, enhancing immune development and facilitating immune tolerance. The presence of a diverse human milk oligosaccharide (HMOS) mixture, containing several types of functional groups, points to engagement in several mechanisms related to immune and microbiome maturation in the infant's gastrointestinal tract. In recent years, several pathways impacted by HMOS have been elucidated, including their capacity to; fortify the microbiome composition, enhance production of short chain fatty acids, bind directly to pathogens and interact directly with the intestinal epithelium and immune cells. The exact mechanisms underlying the immune protective effects have not been fully elucidated yet. We hypothesize that HMOS may be involved in and can be utilized to provide protection from developing allergic diseases at a young age. In this review, we highlight several pathways involved in the immunomodulatory effects of HMOS and the potential role in prevention of allergic diseases. Recent studies have proposed possible mechanisms through which HMOS may contribute, either directly or indirectly, via microbiome modification, to induce oral tolerance. Future research should focus on the identification of specific pathways by which individual HMOS structures exert protective actions and thereby contribute to the capacity of the authentic HMOS mixture in early life allergy prevention.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nikita P. van Witzenburg
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Human Milk Research and Analytical Sciences, Danone Nutricia Research B.V., Utrecht, Netherlands
- Division of Chemical Biology and Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda van't Land
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients 2020; 12:nu12041105. [PMID: 32316160 PMCID: PMC7230487 DOI: 10.3390/nu12041105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2'-fucosyllactose (2'FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2'-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2'-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.
Collapse
Affiliation(s)
| | - Jolanta Lis-Kuberka
- Correspondence: (M.O.-P.); (J.L.-K.); Tel.: +48-71-770-30-64 (M.O.-P.); +48-71-770-32-17 (J.L.-K.)
| |
Collapse
|
23
|
Laborda P, Lyu Y, Parmeggiani F, Lu A, Wang W, Huang Y, Huang K, Guo J, Liu L, Flitsch SL, Voglmeir J. An Enzymatic N‐Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
- Current address: School of Life SciencesNantong University 19 Qixiu Road 226019 Nantong China
| | - Yong‐Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Fabio Parmeggiani
- School of Chemistry & Manchester Institute of BiotechnologyThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Ai‐Min Lu
- College of SciencesNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Wen‐Jiao Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Ying‐Ying Huang
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Kun Huang
- School of Chemistry & Manchester Institute of BiotechnologyThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Juan Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| | - Sabine L. Flitsch
- School of Chemistry & Manchester Institute of BiotechnologyThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC)College of Food Science and TechnologyNanjing Agricultural University 1 Weigang 210095 Nanjing China
| |
Collapse
|
24
|
Laborda P, Lyu YM, Parmeggiani F, Lu AM, Wang WJ, Huang YY, Huang K, Guo J, Liu L, Flitsch SL, Voglmeir J. An Enzymatic N-Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides. Angew Chem Int Ed Engl 2020; 59:5308-5311. [PMID: 31834658 DOI: 10.1002/anie.201914338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N-acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5-modified sialosides, through the use of highly selective enzyme cascades.
