1
|
Yang Y, Alshalalfeh M, Xu Y. Conformational distributions of tetrahydro-2-turoic acid in water at different pH values by their IR and vibrational circular dichroism spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123634. [PMID: 37976578 DOI: 10.1016/j.saa.2023.123634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Infrared (IR) and vibrational circular dichroism (VCD) spectra of tetrahydro-2-furoic acid (THFA) in aqueous solutions under several different pH conditions were recorded. To interpret the IR and VCD spectra of THFA obtained in highly acidic and basic aqueous solutions, extensive and systematic conformational searches were conducted to acquire the low-energy minima for both the neutral and deprotonated forms of THFA species, as well as their hydrated clusters. This was accomplished by using the conformer-rotamer ensemble sampling tool (CREST) with an implicit solvation model for water. The CREST candidates were further optimized at the B3LYP-D3BJ/def2-TZVP level of theory. The simulated VCD spectra of the neutral THFA conformers in the polarizable continuum model (PCM) of water alone exhibit little agreement with the experimental data under highly acidic conditions. Applying the clusters-in-a-liquid solvation model by considering the monohydrate THFA conformers in the PCM of water, significantly improved agreement with the experimental data. Similarly, the deprotonated THFA species solvated with one to four explicit water molecules in the PCM of water were considered. While the IR and VCD spectra of the deprotonated THFA monohydrate conformers offer the best agreement with the experimental data, other larger hydrated clusters, particularly the dihydrates, also contribute to the spectra. Through the synergistic combined experimental and theoretical approach used in the study, comprehensive conformational distributions of the predominant THFA species across various pH conditions were extracted.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Mutasem Alshalalfeh
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
2
|
Perera AS, Carlson CD, Cheramy J, Xu Y. Infrared and vibrational circular dichroism spectra of methyl β-D-glucopyranose in water: The application of the quantum cluster growth and clusters-in-a-liquid solvation models. Chirality 2023; 35:718-731. [PMID: 37162747 DOI: 10.1002/chir.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
The infrared (IR) and vibrational circular dichroism (VCD) spectra of methyl β-D-glucopyranose in water were measured. Both implicit and explicit solvation models were utilized to explain the observed spectra. The vast body of existing experimental and theoretical data suggested that about eight explicit water molecules are needed to account for the solvent effects, supported by the current Quantum Cluster Growth (QCG) analysis. Extensive manual and systematic conformational searches of the molecular target and its water clusters were carried out by using a recently developed conformational searching tool, conformer-rotamer ensemble sampling tool (CREST), and the microsolvation model in the associated QCG code. The Boltzmann averaged IR and VCD spectra of the methyl β-D-glucopyranose-(water)n (n = 8) conformers in the PCM of water provide better agreement with the experimental ones than those with n = 0, 1, and 2. The explicit solvation with eight water molecules was shown to greatly modify the conformational preference of methyl β-D-glucopyranose from its monomeric form. Further analyses show that the result is consistent with the existence of long-lived methyl β-D-glucopyranose monohydrates with the additional explicit water effects being accounted for with the quantum mechanical treatment of the other seven close-by water molecules in the PCM of water.
Collapse
Affiliation(s)
| | - Colton D Carlson
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Cheramy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Turani-I-Belloto K, Chiriac R, Toche F, Petit E, Yot PG, Alauzun JG, Demirci UB. Synthesis: Molecular Structure, Thermal-Calorimetric and Computational Analyses, of Three New Amine Borane Adducts. Molecules 2023; 28:molecules28031469. [PMID: 36771135 PMCID: PMC9921861 DOI: 10.3390/molecules28031469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cyclopropylamine borane C3H5NH2BH3 (C3AB), 2-ethyl-1-hexylamine borane CH3(CH2)3CH(C2H5)CH2NH2BH3 (C2C6AB) and didodecylamine borane (C12H25)2NHBH3 ((C12)2AB) are three new amine borane adducts (ABAs). They are synthesized by reaction of the corresponding amines with a borane complex, the reaction being exothermic as shown by Calvet calorimetry. The successful synthesis of each has been demonstrated by FTIR, Raman and NMR. For instance, the 11B NMR spectra show the presence of signals typical of the NBH3 environment, thereby implying the formation of B-N bonds. The occurrence of dihydrogen bonds (DHBs) for each of the ABAs has been highlighted by DSC and FTIR, and supported by DFT calculations (via the Mulliken charges for example). When heated, the three ABAs behave differently: C3AB and C2C6AB decompose from 68 to 100 °C whereas (C12)2AB is relatively stable up to 173 °C. That means that these ABAs are not appropriate as hydrogen carriers, but the 'most' stable (C12)2AB could open perspectives for the synthesis of advanced materials.
