1
|
Wu J, Verboom KL, Krische MJ. Catalytic Enantioselective C-C Coupling of Alcohols for Polyketide Total Synthesis beyond Chiral Auxiliaries and Premetalated Reagents. Chem Rev 2024; 124:13715-13735. [PMID: 39642170 DOI: 10.1021/acs.chemrev.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Catalytic enantioselective hydrogen autotransfer reactions for the direct conversion of lower alcohols to higher alcohols are catalogued and their application to the total synthesis of polyketide natural products is described. These methods exploit a redox process in which alcohol oxidation is balanced by reductive generation of organometallic nucleophiles from unsaturated hydrocarbon pronucleophiles. Unlike classical carbonyl additions, premetalated reagents, chiral auxiliaries and discrete alcohol-to-aldehyde redox reactions are not required. Additionally, chemoselective dehydrogenation of primary alcohols in the presence of secondary alcohols enables C-C coupling in the absence of protecting groups.
Collapse
Affiliation(s)
- Jessica Wu
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Katherine L Verboom
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| |
Collapse
|
2
|
Wang HC, You SL. Asymmetric Allylic Amination of Alkyl-Substituted Allylic Carbonates with Pyridones Catalyzed by the Krische Iridium Complex. Org Lett 2024; 26:8632-8635. [PMID: 39331508 DOI: 10.1021/acs.orglett.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems. This reaction can also be conducted on a gram scale, further enhancing its potential for synthetic application.
Collapse
Affiliation(s)
- Hu-Chong Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Sarkar K, Behera P, Roy L, Maji B. Manganese catalyzed chemo-selective synthesis of acyl cyclopentenes: a combined experimental and computational investigation. Chem Sci 2024:d4sc02842b. [PMID: 39149218 PMCID: PMC11322900 DOI: 10.1039/d4sc02842b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Cyclopentenes serve as foundational structures in numerous natural products and pharmaceuticals. Consequently, the pursuit of innovative synthetic approaches to complement existing protocols is of paramount importance. In this context, we present a novel synthesis route for acyl cyclopentenes through a cascade reaction involving an acceptorless-dehydrogenative coupling of cyclopropyl methanol with methyl ketone, followed by a radical-initiated ring expansion rearrangement of the in situ formed vinyl cyclopropenone intermediate. The reaction, catalyzed by an earth-abundant metal complex, occurs under milder conditions, generating water and hydrogen gas as byproducts. Rigorous control experiments and detailed computational studies were conducted to unravel the underlying mechanism. The observed selectivity is explained by entropy-driven alcohol-assisted hydrogen liberation from an Mn-hydride complex, prevailing over the hydrogenation of unsaturated cyclopentenes.
Collapse
Affiliation(s)
- Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Prativa Behera
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
4
|
Dong M, Tong X. Pd(0)-Catalyzed Asymmetric Intramolecular Grignard-Type Reaction of Vinyl Iodide-Carbonyl. Chemistry 2024; 30:e202400236. [PMID: 38424002 DOI: 10.1002/chem.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The insertion of carbonyl into C(sp2)-Pd(II) σ-bond (Grignard-type addition) was not established until the 1990s. While this elemental reaction has been well explored since then, its application in Pd(0) asymmetric catalysis remain elusive. Herein, we report the Pd(0)-catalyzed asymmetric intramolecular Grignard-type reaction of vinyl iodide-carbonyl in the presence of HCO2H additive, affording cyclic allylic alcohol with good to excellent enantioselectivity and diastereoselectivity. Mechanistic studies suggested that besides serving as an efficient reductant, HCO2H is also capable of facilitating protonation of the involved secondary alkoxyl-Pd(II), thus completely suppressing the β-H elimination. Moreover, no KIE was found in the competing reaction between vinyl iodide-aldehyde and 1-deuterated one, demonstrating the facile step of aldehyde insertion.