Collapse
Affiliation(s)
- Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China.,Current address: School of Life Sciences, Nantong University, 19 Qixiu Road, 226019, Nantong, China
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Fabio Parmeggiani
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Wen-Jiao Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Ying-Ying Huang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Kun Huang
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Juan Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095, Nanjing, China
| |
Collapse
|
25
|
Weinborn V, Li Y, Shah IM, Yu H, Dallas DC, German JB, Mills DA, Chen X, Barile D. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int Dairy J 2019; 102. [PMID: 32089591 DOI: 10.1016/j.idairyj.2019.104583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of mothers' milk is associated with reduced incidence and severity of enteric infections, leading to reduced morbidity in breastfed infants. Fucosylated and sialylated human milk oligosaccharides (HMO) are important for both direct antimicrobial action - likely via a decoy effect - and indirect antimicrobial action through commensal growth enhancement. Bovine milk oligosaccharides (BMO) are a potential source of HMO-mimics as BMO resemble HMO; however, they have simpler and less fucosylated structures. BMO isolated at large scales from bovine whey permeate were modified by the addition of fucose and/or sialic acid to generate HMO-like glycans using high-yield and cost-effective one-pot multienzyme approaches. Quadrupole time-of-flight LC/MS analysis revealed that 22 oligosaccharides were synthesized and 9 had identical composition to known HMO. Preliminary anti-adherence activity assays indicated that fucosylated BMO decreased the uptake of enterohemorrhagic Escherichia coli O157:H7 by human intestinal epithelial Caco-2 cells more effectively than native BMO.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Glycohub, Inc., 4070 Truxel Road, Sacramento, CA 95834, USA.,Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.,Food for Health Institute, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
26
|
van Leeuwen SS. Challenges and Pitfalls in Human Milk Oligosaccharide Analysis. Nutrients 2019; 11:E2684. [PMID: 31698698 PMCID: PMC6893418 DOI: 10.3390/nu11112684] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 01/08/2023] Open
Abstract
Human milk oligosaccharides have been recognized as an important, functional biomolecule in mothers' milk. Moreover, these oligosaccharides have been recognized as the third most abundant component of human milk, ranging from 10-15 g/L in mature milk and up to and over 20 g/L reported in colostrum. Initially, health benefits of human milk oligosaccharides were assigned via observational studies on the differences between breastfed and bottle fed infants. Later, pools of milk oligosaccharides were isolated and used in functional studies and in recent years more specific studies into structure-function relationships have identified some advanced roles for milk oligosaccharides in the healthy development of infants. In other research, the levels, diversity, and complexity of human milk oligosaccharides have been studied, showing a wide variation in results. This review gives a critical overview of challenges in the analysis of human milk oligosaccharides. In view of the myriad functions that can be assigned, often to specific structures or classes of structures, it is very relevant to assess the levels of these structures in the human milk correctly, as well as in other biological sample materials. Ultimately, the review makes a case for a comparative, inter-laboratory study on quantitative human milk oligosaccharide analysis in all relevant biological samples.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Department of Laboratory Medicine, Cluster Human Nutrition & Health, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
27
|
McJarrow P, Radwan H, Ma L, MacGibbon AK, Hashim M, Hasan H, Obaid RS, Naja F, Mohamed HJJ, Al Ghazal H, Fong BY. Human Milk Oligosaccharide, Phospholipid, and Ganglioside Concentrations in Breast Milk from United Arab Emirates Mothers: Results from the MISC Cohort. Nutrients 2019; 11:E2400. [PMID: 31597293 PMCID: PMC6835464 DOI: 10.3390/nu11102400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs), phospholipids (PLs), and gangliosides (GAs) are components of human breast milk that play important roles in the development of the rapidly growing infant. The differences in these components in human milk from the United Arab Emirates (UAE) were studied in a cross-sectional trial. High-performance liquid chromatography‒mass spectrometry was used to determine HMO, PL, and GA concentrations in transitional (5-15 days) and mature (at 6 months post-partum) breast milk of mothers of the United Arab Emirates (UAE). The results showed that the average HMO (12 species), PL (7 species), and GA (2 species) concentrations quantified in the UAE mothers' transitional milk samples were (in mg/L) 8204 ± 2389, 269 ± 89, and 21.18 ± 11.46, respectively, while in mature milk, the respective concentrations were (in mg/L) 3905 ± 1466, 220 ± 85, and 20.18 ± 9.75. The individual HMO concentrations measured in this study were all significantly higher in transitional milk than in mature milk, except for 3 fucosyllactose, which was higher in mature milk. In this study, secretor and non-secretor phenotype mothers showed no significant difference in the total HMO concentration. For the PL and GA components, changes in the individual PL and GA species distribution was observed between transitional milk and mature milk. However, the changes were within the ranges found in human milk from other regions.