Collapse
Affiliation(s)
- Kevin Turani-I-Belloto
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
| | - Rodica Chiriac
- Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - François Toche
- Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Eddy Petit
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
| | - Pascal G. Yot
- ICGM, Universite de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Johan G. Alauzun
- ICGM, Universite de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Umit B. Demirci
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
4
|
Kemper M, Drost DA, Engelage E, Merten C. Stereochemistry Controls Dihydrogen Bonding Strengths in Chiral Amine Boranes Adducts. Angew Chem Int Ed Engl 2022; 61:e202213859. [PMID: 36245340 PMCID: PMC10099978 DOI: 10.1002/anie.202213859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
The growing interest in exploiting novel concepts of non-covalent interactions in catalysts and supramolecular chemistry made us revisit a special kind of hydrogen bonding: the dihydrogen bond (DHB), formed between a classical hydrogen bond donor and a hydridic hydrogen as acceptor. Herein, we investigate how the strength of the N-Hδ+ ⋅⋅⋅δ- H-B interaction and hence the DHB-driven self-aggregation of amine-borane adducts is governed by steric effects by comparing the structures and binding enthalpies of various chiral derivatives. For a diastereomeric pair of amine-boranes prepared from a chiral secondary amine, we show that the stereochemistry at the nitrogen has significant influence on the interaction enthalpy. Based on this finding, N-chiral amine boranes can be envisioned to become interesting building blocks in supramolecular chemistry to fine-tune the formation dynamics of assemblies.
Collapse
Affiliation(s)
- Michael Kemper
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Deborah A Drost
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
5
|
Rizevsky S, Zhaliazka K, Matveyenka M, Quinn K, Kurouski D. Lipids reverse supramolecular chirality and reduce toxicity of amyloid fibrils. FEBS J 2022; 289:7537-7544. [PMID: 35736671 DOI: 10.1111/febs.16564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023]
Abstract
Abrupt aggregation of misfolded proteins is a hallmark of many medical pathologies including diabetes type 2, Alzheimer and Parkinson diseases. This results in the formation of amyloid fibrils, protein aggregates with distinct supramolecular chirality. A growing body of evidence suggests that lipids can alter rates of protein aggregation. In this study, we investigated whether lipids could alter the supramolecular chirality of amyloid fibrils. We found that if present at the stage of protein aggregation, phospho- and sphingolipids uniquely reversed supramolecular chirality of insulin and lysozyme fibrils. Furthermore, amyloid fibrils with opposite supramolecular chirality exerted distinctly different cell toxicity. Specifically, insulin and lysozyme fibrils with reversed supramolecular chirality were less toxic to cells than the aggregates with normal supramolecular chirality. These findings point on the important role of lipids and supramolecular chirality of amyloid fibrils in the onset and progression of amyloid diseases.