Collapse
Affiliation(s)
- Ming Dong
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xiaofeng Tong
- School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
5
|
Shezaf JZ, Santana CG, Ortiz E, Meyer CC, Liu P, Sakata K, Huang KW, Krische MJ. Leveraging the Stereochemical Complexity of Octahedral Diastereomeric-at-Metal Catalysts to Unlock Regio-, Diastereo-, and Enantioselectivity in Alcohol-Mediated C-C Couplings via Hydrogen Transfer. J Am Chem Soc 2024; 146:7905-7914. [PMID: 38478891 PMCID: PMC11446212 DOI: 10.1021/jacs.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Experimental and computational studies illuminating the factors that guide metal-centered stereogenicity and, therefrom, selectivity in transfer hydrogenative carbonyl additions of alcohol proelectrophiles catalyzed by chiral-at-metal-and-ligand octahedral d6 metal ions, iridium(III) and ruthenium(II), are described. To augment or invert regio-, diastereo-, and enantioselectivity, predominantly one from among as many as 15 diastereomeric-at-metal complexes is required. For iridium(III) catalysts, cyclometalation assists in defining the metal stereocenter, and for ruthenium(II) catalysts, iodide counterions play a key role. Whereas classical strategies to promote selectivity in metal catalysis aim for high-symmetry transition states, well-defined low-symmetry transition states can unlock selectivities that are otherwise difficult to achieve or inaccessible.
Collapse
Affiliation(s)
- Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Catherine G Santana
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Li Z, Zhang H, Zhao L, Ma Y, Wu Q, Ren H, Lin Z, Zheng J, Yu X. Metal-free β,γ-C(sp 3)-H difunctionalization of propanols: DMP-initiated asymmetric spirocyclopropanation. Chem Commun (Camb) 2024; 60:3579-3582. [PMID: 38470069 DOI: 10.1039/d4cc00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A DMP-initiated metal-free effective β,γ-asymmetric spirocyclopropanation of propanols strategy using oxidative iminium activation is described. This process has been realized by a synergistic amine-catalyzed one-pot cascade oxidation-Michael addition cyclopropanation for "one-pot" access to various spirocyclopropyl propionaldehydes/propanols from diverse 3-arylpropanols and α-brominated active methylene compounds under mild conditions and with high enantioselectivity (ee up to >99%).
Collapse
Affiliation(s)
- Zheyao Li
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Huiwen Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lin Zhao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 West Waihuan Road, Guangzhou 510006, Guangdong, China.
| | - Qiufang Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Haosong Ren
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhongren Lin
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jun Zheng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xinhong Yu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
7
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
8
|
Zhang S, Zhang S, Fan Y, Zhang X, Chen J, Jin C, Chen S, Wang L, Zhang Q, Chen Y. Total Synthesis of the Proposed Structure of Neaumycin B. Angew Chem Int Ed Engl 2023; 62:e202313186. [PMID: 37889502 DOI: 10.1002/anie.202313186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
The total synthesis of the proposed structure of anti-glioblastoma natural product neaumycin B was achieved in 22 steps (longest linear sequence). The synthesis features HCl-mediated [6,6]-spiroketalization, a combination of Krische iridium-catalyzed crotylation, Marshall palladium-catalyzed propargylation, Fürstner nickel-catalyzed regio- and enantioselective vicinal monoprotected diol formation, Brown crotylation and asymmetric halide-aldehyde cycloaddition, so as to establish the challenging contiguous stereocenters.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Songming Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yunlong Fan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Xuhai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Jing Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Chaofan Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Sisi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University 38 Tongyan Road, Tianjin 300353 (P. R. China)
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
10
|
Carmona JA, Rodríguez-Salamanca P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of 2-(Quinolin-8-yl)Benzaldehydes: Atroposelective Iridium-Catalyzed Transfer Hydrogenative Allylation. Angew Chem Int Ed Engl 2023; 62:e202306981. [PMID: 37389578 DOI: 10.1002/anie.202306981] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
An atroposelective Ir-catalyzed dynamic kinetic resolution (DKR) of 2-(quinolin-8-yl)benzaldehydes/1-naphthaldehydes by transfer hydrogenative coupling of allyl acetate is disclosed. The allylation reaction takes place with simultaneous installation of central and axial chirality, reaching high diastereoselectivities and excellent enantiomeric excesses when ortho-cyclometalated iridium-DM-BINAP is used as the catalyst. The racemization of the substrates occurs through a designed transient Lewis acid-base interaction between the quinoline nitrogen atom and the aldehyde carbonyl group.