Collapse
Affiliation(s)
- Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Alastair K.H. MacGibbon
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Reyad Shaker Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Farah Naja
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hamid Jan Jan Mohamed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | | | - Bertram Y. Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| |
Collapse
|
28
|
Pallister EG, Choo MSF, Tai JN, Leong DSZ, Tang WQ, Ng SK, Huang K, Marchesi A, Both P, Gray C, Rudd PM, Flitsch SL, Nguyen-Khuong T. Exploiting the Disialyl Galactose Activity of α2,6-Sialyltransferase from Photobacterium damselae To Generate a Highly Sialylated Recombinant α-1-Antitrypsin. Biochemistry 2019; 59:3123-3128. [DOI: 10.1021/acs.biochem.9b00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edward G. Pallister
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Matthew S. F. Choo
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Jien-Nee Tai
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Dawn S. Z. Leong
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Wen-Qin Tang
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Say-Kong Ng
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Kun Huang
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrea Marchesi
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Peter Both
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher Gray
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Pauline M. Rudd
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| | - Sabine L. Flitsch
- School of Chemistry and Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668
| |
Collapse
|
29
|
Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv 2019; 37:667-697. [DOI: 10.1016/j.biotechadv.2019.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
|
30
|
Schmölzer K, Weingarten M, Baldenius K, Nidetzky B. Glycosynthase Principle Transformed into Biocatalytic Process Technology: Lacto-N-triose II Production with Engineered exo-Hexosaminidase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | | | - Kai Baldenius
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
31
|
Craft KM, Thomas HC, Townsend SD. Sialylated variants of lacto-N-tetraose exhibit antimicrobial activity against Group B Streptococcus. Org Biomol Chem 2019; 17:1893-1900. [PMID: 30229793 DOI: 10.1039/c8ob02080a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk oligosaccharides (HMOs) possess antimicrobial activity against a number of bacterial pathogens. HMOs prevent infection by serving as decoy receptors that competitively bind pathogens thus preventing pathogen attachment to host epithelial cell receptors. In a second mechanistic pathway, we recently demonstrated that heterogenous HMO extracts exert antimicrobial action against Group B Streptococcus by increasing cellular permeability. As human milk contains ca. 200 unique glycans however, our understanding of which pharmacophores are most important to HMO antimicrobial activity remains immature. In the present study, we describe the first evaluation of the antimicrobial and antibiofilm activities of five structurally defined, ubiquitous sialylated HMOs against Group B Streptococcus.
Collapse
Affiliation(s)
- Kelly M Craft
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, 7300 Stevenson Science Center, Nashville, TN 37235, USA.
| | | | | |
Collapse
|
32
|
Lu N, Ye J, Cheng J, Sasmal A, Liu CC, Yao W, Yan J, Khan N, Yi W, Varki A, Cao H. Redox-Controlled Site-Specific α2-6-Sialylation. J Am Chem Soc 2019; 141:4547-4552. [PMID: 30843692 DOI: 10.1021/jacs.9b00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first bacterial α2-6-sialyltransferase cloned from Photobacterium damselae (Pd2,6ST) has been widely applied for the synthesis of various α2-6-linked sialosides. However, the extreme substrate flexibility of Pd2,6ST makes it unsuitable for site-specific α2-6-sialylation of complex substrates containing multiple galactose and/or N-acetylgalactosamine units. To tackle this problem, a general redox-controlled site-specific sialylation strategy using Pd2,6ST is described. This approach features site-specific enzymatic oxidation of galactose units to mask the unwanted sialylation sites and precisely controlling the site-specific α2-6-sialylation at intact galactose or N-acetylgalactosamine units.