Collapse
Affiliation(s)
- Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Department of Biotechnology, Binh Duong University, Thu Dau Mot, Vietnam
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Machalska E, Zając G, Rode JE. Chirality transfer observed in Raman optical activity spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121604. [PMID: 35835058 DOI: 10.1016/j.saa.2022.121604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Chirality transfer (also called induced chirality) is a phenomenon present in chiroptical spectra that manifests itself as a new band or bands of an achiral molecule interacting with a chiral one. In the Raman optical activity (ROA) spectroscopy, the bands of achiral solvents have been recently observed, but the latest papers have shown that they corresponded to the new ECD-Raman (eCP-Raman) effect. Here, we show an unambiguous example of chirality transfer observed in the ROA spectra. The spectra registered for the (1:1) mixtures of achiral benzonitrile with the enantiomers of 2,2,2-trifluoro-1-phenylethanol, 1-phenylethanol, and 1-phenylethylamine exhibited the v(CN) vibration band at about 2230 cm-1. The ROA measurements were repeated several times to ensure the reliability of the phenomenon. Calculations revealed the CN···HO or CN···HNH hydrogen bond formation accompanied by the π···π or CH···π interactions. The interaction strength was shown to be an important factor for the pronouncement of the ROA chirality transfer effect.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-38 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Joanna E Rode
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
7
|
Scholten K, Merten C. Anion-binding of a chiral tris(2-aminoethyl)amine-based tripodal thiourea: A spectroscopic and computational study. Phys Chem Chem Phys 2022; 24:4042-4050. [DOI: 10.1039/d1cp05688c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioureas are well-known structural motifs in supramolecular anion recognition. Their conformational preferences are typically characterized by detailed NMR spectroscopy and crystallography, which are often complemented with computational results from geometry...
Collapse
|
8
|
Kaminský J, Horáčková F, Biačková N, Hubáčková T, Socha O, Kubelka J. Double Hydrogen Bonding Dimerization Propensity of Aqueous Hydroxy Acids Investigated Using Vibrational Optical Activity. J Phys Chem B 2021; 125:11350-11363. [PMID: 34612644 DOI: 10.1021/acs.jpcb.1c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic and malic acids are key substances in a number of biochemical processes in living cells and are also utilized in industry. Vibrational spectroscopy represents an efficient and sensitive way to study their structure and interactions. Since water is the natural environment, proper understanding of their molecular dynamics in aqueous solutions is of critical importance. To this end, we employed Raman spectroscopy and Raman optical activity (ROA) to study the conformation of l-lactic and l-malic acids in water (while varying pH, temperature, and concentration), with special emphasis on their double hydrogen bonding dimerization propensity. Raman and ROA experimental data were supported by extensive theoretical calculations of the vibrational properties and by additional experiments (IR absorption, vibrational circular dichroism, and NMR). Conformational behavior of the acids in water was described by molecular dynamics simulations. Reliability of the results was verified by calculating the vibrational properties of populated conformers and by comparing thus obtained spectral features with the experimental data. Calculations estimated the incidence of H-bonded dimers in water to be low in lactic acid and comparable to monomers in malic acid. The "hybrid" approach presented here reveals limitations of relying on the experimental spectra alone to study dimer formation.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Františka Horáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Nina Biačková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Tereza Hubáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Kubelka
- University of Wyoming, 651 N. 19th Street, Laramie, Wyoming 82072, United States
| |
Collapse
|
9
|