Collapse
Affiliation(s)
- José A Carmona
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Patricia Rodríguez-Salamanca
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| |
Collapse
|
11
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
12
|
Huynh NO, Hodík T, Krische MJ. Enantioselective Transfer Hydrogenative Cycloaddition Unlocks the Total Synthesis of SF2446 B3: An Aglycone of Arenimycin and SF2446 Type II Polyketide Antibiotics. J Am Chem Soc 2023; 145:17461-17467. [PMID: 37494281 PMCID: PMC10443208 DOI: 10.1021/jacs.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The first total synthesis and structure validation of an arenimycin/SF2446 type II polyketide is described, as represented by de novo construction of SF2446 B3, the aglycone shared by this family of type II polyketides. Ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition, which occurs via successive stereoablation-stereoregeneration, affects a double dynamic kinetic asymmetric transformation wherein two racemic starting materials combine to form the congested angucycline bay region with control of regio-, diastereo-, and enantioselectivity. This work represents the first application of transfer hydrogenative cycloaddition and enantioselective intermolecular metal-catalyzed C-C bond activation in target-oriented synthesis.
Collapse
Affiliation(s)
- Nancy O Huynh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Ortiz E, Evarts MM, Strong ZH, Shezaf JZ, Krische MJ. Ruthenium-Catalyzed C-C Coupling of Terminal Alkynes with Primary Alcohols or Aldehydes: α,β-Acetylenic Ketones (Ynones) via Oxidative Alkynylation. Angew Chem Int Ed Engl 2023; 62:e202303345. [PMID: 37000412 PMCID: PMC10213147 DOI: 10.1002/anie.202303345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/01/2023]
Abstract
The first metal-catalyzed oxidative alkynylations of primary alcohols or aldehydes to form α,β-acetylenic ketones (ynones) are described. Deuterium labelling studies corroborate a novel reaction mechanism in which alkyne hydroruthenation forms a transient vinylruthenium complex that deprotonates the terminal alkyne to form the active alkynylruthenium nucleophile.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Madeline M. Evarts
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Zachary H. Strong
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Jonathan Z. Shezaf
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
14
|
Verboom KL, Meyer CC, Evarts MM, Jung WO, Krische MJ. O-Acetyl 1,3-Propanediol as an Acrolein Proelectrophile in Enantioselective Iridium-Catalyzed Carbonyl Allylation. Org Lett 2023; 25:3659-3663. [PMID: 37172193 PMCID: PMC10425987 DOI: 10.1021/acs.orglett.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
O-Acetyl 1,3-propanediol serves as an acrolein proelectrophile in π-allyliridium-C,O-benzoate-catalyzed carbonyl allylations mediated by racemic α-substituted allylic acetates. Using the iridium catalyst modified by (R)-SEGPHOS, a variety of 3-hydroxy-1,5-hexadienes are formed with uniformly high levels of regio-, anti-diastereo-, and enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Kong L, Han X, Hu P, Wang F, Li X. Three-component regioselective carboamidation of 1,3-enynes via rhodium(III)-catalyzed C-H activation. Chem Commun (Camb) 2023; 59:6690-6693. [PMID: 37161763 DOI: 10.1039/d3cc01666h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rhodium-catalyzed regio- and stereoselective three-component carboamidation of 1,3-enynes has been realized using indoles and dioxazolones as the functionalizing reagents. A wide range of multi-substituted skipped 1,4-dienes have been constructed in good yields and excellent stereoselectivity. The stereoselectivity is under substrate control. 1,3-Enynes bearing a relatively bulky alkyne terminus reacted with Z-selectivity. In contrast, a sterically less hindered alkyne terminus tends to predominantly give the E-configured skipped diene.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271000, China
| | - Xi Han
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.