Collapse
Affiliation(s)
- Na Lu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jinfeng Ye
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jiansong Cheng
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| | - Wenlong Yao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Jun Yan
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California , San Diego , California 92093 , United States
| | - Hongzhi Cao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology , Shandong University , Qingdao 266237 , China.,Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , China
| |
Collapse
|
33
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
34
|
Li W, McArthur JB, Chen X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr Res 2018; 472:86-97. [PMID: 30529493 DOI: 10.1016/j.carres.2018.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022]
Abstract
Carbohydrates are structurally complex but functionally important biomolecules. Therefore, they have been challenging but attractive synthetic targets. While substantial progress has been made on advancing chemical glycosylation methods, incorporating enzymes into carbohydrate synthetic schemes has become increasingly practical as more carbohydrate biosynthetic and metabolic enzymes as well as their mutants with synthetic application are identified and expressed for preparative and large-scale synthesis. Chemoenzymatic strategies that integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions have been extremely powerful. Briefly summarized here are our experiences on developing one-pot multienzyme (OPME) systems and representative chemoenzymatic strategies from others using glycosyltransferase-catalyzed reactions for synthesizing diverse structures of oligosaccharides, polysaccharides, and glycoconjugates. These strategies allow the synthesis of complex carbohydrates including those containing naturally occurring carbohydrate postglycosylational modifications (PGMs) and non-natural functional groups. By combining these srategies with facile purification schemes, synthetic access to the diverse space of carbohydrate structures can be automated and will not be limited to specialists.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
35
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
36
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
37
|
Xu Y, Fan Y, Ye J, Wang F, Nie Q, Wang L, Wang PG, Cao H, Cheng J. Successfully Engineering a Bacterial Sialyltransferase for Regioselective α2,6-sialylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yangyang Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Yueyuan Fan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Jinfeng Ye
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Faxing Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Quandeng Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Hongzhi Cao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| |
Collapse
|
38
|
Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB, Spence ECH, Patel AL, Hou J, Lewis NE, Bode L. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018; 67:1064-1070. [PMID: 28381523 DOI: 10.1136/gutjnl-2016-312819] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Necrotising enterocolitis (NEC) is one of the most common and often fatal intestinal disorders in preterm infants. Markers to identify at-risk infants as well as therapies to prevent and treat NEC are limited and urgently needed. NEC incidence is significantly lower in breast-fed compared with formula-fed infants. Infant formula lacks human milk oligosaccharides (HMO), such as disialyllacto-N-tetraose (DSLNT), which prevents NEC in neonatal rats. However, it is unknown if DSLNT also protects human preterm infants. DESIGN We conducted a multicentre clinical cohort study and recruited 200 mothers and their very low birthweight infants that were predominantly human milk-fed. We analysed HMO composition in breast milk fed to infants over the first 28 days post partum, matched each NEC case with five controls and used logistic regression and generalised estimating equation to test the hypothesis that infants who develop NEC receive milk with less DSLNT than infants who do not develop NEC. RESULTS Eight infants in the cohort developed NEC (Bell stage 2 or 3). DSLNT concentrations were significantly lower in almost all milk samples in NEC cases compared with controls, and its abundance could identify NEC cases prior to onset. Aggregate assessment of DSLNT over multiple days enhanced the separation of NEC cases and control subjects. CONCLUSIONS DSLNT content in breast milk is a potential non-invasive marker to identify infants at risk of developing NEC, and screen high-risk donor milk. In addition, DSLNT could serve as a natural template to develop novel therapeutics against this devastating disorder.
Collapse
Affiliation(s)
- Chloe A Autran
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA.,Bioinformatics and Systems Biology Program, University of California, La Jolla, California, USA
| | - Jae H Kim
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Elizabeth Asztalos
- Department of Newborn & Developmental Pediatrics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | - Aloka L Patel
- Rush University Medical Center, Chicago, Illinois, USA
| | - Jiayi Hou
- Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA.,Bioinformatics and Systems Biology Program, University of California, La Jolla, California, USA.,Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, California, USA
| | - Lars Bode
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
39
|
Santra A, Li Y, Yu H, Slack TJ, Wang PG, Chen X. Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc 4βCer. Chem Commun (Camb) 2018; 53:8280-8283. [PMID: 28695219 DOI: 10.1039/c7cc04090c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly efficient chemoenzymatic method for synthesizing glycosphingolipids using α-Gal pentasaccharyl ceramide as an example is reported here. Enzymatic extension of the chemically synthesized lactosyl sphingosine using efficient sequential one-pot multienzyme (OPME) reactions allowed glycosylation to be carried out in aqueous solutions. Facile C18 cartridge-based quick (<30 minutes) purification protocols were established using minimal amounts of green solvents (CH3CN and H2O). Simple acylation in the last step led to the formation of the target glycosyl ceramide in 4 steps with an overall yield of 57%.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, One shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Craft KM, Townsend SD. The Human Milk Glycome as a Defense Against Infectious Diseases: Rationale, Challenges, and Opportunities. ACS Infect Dis 2018; 4:77-83. [PMID: 29140081 DOI: 10.1021/acsinfecdis.7b00209] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Each year over 3 million people die from infectious diseases with most of these deaths being poor and young children who live in low- and middle-income countries. Infectious diseases emerge for a multitude of reasons. On the social front, reasons include a breakdown of public health standards, international travel, and immigration (for financial, civil, and social reasons). At the molecular level, the modern rise of infectious diseases is tied to the juxtaposition of drug-resistant pathogens and a lack of new antimicrobials. The consequence is the possibility that humankind will return to the preantibiotic era wherein millions of people will perish from what should be trivial illnesses. Given the stakes, it is imperative that the chemistry community take leadership in delivering new antibiotic leads for clinical development. We believe this can happen through innovation in two areas. First is the development of novel chemical scaffolds to treat infections caused by multidrug-resistant pathogens. The second area, which is not exclusive to the first, is the generation of antibiotics that do not cause collateral damage to the host or the host's microbiome. Both can be enabled through advances in chemical synthesis. It is with this general philosophy in mind that we hypothesized human milk oligosaccharides (HMOs) could serve as novel chemical scaffolds for antibacterial development. We provide herein a personal account of our laboratory's progress toward the goal of using HMOs as a defense against infectious diseases.
Collapse
Affiliation(s)
- Kelly M. Craft
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
- Institute of Chemical Biology, Vanderbilt University, 896 Preston Research Building, Nashville, Tennessee 37232, United States
| |
Collapse
|
41
|
Bode L. Human Milk Oligosaccharides in the Prevention of Necrotizing Enterocolitis: A Journey From in vitro and in vivo Models to Mother-Infant Cohort Studies. Front Pediatr 2018; 6:385. [PMID: 30564564 PMCID: PMC6288465 DOI: 10.3389/fped.2018.00385] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022] Open
Abstract
Preterm infants who receive human milk instead of formula are 6- to 10-times less likely to develop necrotizing enterocolitis (NEC), one of the most common and devastating intestinal disorders that affects 5-10% of all very-low-birth-weight infants. Combined data from in vitro tissue culture models, in vivo preclinical studies in animal models, as well human mother-infant cohort studies support the hypothesis that human milk oligosaccharides (HMOs), complex sugars that are highly abundant in human milk but not in infant formula, contribute to the beneficial effects of human milk feeding in reducing NEC. The almost 20-year long journey of testing this hypothesis took an interesting turn during HMO in vivo efficacy testing and structure elucidation, suggesting that the original hypothesis may indeed be correct and specific HMO reduce NEC risk, however, the underlying mechanisms are likely different than originally postulated.
Collapse
Affiliation(s)
- Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MOMI CORE), University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Yu H, Yan X, Autran CA, Li Y, Etzold S, Latasiewicz J, Robertson BM, Li J, Bode L, Chen X. Enzymatic and Chemoenzymatic Syntheses of Disialyl Glycans and Their Necrotizing Enterocolitis Preventing Effects. J Org Chem 2017; 82:13152-13160. [PMID: 29124935 DOI: 10.1021/acs.joc.7b02167] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common and devastating intestinal disorders in preterm infants. Therapies to meet the clinical needs for this special and highly vulnerable population are extremely limited. A specific human milk oligosaccharide (HMO), disialyllacto-N-tetraose (DSLNT), was shown to contribute to the beneficial effects of breastfeeding as it prevented NEC in a neonatal rat model and was associated with lower NEC risk in a human clinical cohort study. Herein, gram-scale synthesis of two DSLNT analogs previously shown to have NEC preventing effect is described. In addition, four novel disialyl glycans have been designed and synthesized by enzymatic or chemoenzymatic methods. Noticeably, two disialyl tetraoses have been produced by enzymatic sialylation of chemically synthesized thioethyl β-disaccharides followed by removal of the thioethyl aglycon. Dose-dependent and single-dose comparison studies showed varying NEC-preventing effects of the disialyl glycans in neonatal rats. This study helps to refine the structure requirement of the NEC-preventing effect of disialyl glycans and provides important dose-dependent information for using DSLNT analogs as potential therapeutics for NEC prevention in preterm infants.