Weirich L, Merten C. Induced VCD and conformational chirality in host-guest complexes of a chiral ammonium salt with crown ethers. Phys Chem Chem Phys 2021; 23:18300-18307. [PMID: 34114592 DOI: 10.1039/d1cp01846a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hydrogen bonded complexes of the chiral ammonium salt α-methylbenzyl ammonium chloride (MBA-H+Cl-) and the achiral crown ethers 18c6 and 15c5 serve as model systems to investigate the effect of host-guest complex formation on the conformational preferences of the macrocycles. We demonstrate that the intermolecular interactions result in new VCD signatures, that can be assigned to vibrational modes of the crown ethers. Based on a detailed conformational analysis, we investigate the origin of these signatures and discuss induced VCD (iVCD) and conformational chirality as possible sources of VCD intensity. The macrocycle in the MBA-H+/18c6 complex prefers either an achiral D3d-symmetric conformation, which gives rise to iVCD, or chiral conformations, that feature individual contributions to the VCD spectrum. For the MBA-H+/15c5 complex, the contributions of the macrocycle to the VCD signatures are less pronounced and found to arise solely from conformational chirality. Therefore, analysis of the VCD signatures confirms that the small chiral guest molecule is able to affect the conformational preferences of a macrocyclic host. The study thus demonstrates the suitability of VCD spectroscopy for the characterization of analogous supramolecular host-guest complexes.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | | |
Collapse
|
10
|
Kemper M, Engelage E, Merten C. Chirale molekulare Propeller basierend auf Triarylboran‐Ammoniak‐Addukten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Kemper
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Elric Engelage
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
11
|
Kemper M, Engelage E, Merten C. Chiral Molecular Propellers of Triarylborane Ammonia Adducts. Angew Chem Int Ed Engl 2021; 60:2958-2962. [PMID: 33197119 PMCID: PMC7898383 DOI: 10.1002/anie.202014130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 11/19/2022]
Abstract
Chiral molecular propeller conformations have been induced to various triaryl structures including trityl derivatives and triaryl boranes. For borane-amine adducts, such induced propeller chirality has not been reported yet due to the low energy barrier for racemization in common triarylboranes such as B(C6 H5 )3 or B(C6 F5 )3 . Herein, we demonstrate that point chirality in side chains of chiral triarylborane-ammonia adducts, which feature intramolecular hydrogen bonds in addition to the dative N→B bond, can efficiently be transferred to triarylborane propeller chirality. Employing X-ray crystallography and ECD/VCD spectroscopy for structural characterizations, we investigate three examples with different steric demands of the incorporated chiral alkoxy side groups. We elucidate the conformational preferences of the molecular propellers. Furthermore, we show that computationally predicted conformational preferences obtained for the isolated, only implicitly solvated molecules are actually opposite to the experimentally observed ones.
Collapse
Affiliation(s)
- Michael Kemper
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| |
Collapse
|
12
|
Jin Q, Wang F, Chen S, Zhou L, Jiang H, Zhang L, Liu M. Circularly Polarized Luminescence of Aluminum Complexes for Chiral Sensing of Amino Acid and Amino Alcohol. Chem Asian J 2019; 15:319-324. [PMID: 31825169 DOI: 10.1002/asia.201901480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Indexed: 11/06/2022]
Abstract
Determination of the absolute configuration (AC) of chiral molecules is a key issue in many fields related to chirality such as drug development, the asymmetric reaction screening, and the structure determination of natural compounds. Although various methods, such as X-ray crystallography and NMR spectroscopy, are used to determine the AC, a simple and cheap alternative method is always anticipated. So far, electronic circular dichroism (ECD) spectroscopy has been widely used to ascertain the AC and enantiomeric excess (ee) values by applying appropriate organic probes. Here, circularly polarized luminescence (CPL) spectroscopy was applied to determine the AC and ee values of a series of amino acid and amino alcohol. The measurements were conducted by mixing the amino acids or amino alcohols with an achiral 1-hydroxy-2-naphthaldehyde. Upon in situ formation of the Schiff base complexes, the system showed emission enhancement and CPL in the presence of Al3+ , whose intensity and sign can be used to assign the chiral sense of the amino acids and amino alcohols. The authenticity of the method was further compared with the established CD spectroscopy, revealing that CPL spectra of formed Al3+ complex were effective to determine the AC of chiral species.
Collapse
Affiliation(s)
- Qingxian Jin
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Fulin Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuyu Chen
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Hejin Jiang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Perera AS, Cheramy J, Poopari MR, Xu Y. Aggregation of lactic acid in cold rare-gas matrices and the link to solution: a matrix isolation-vibrational circular dichroism study. Phys Chem Chem Phys 2019; 21:3574-3584. [DOI: 10.1039/c8cp04748k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crucial insight into lactic acid self-aggregation in solution is obtained by following its unique VCD spectral features in cold matrices.