| |
Collapse
|
16
|
Meyer CC, Krische MJ. Iridium-, Ruthenium-, and Nickel-Catalyzed C-C Couplings of Methanol, Formaldehyde, and Ethanol with π-Unsaturated Pronucleophiles via Hydrogen Transfer. J Org Chem 2023; 88:4965-4974. [PMID: 36449710 PMCID: PMC10121765 DOI: 10.1021/acs.joc.2c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this Perspective, the use of methanol and ethanol as C1 and C2 feedstocks in metal-catalyzed C-C couplings to π-unsaturated pronucleophiles via hydrogen auto-transfer is surveyed. In these processes, alcohol oxidation to form an aldehyde electrophile is balanced by reduction of an π-unsaturated hydrocarbon to form a transient organometallic nucleophile. Mechanistically related reductive couplings of paraformaldehyde mediated by alcohol reductants or formic acid also are described. These processes encompass the first catalytic enantioselective C-C couplings of methanol and ethanol and, more broadly, illustrate how the native reducing ability of alcohols enable the departure from premetalated reagents in carbonyl addition.
Collapse
Affiliation(s)
- Cole C Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24th St, Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24th St, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Meyer CC, Verboom KL, Evarts MM, Jung WO, Krische MJ. Allyl Alcohol as an Acrolein Equivalent in Enantioselective C-C Coupling: Total Synthesis of Amphidinolides R, J, and S. J Am Chem Soc 2023; 145:8242-8247. [PMID: 36996284 PMCID: PMC10101927 DOI: 10.1021/jacs.3c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The first systematic study of catalytic enantioselective 1,2-additions to acrolein is described. Specifically, using allyl alcohol as a tractable, inexpensive acrolein proelectrophile, iridium-catalyzed acrolein allylation is achieved with high levels of regio-, anti-diastereo-, and enantioselectivity. This process delivers 3-hydroxy-1,5-hexadienes, a useful compound class that is otherwise challenging to access via enantioselective catalysis. Two-fold use of this method unlocks concise total syntheses of amphidinolide R (9 vs 23 steps, LLS) and amphidinolide J (9 vs 23 or 26 steps, LLS), which are prepared in fewer than half the steps previously possible, and the first total synthesis of amphidinolide S (10 steps, LLS).
Collapse
Affiliation(s)
- Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katherine L Verboom
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madeline M Evarts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
19
|
Mohan TV, Nallagangula M, Kala K, Hernandez-Tamargo CE, De Leeuw NH, Namitharan K, Bhat VT, Sasidharan (LM, Selvam P. Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
20
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
21
|
Sankar RV, Manikpuri D, Gunanathan C. Ruthenium-catalysed α-prenylation of ketones using prenol. Org Biomol Chem 2023; 21:273-278. [PMID: 36374234 DOI: 10.1039/d2ob01882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenol and isoprenoids are common structural motifs in biological systems and possess diverse applications. An unprecedented direct catalytic prenylation of ketones using prenol is attained. This C-C bond formation reaction requires only a ruthenium pincer catalyst and a base, and H2O is the only byproduct.