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xuebin Yan
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou, Henan 450001, China
| | - Chloe A Autran
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), University of California-San Diego , La Jolla, California 92093, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Sabrina Etzold
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), University of California-San Diego , La Jolla, California 92093, United States
| | - Joanna Latasiewicz
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), University of California-San Diego , La Jolla, California 92093, United States
| | - Bianca M Robertson
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), University of California-San Diego , La Jolla, California 92093, United States
| | - Jiaming Li
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,Department of Chemistry, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | - Lars Bode
- Division of Neonatology and Division of Gastroenterology and Nutrition, Department of Pediatrics, and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MoMI CoRE), University of California-San Diego , La Jolla, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
43
|
Oropharyngeal Colostrum Administration in Very Low Birth Weight Infants: A Randomized Controlled Trial. Pediatr Crit Care Med 2017; 18:869-875. [PMID: 28617764 DOI: 10.1097/pcc.0000000000001221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Studies have confirmed the safety of oropharyngeal administration of colostrum in very low birth weight infants. However, the effect of oropharyngeal administration of colostrum on immune system is inconclusive. This study aims to evaluate the effect of oropharyngeal administration of colostrum on secretory immunoglobulin A and lactoferrin in very low birth weight infants. DESIGN Randomized controlled trial. SETTING Forty-bedded neonatal ICU in a university children's hospital in the People's Republic of China. PATIENTS Very low birth weight infants were allocated to the study group (n = 32) and control group (n = 32). INTERVENTION The intervention was oropharyngeal administration of 0.2 mL of their mother's colostrum every 4 hours for 7 days. The control group received saline solution. MEASUREMENTS AND MAIN RESULTS Secretory immunoglobulin A and lactoferrin in urine and saliva were measured within 24 hours of life (baseline) and at 7 and 21 days. Primary outcomes were changes of secretory immunoglobulin A and lactoferrin in urine and saliva between baseline and at 7 and 21 days. Infant's clinical data were also collected during hospitalization. Change from baseline in lactoferrin in saliva at 7 days (5.18 ± 7.07 vs -1.74 ± 4.67 µg/mL; p < 0.001) and 21 days (5.31 ± 9.74 vs -1.17 ± 10.38 µg/mL; p = 0.02) shows statistic difference. No differences were found of lactoferrin in urine and also no differences of secretory immunoglobulin A in urine and saliva. There were also no differences between days to full enteral feeding, occurrence rate of clinical sepsis, proven sepsis, and necrotizing enterocolitis. CONCLUSIONS Oropharyngeal administration of colostrum can increases the level of lactoferrin in saliva in very low birth weight infants. No effect could be documented of secretory immunoglobulin A and lactoferrin in urine. Larger trials are needed to better describe the benefit of oropharyngeal administration of colostrum, if any, in very low birth weight infants.
Collapse
|
44
|
Zhao C, Wu Y, Liu X, Liu B, Cao H, Yu H, Sarker SD, Nahar L, Xiao J. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Abstract
Despite mammalian glycans typically having highly complex asymmetrical multiantennary architectures, chemical and chemoenzymatic synthesis has almost exclusively focused on the preparation of simpler symmetrical structures. This deficiency hampers investigations into the biology of glycan-binding proteins, which in turn complicates the biomedical use of this class of biomolecules. Herein, we describe an enzymatic strategy, using a limited number of human glycosyltransferases, to access a collection of 60 asymmetric, multiantennary human milk oligosaccharides (HMOs), which were used to develop a glycan microarray. Probing the array with several glycan-binding proteins uncovered that not only terminal glycoepitopes but also complex architectures of glycans can influence binding selectivity in unanticipated manners. N- and O-linked glycans express structural elements of HMOs, and thus, the reported synthetic principles will find broad applicability.