Collapse
Affiliation(s)
| | - Joseph Cheramy
- Chemistry Department
- The University of Alberta
- Edmonton
- Canada
| | | | - Yunjie Xu
- Chemistry Department
- The University of Alberta
- Edmonton
- Canada
| |
Collapse
|
14
|
Bünnemann K, Pollok CH, Merten C. Explicit Solvation of Carboxylic Acids for Vibrational Circular Dichroism Studies: Limiting the Computational Efforts without Losing Accuracy. J Phys Chem B 2018; 122:8056-8064. [DOI: 10.1021/acs.jpcb.8b05928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Karoline Bünnemann
- Ruhr Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Corina H. Pollok
- Ruhr Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
15
|
Mower MP, Blackmond DG. In-Situ Monitoring of Enantiomeric Excess During a Catalytic Kinetic Resolution. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew P. Mower
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037 United States
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037 United States
| |
Collapse
|
16
|
Liu B, Yan S. DFT investigation on the decomposition of dihydrogen-bonded methylamine-borane octamer. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Mazzeo G, Longhi G, Corless VB, Zajdlik A, Yudin AK, Abbate S. Vibrational Circular Dichroism Unveils Chiroptical, Electrical, and Magnetic Properties of Borylated Isocyanides and Aldehydes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale; Università di Brescia; Viale Europa 11 25123 Brescia Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale; Università di Brescia; Viale Europa 11 25123 Brescia Italy
| | - Victoria B. Corless
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. M5S 3H6 Toronto ON Canada
| | - Adam Zajdlik
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. M5S 3H6 Toronto ON Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. M5S 3H6 Toronto ON Canada
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale; Università di Brescia; Viale Europa 11 25123 Brescia Italy
| |
Collapse
|
18
|
Conformational analysis of N→BH3, N→BF3, and N-CH3+complexes with ibuprofen-derivative amides. HETEROATOM CHEMISTRY 2017. [DOI: 10.1002/hc.21368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Merten C. Vibrational optical activity as probe for intermolecular interactions. Phys Chem Chem Phys 2017; 19:18803-18812. [DOI: 10.1039/c7cp02544k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A detailed VCD spectroscopic analysis of well-selected chiral model systems can give valuable and unprecedented insights into intermolecular interactions such as solvation or reactant–substrate binding in catalysis.
Collapse
|
20
|
Kreienborg NM, Pollok CH, Merten C. Towards an Observation of Active Conformations in Asymmetric Catalysis: Interaction-Induced Conformational Preferences of a Chiral Thiourea Model Compound. Chemistry 2016; 22:12455-63. [DOI: 10.1002/chem.201602097] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Nora M. Kreienborg
- Organische Chemie 2; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Corina H. Pollok
- Organische Chemie 2; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| | - Christian Merten
- Organische Chemie 2; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
21
|
Osowski T, Golbek J, Merz K, Merten C. Intermolecular Interactions of a Chiral Amine Borane Adduct Revealed by VCD Spectroscopy. J Phys Chem A 2016; 120:4108-15. [DOI: 10.1021/acs.jpca.6b03955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias Osowski
- Organische
Chemie 2, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julia Golbek
- Anorganische
Chemie 1, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Klaus Merz
- Anorganische
Chemie 1, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christian Merten
- Organische
Chemie 2, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
22
|
Perera AS, Thomas J, Poopari MR, Xu Y. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy. Front Chem 2016; 4:9. [PMID: 26942177 PMCID: PMC4766311 DOI: 10.3389/fchem.2016.00009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022] Open
Abstract
Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed "clusters-in-a-liquid" approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the molecular dynamics snapshot approach are discussed and the successes of the seemingly random "ad hoc explicit solvation" reported before are also explained. To further test and improve the "clusters-in-a-liquid" model in practice, future work in terms of conformer specific gas phase spectroscopy of sequential solvation of a chiral solute, matrix isolation VCD measurements of small chiral hydration clusters, and more sophisticated models for the bulk solvent effects would be highly valuable.
Collapse
Affiliation(s)
| | | | | | - Yunjie Xu
- Department of Chemistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
23
|
Pollok CH, Merten C. Conformational distortion of α-phenylethyl amine in cryogenic matrices – a matrix isolation VCD study. Phys Chem Chem Phys 2016; 18:13496-502. [DOI: 10.1039/c6cp01946c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MI-VCD spectroscopy reveals conformational perturbations of a chiral amine due to matrix packing effects.
Collapse
|
24
|
Yan S, Zou H, Kang W, Sun L. DFT investigation on dihydrogen-bonded amine-borane complexes. J Mol Model 2015; 22:17. [DOI: 10.1007/s00894-015-2886-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
|