Collapse
Affiliation(s)
- Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Deepsagar Manikpuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
| |
Collapse
|
22
|
Dai K, Chen Q, Xie W, Lu K, Yan Z, Peng M, Li C, Tu Y, Ding T. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir
III
Pincer Complex. Angew Chem Int Ed Engl 2022; 61:e202206446. [DOI: 10.1002/anie.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kun‐Long Dai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qi‐Long Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wen‐Ping Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Zhi‐Bo Yan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Meng Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Chang‐Kun Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Tong‐Mei Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
23
|
Shao N, Rodriguez J, Quintard A. Catalysis Driven Six-Step Synthesis of Apratoxin A Key Polyketide Fragment. Org Lett 2022; 24:6537-6542. [PMID: 36073851 DOI: 10.1021/acs.orglett.2c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apratoxin A is a potent anticancer natural product whose key polyketide fragment constitutes a considerable challenge for organic synthesis, with five prior syntheses requiring 12 to 20 steps for its preparation. By combining different redox-economical catalytic stereoselective transformations, the key polyketide fragment could be rapidly prepared. Followed by a site-selective protection of the diol, this strategy enables the preparation of the apratoxin A fragment in only six steps, representing the shortest route to this polyketide.
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France.,Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
24
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Emayavaramban B, Chakraborty P, Dahiya P, Sundararaju B. Iron-Catalyzed α-Methylation of Ketones Using Methanol as the C1 Source under Photoirradiation. Org Lett 2022; 24:6219-6223. [PMID: 35960264 DOI: 10.1021/acs.orglett.2c02545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild, environmentally benign approach for α-methylation of ketones utilizing methanol as the C1 source under visible light has been developed. The reaction conditions were favorable for a wide range of ketones with both aromatic and aliphatic backbones, allowing for good-to-excellent yields of the respective products. The tentative mechanism is postulated after preliminary mechanistic and kinetic experiments.
Collapse
Affiliation(s)
| | - Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pardeep Dahiya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
26
|
Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z. Synthesis of Ruthenium complexes and their catalytic applications: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Dai KL, Chen QL, Xie WP, Lu K, Yan ZB, Peng M, Li CK, Tu Y, Ding TM. Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir(III) Pincer Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun-Long Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qi-Long Chen
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Wen-Ping Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Ka Lu
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Bo Yan
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Meng Peng
- Lanzhou University School of Chemistry and Chemical Engineering CHINA
| | - Chang-Kun Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yongqiang Tu
- Lanzhou University Chemistry 222 Tianshui Road South 730000 Lanzhou CHINA
| | - Tong-Mei Ding
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
28
|
Ortiz E, Shezaf J, Chang YH, Krische MJ. Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. ACS Catal 2022; 12:8164-8174. [PMID: 37082110 PMCID: PMC10112658 DOI: 10.1021/acscatal.2c02444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of alkynes as vinylmetal pronucleophiles in intermolecular enantioselective metal-catalyzed carbonyl and imine reductive couplings to form allylic alcohols and amines is surveyed. Related hydrogen auto-transfer processes, wherein alcohols or amines serve dually as reductants and carbonyl or imine proelectrophiles, also are cataloged, as are applications in target-oriented synthesis. These processes represent an emerging alternative to the use of stoichiometric vinylmetal reagents or Nozaki-Hiyama-Kishi (NHK) reactions in carbonyl and imine alkenylation.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Jonathan Shezaf
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Yu-Hsiang Chang
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
29
|
Abstract
Indolizidine alkaloids have been the target of chemical and biological studies for decades, most recently highlighted by the isolation of the curvulamine and bipolamine polypyrrole-containing subclass. Herein we report a stereoselective 15-step synthesis of bipolamine I, a distinct member of the broader family, and through this work develop an intermediate that will serve to access other polypyrrole natural products and key analogues going forward.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