Collapse
|
46
|
Han Z, Chen C, Meng C, Gao T, Peng P, Chen X, Wang F, Cao H. Chemoenzymatic synthesis of tumor-associated antigen N3 minor octasaccharide. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1315123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhipeng Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Congcong Chen
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Caicai Meng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tian Gao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, Shandong University, Jinan, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
47
|
Abstract
Human milk oligosaccharides (HMOs) are a group of approximately 200 different unconjugated sugar structures in human milk proposed to support infant growth and development. Data from several preclinical animal studies and human cohort studies suggest HMOs reduce preterm infant mortality and morbidity by shaping the gut microbiome and protecting against necrotizing enterocolitis, candidiasis, and several other immune-related diseases. Current feeding practices and clinical algorithms do not consider infant HMO intake when assessing dietary adequacy or disease risk. Advancements in HMO analytical methodologies and HMO synthesis facilitate cohort and intervention studies to investigate which particular HMOs are most relevant in supporting preterm infants.
Collapse
|
48
|
Craft KM, Townsend SD. Synthesis of lacto-N-tetraose. Carbohydr Res 2017; 440-441:43-50. [PMID: 28214389 DOI: 10.1016/j.carres.2017.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Human milk oligosaccharides (HMOs) are the third largest macromolecular component of breast milk and offer infants numerous health benefits, most of which stem from the development of a healthy microbiome. Characterization, quantification, and chemical derivatization of HMOs remains a frontier issue in glycobiology due to the challenge of isolating appreciable quantities of homogenous HMOs from breast milk. Herein, we report the synthesis of the human milk tetrasaccharide lacto-N-tetraose (LNT). LNT is ubiquitous in human breast milk as it is a core structure common to longer-chain HMOs and many glycolipids.
Collapse
Affiliation(s)
- Kelly M Craft
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37235, United States.
| |
Collapse
|
49
|
McArthur JB, Yu H, Zeng J, Chen X. Converting Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) to a regioselective α2-6-sialyltransferase by saturation mutagenesis and regioselective screening. Org Biomol Chem 2017; 15:1700-1709. [PMID: 28134951 DOI: 10.1039/c6ob02702d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A microtiter plate-based screening assay capable of determining the activity and regioselectivity of sialyltransferases was developed. This assay was used to screen two single-site saturation libraries of Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) for α2-6-sialyltransferase activity and total sialyltransferase activity. PmST1 double mutant P34H/M144L was found to be the most effective α2-6-sialyltransferase and displayed 50% reduced donor hydrolysis and 50-fold reduced sialidase activity compared to the wild-type PmST1. It retained the donor substrate promiscuity of the wild-type enzyme and was used in an efficient one-pot multienzyme (OPME) system to selectively catalyze the sialylation of the terminal galactose residue in a multigalactose-containing tetrasaccharide lacto-N-neotetraoside.
Collapse
Affiliation(s)
- John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
50
|
Ackerman DL, Craft KM, Townsend SD. Infant food applications of complex carbohydrates: Structure, synthesis, and function. Carbohydr Res 2017; 437:16-27. [PMID: 27883906 PMCID: PMC6172010 DOI: 10.1016/j.carres.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Professional health bodies such as the World Health Organization (WHO), the American Academy of Pediatrics (AAP), and the U.S. Department of Health and Human Services (HHS) recommend breast milk as the sole source of food during the first year of life. This position recognizes human milk as being uniquely suited for infant nutrition. Nonetheless, most neonates in the West are fed alternatives by 6 months of age. Although inferior to human milk in most aspects, infant formulas are able to promote effective growth and development. However, while breast-fed infants feature a microbiota dominated by bifidobacteria, the bacterial flora of formula-fed infants is usually heterogeneous with comparatively lower levels of bifidobacteria. Thus, the objective of any infant food manufacturer is to prepare a product that results in a formula-fed infant developing a breast-fed infant-like microbiota. The goal of this focused review is to discuss the structure, synthesis, and function of carbohydrate additives that play a role in governing the composition of the infant microbiome and have other health benefits.
Collapse
Affiliation(s)
- Dorothy L Ackerman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Kelly M Craft
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States; Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|