31
|
Jung WO, Yoo M, Migliozzi MM, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Alkyl-Substituted Allylic Acetates with Secondary Amines. Org Lett 2022; 24:441-445. [PMID: 34905364 PMCID: PMC8764998 DOI: 10.1021/acs.orglett.1c04135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Robust air-stable cyclometalated π-allyliridium C,O-benzoates modified by (S)-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Minjin Yoo
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madyson M Migliozzi
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
32
|
Zheng T, Berman JL, Michael FE. Diastereoconvergent synthesis of anti-1,2-amino alcohols with N-containing quaternary stereocenters via selenium-catalyzed intermolecular C–H amination. Chem Sci 2022; 13:9685-9692. [PMID: 36091896 PMCID: PMC9400650 DOI: 10.1039/d2sc02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn-1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction. We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide.![]()
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Janna L. Berman
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Forrest E. Michael
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| |
Collapse
|
33
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Ortiz E, Shezaf JZ, Chang YH, Gonçalves TP, Huang KW, Krische MJ. Understanding Halide Counterion Effects in Enantioselective Ruthenium-Catalyzed Carbonyl (α-Aryl)allylation: Alkynes as Latent Allenes and Trifluoroethanol-Enhanced Turnover in The Conversion of Ethanol to Higher Alcohols via Hydrogen Auto-transfer. J Am Chem Soc 2021; 143:16709-16717. [PMID: 34606271 PMCID: PMC8749865 DOI: 10.1021/jacs.1c07857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystallographic characterization of RuX(CO)(η3-C3H5)(JOSIPHOS), where X = Cl, Br, or I, reveals a halide-dependent diastereomeric preference that defines metal-centered stereogenicity and, therefrom, the enantioselectivity of C-C coupling in ruthenium-catalyzed anti-diastereo- and enantioselective C-C couplings of primary alcohols with 1-aryl-1-propynes to form products of carbonyl anti-(α-aryl)allylation. Computational studies reveal that a non-classical hydrogen bond between iodide and the aldehyde formyl CH bond stabilizes the favored transition state for carbonyl addition. An improved catalytic system enabling previously unattainable transformations was developed that employs an iodide-containing precatalyst, RuI(CO)3(η3-C3H5), in combination with trifluoroethanol, as illustrated by the first enantioselective ruthenium-catalyzed C-C couplings of ethanol to form higher alcohols.
Collapse
Affiliation(s)
- Eliezer Ortiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Z Shezaf
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsiang Chang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021; 86:13186-13197. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Susmita Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
36
|
Xiang M, Pfaffinger DE, Krische MJ. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. Chemistry 2021; 27:13107-13116. [PMID: 34185926 PMCID: PMC8446312 DOI: 10.1002/chem.202101890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The use of allenes and 1,3-dienes as chiral allylmetal pronucleophiles in intermolecular catalytic enantioselective reductive additions to aldehydes, ketones, imines, carbon dioxide and other C=X electrophiles is exhaustively catalogued together with redox-neutral hydrogen auto-transfer processes. Coverage is limited to processes that result in both C-H and C-C bond formation. The use of alkynes as latent allylmetal pronucleophiles and multicomponent C=X allylations involving allenes and dienes is not covered. As illustrated in this review, the ability of allenes and 1,3-dienes to serve as tractable non-metallic pronucleophiles has evoked many useful transformations that have no counterpart in traditional allylmetal chemistry.
Collapse
Affiliation(s)
- Ming Xiang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Dana E. Pfaffinger
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
37
|
Spinello BJ, Wu J, Cho Y, Krische MJ. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition-Redox Isomerization Catalyzed by Rhodium. J Am Chem Soc 2021; 143:13507-13512. [PMID: 34415159 PMCID: PMC8739284 DOI: 10.1021/jacs.1c07230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of rhodium-catalyzed carbonyl addition via hydrogen autotransfer are described, as illustrated in tandem butadiene-mediated carbonyl addition-redox isomerizations that directly convert primary alcohols to isobutyl ketones. Related reductive coupling-redox isomerizations of aldehyde reactants mediated by sodium formate also are reported. A double-labeling crossover experiment reveals that the rhodium alkoxide obtained upon carbonyl addition enacts redox isomerization without dissociation of rhodium at any intervening stage.
Collapse
Affiliation(s)
- Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
38
|
Malkov AV, Rubtsov AE. Developing a Methodology for Catalytic Asymmetric Crotylation of Aldehydes. Synlett 2021. [DOI: 10.1055/s-0040-1706659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAsymmetric crotylation has firmly earned a place among the set of valuable synthetic tools for stereoselective construction of carbon skeletons. For a long time the field was heavily dominated by reagents bearing stoichiometric chiral auxiliaries, but now catalytic methods are gradually taking center stage, and the area continues to develop rapidly. This account focuses primarily on preformed organometallic reagents based on silicon and, to some extent, boron. It narrates our endeavors to design new and efficient chiral Lewis base catalysts for the asymmetric addition of crotyl(trichloro)silanes to aldehydes. It also covers the development of a novel protocol for kinetic resolution of racemic secondary allylboronates to give enantio- and diastereomerically enriched linear homoallylic alcohols. As a separate topic, cross-crotylation of aldehydes by using enantiopure branched homoallylic alcohols as a source of crotyl groups is discussed. Finally, the synthetic credentials of the developed methodology are illustrated by total syntheses of marine natural products, in which crotylation plays a key role in setting up stereogenic centers.1 Introduction2 Pyridine N-Oxides as Lewis Base Catalysts3 Bipyridine N,N′-Dioxides as Lewis Base Catalysts4 Chiral Allylating Reagents5 Synthetic Applications6 Concluding Remarks
Collapse
|
39
|
Liu Y, Tao R, Lin ZK, Yang G, Zhao Y. Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nat Commun 2021; 12:5035. [PMID: 34413301 PMCID: PMC8376995 DOI: 10.1038/s41467-021-25268-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
The direct transformation of racemic feedstock materials to valuable enantiopure compounds is of significant importance for sustainable chemical synthesis. Toward this goal, the radical mechanism has proven uniquely effective in stereoconvergent carbon-carbon bond forming reactions. Here we report a mechanistically distinct redox-enabled strategy for an efficient enantioconvergent coupling of pyrroles with simple racemic secondary alcohols. In such processes, chirality is removed from the substrate via dehydrogenation and reinstalled in the catalytic reduction of a key stabilized cationic intermediate. This strategy provides significant advantage of utilizing simple pyrroles to react with feedstock alcohols without the need for leaving group incorporation. This overall redox-neutral transformation is also highly economical with no additional reagent nor waste generation other than water. In our studies, oxime-derived iridacycle complexes are introduced, which cooperate with a chiral phosphoric acid to enable heteroarylation of alcohols, accessing a wide range of valuable substituted pyrroles in high yield and enantioselectivity. Synthesizing complex structures of high enantiomeric excess from racemic feedstock is an enduring challenge. Here, the authors couple racemic secondary alcohols with pyrroles to form enantioenriched 2-substituted heteroarenes, via a borrowing hydrogen mechanism using the combination of an iridium catalyst and chiral phosphoric acid.
Collapse
Affiliation(s)
- Yongbing Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi-Keng Lin
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
40
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
41
|
Pan HJ, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021; 60:18599-18604. [PMID: 34125475 DOI: 10.1002/anie.202101517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/13/2021] [Indexed: 01/23/2023]
Abstract
We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yamei Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Taotao Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Wei Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
42
|
Pan H, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo‐ and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yamei Lin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University 1 Wenyuan Road Nanjing 210023 P. R. China
| | - Taotao Gao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Wei Feng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
43
|
Chen H, Zhou Z, Kong W. Allylic alcohol synthesis by Ni-catalyzed direct and selective coupling of alkynes and methanol. Chem Sci 2021; 12:9372-9378. [PMID: 34349909 PMCID: PMC8278963 DOI: 10.1039/d1sc02625a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methanol is an abundant and renewable chemical raw material, but its use as a C1 source in C-C bond coupling reactions still constitutes a big challenge, and the known methods are limited to the use of expensive and noble metal catalysts such as Ru, Rh and Ir. We herein report nickel-catalyzed direct coupling of alkynes and methanol, providing direct access to valuable allylic alcohols in good yields and excellent chemo- and regioselectivity. The approach features a broad substrate scope and high atom-, step- and redox-economy. Moreover, this method was successfully extended to the synthesis of [5,6]-bicyclic hemiacetals through a cascade cyclization reaction of alkynones and methanol.
Collapse
Affiliation(s)
- Herong Chen
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zhijun Zhou
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
44
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
45
|
Akter M, Anbarasan P. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chem Asian J 2021; 16:1703-1724. [PMID: 33999506 DOI: 10.1002/asia.202100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/22/2022]
Abstract
(Cyclopentadienone)iron tricarbonyl complexes are catalytically active, inexpensive, easily accessible and air-stable that are extensively studied as an active pre-catalyst in homogeneous catalysis. Its versatile catalytic activity arises exclusively due to the presence of a non-innocent ligand, which can trigger its unique redox properties effectively. These complexes have been employed widely in (transfer)hydrogenation (e. g., reduction of polar multiple bonds, Oppenauer-type oxidation of alcohols), C-C and C-N bond formation (e. g., reductive aminations, α-alkylation of ketones) and other synthetic transformations. In this review, we discuss the remarkable advancement of its various synthetic applications along with synthesis and mechanistic studies, until February 2021.
Collapse
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
46
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
47
|
Meyer CC, Stafford NP, Cheng MJ, Krische MJ. Ethanol: Unlocking an Abundant Renewable C 2 -Feedstock for Catalytic Enantioselective C-C Coupling. Angew Chem Int Ed Engl 2021; 60:10542-10546. [PMID: 33689214 PMCID: PMC8085048 DOI: 10.1002/anie.202102694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/13/2022]
Abstract
With annual production at >85 million tons/year, ethanol is the world's largest-volume renewable small molecule carbon source, yet its use as a C2 -feedstock in enantioselective C-C coupling is unknown. Here, the first catalytic enantioselective C-C couplings of ethanol are demonstrated in reactions with structurally complex, nitrogen-rich allylic acetates incorporating the top 10 N-heterocycles found in FDA-approved drugs.
Collapse
Affiliation(s)
- Cole C. Meyer
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Nicholas P. Stafford
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Melinda J. Cheng
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
48
|
Meyer CC, Stafford NP, Cheng MJ, Krische MJ. Ethanol: Unlocking an Abundant Renewable C
2
‐Feedstock for Catalytic Enantioselective C−C Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Nicholas P. Stafford
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Melinda J. Cheng
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
49
|
Frost JR, Cheong CB, Akhtar WM, Caputo DF, Christensen KE, Stevenson NG, Donohoe TJ. Hydrogen borrowing catalysis using 1° and 2° alcohols: Investigation and scope leading to α and β branched products. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Hall CJJ, Goundry WRF, Donohoe TJ. Hydrogen-Borrowing Alkylation of 1,2-Amino Alcohols in the Synthesis of Enantioenriched γ-Aminobutyric Acids. Angew Chem Int Ed Engl 2021; 60:6981-6985. [PMID: 33561302 PMCID: PMC8048514 DOI: 10.1002/anie.202100922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/22/2022]
Abstract
For the first time we have been able to employ enantiopure 1,2-amino alcohols derived from abundant amino acids in C-C bond-forming hydrogen-borrowing alkylation reactions. These reactions are facilitated by the use of the aryl ketone Ph*COMe. Racemisation of the amine stereocentre during alkylation can be prevented by the use of sub-stoichiometric base and protection of the nitrogen with a sterically hindered triphenylmethane (trityl) or benzyl group. The Ph* and trityl groups are readily cleaved in one pot to give γ-aminobutyric acid (GABA) products as their HCl salts without further purification. Both steps may be performed in sequence without isolation of the hydrogen-borrowing intermediate, removing the need for column chromatography.
Collapse
Affiliation(s)
- Christopher J. J. Hall
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - William R. F. Goundry
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaMacclesfieldSK10 2NAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|