1
|
Abe T, Takeuchi K, Higashi M, Sato H, Hiraoka S. Rational design of metal-organic cages to increase the number of components via dihedral angle control. Nat Commun 2024; 15:7630. [PMID: 39251614 PMCID: PMC11383860 DOI: 10.1038/s41467-024-50972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
The general principles of discrete, large self-assemblies composed of numerous components are not unveiled and the artificial formation of such entities is a challenging topic. In metal-organic cages, design strategies for tuning the coordination directions in multitopic ligands by the bend and twist angles were previously developed to solve this problem. In this study, the importance of remote geometric communications between components is emphasized, realizing several types of metal-organic assemblies based on dihedral angle control in multitopic ligands although they have the same coordination directions. Self-assembly of a tritopic ligand with dihedral angles θ = 36.5° and a cis-protected Pd(II) ion affords M9L6 and M12L8 cages as kinetic and thermodynamic products, respectively, whereas an M12L8 sheet is formed when θ = 90°. Geometric analyses of strains in the subcomponent rings reveals that remote geometric communications among neighboring multitopic ligands through coordination bonds are key for large assemblies.
Collapse
Affiliation(s)
- Tsukasa Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Keisuke Takeuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Liu X, Tian F, Zhang Z, Liu J, Wang S, Guo RC, Hu B, Wang H, Zhu H, Liu AA, Shi L, Yu Z. In Vivo Self-Sorting of Peptides via In Situ Assembly Evolution. J Am Chem Soc 2024; 146:24177-24187. [PMID: 39140408 DOI: 10.1021/jacs.4c10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite significant progress achieved in artificial self-sorting in solution, operating self-sorting in the body remains a considerable challenge. Here, we report an in vivo self-sorting peptide system via an in situ assembly evolution for combined cancer therapy. The peptide E3C16-SS-EIY consists of two disulfide-connected segments, E3C16SH and SHEIY, capable of independent assembly into twisted or flat nanoribbons. While E3C16-SS-EIY assembles into nanorods, exposure to glutathione (GSH) leads to the conversion of the peptide into E3C16SH and SHEIY, thus promoting in situ evolution from the nanorods into self-sorted nanoribbons. Furthermore, incorporation of two ligand moieties targeting antiapoptotic protein XIAP and organellar endoplasmic reticulum (ER) into the self-sorted nanoribbons allows for simultaneous inhibition of XIAP and accumulation surrounding ER. This leads to the cytotoxicity toward the cancer cells with elevated GSH levels, through activating caspase-dependent apoptosis and inducing ER dysfunction. In vivo self-sorting of E3C16-SS-EIY decorated with ligand moieties is thoroughly validated by tissue studies. Tumor-bearing mouse experiments confirm the therapeutic efficacy of the self-sorted assemblies for inhibiting tumor growth, with excellent biosafety. Our findings demonstrate an efficient approach to develop in vivo self-sorting systems and thereby facilitating in situ formulation of biomedical agents.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Juanzu Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuya Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Han Zhu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - An-An Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
3
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
4
|
Kim H, Shin J, Kim S, Lee D. Helical fluxionality: numerical frustration drives concerted low-barrier screw motions of a tricopper cluster. Chem Sci 2023; 14:3265-3269. [PMID: 36970079 PMCID: PMC10034190 DOI: 10.1039/d3sc00851g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Uneven allocation of resources creates frustration, tension, and conflicts. Confronted with an apparent mismatch between the number of donor atoms and the number of metal atoms to be supported, helically twisted ligands cleverly come up with a sustainable symbiotic solution. As an example, we present a tricopper metallohelicate exhibiting screw motions for intramolecular site exchange. A combination of X-ray crystallographic and solution NMR spectroscopic studies revealed thermo-neutral site exchange of three metal centres hopping back and forth inside the helical cavity lined by a spiral staircase-like arrangement of ligand donor atoms. This hitherto unknown helical fluxionality is a superimposition of translational and rotational movements of molecular actuation, taking the shortest path with an extraordinarily low energy barrier without compromising the overall structural integrity of the metal-ligand assembly.
Collapse
Affiliation(s)
- Heechan Kim
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Juhwan Shin
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Seyong Kim
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
5
|
von Baeckmann C, Ruiz-Relaño S, Imaz I, Handke M, Juanhuix J, Gándara F, Carné-Sanchez A, Maspoch D. Stepwise assembly of heterometallic, heteroleptic "triblock Janus-type" metal-organic polyhedra. Chem Commun (Camb) 2023; 59:3423-3426. [PMID: 36853262 PMCID: PMC10019128 DOI: 10.1039/d2cc06815j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Increasing the chemical complexity of metal-organic cages (MOCs) or polyhedra (MOPs) demands control over the simultaneous organization of diverse organic linkers and metal ions into discrete caged structures. Herein, we show that a pre-assembled complex of the archetypical cuboctahedral MOP can be used as a template to replicate such caged structure, one having a "triblock Janus-type" configuration that is both heterometallic and heteroleptic.
Collapse
Affiliation(s)
- Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sara Ruiz-Relaño
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Handke
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Judith Juanhuix
- Alba Synchrotron Light Facility, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Felipe Gándara
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Arnau Carné-Sanchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
6
|
Ghorai S, Maji S, Paul B, Samanta K, Kumar Sen S, Natarajan R. Chiral Self-Sorting in Pd 6 L 12 Metal-Organic Cages. Chem Asian J 2023; 18:e202201312. [PMID: 36808865 DOI: 10.1002/asia.202201312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Chiral self-sorting during the formation of cage-like molecules continues to fascinate and advance our understanding of the phenomenon in general. Herein, we report the chiral self-sorting in the Pd6 L12 -type metal-organic cages. When a racemic mixture of axially chiral bis-pyridyl ligands undergo coordination-driven self-assembly with Pd(II) ions to form Pd6 L12 -type cages, the system has the option of chiral self-sorting to afford any of at least 70 pairs of (one homochiral and 69 heterochiral) enantiomers and 5 meso isomers or a statistical mixture of everything. However, the system resulted in diastereoselective self-assembly through a high-fidelity chiral social self-sorting to form a racemic mixture of D3 symmetric heterochiral [Pd6 (L6R/6S )12 ]12+ /[Pd6 (L6S/6R )12 ]12+ cages.
Collapse
Affiliation(s)
- Sandipan Ghorai
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suman Maji
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaswati Paul
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shovan Kumar Sen
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
8
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
9
|
Ashbridge Z, Knapp OM, Kreidt E, Leigh DA, Pirvu L, Schaufelberger F. Social Self-Sorting Synthesis of Molecular Knots. J Am Chem Soc 2022; 144:17232-17240. [PMID: 36067448 PMCID: PMC9501921 DOI: 10.1021/jacs.2c07682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis of molecular prime and composite
knots
by social self-sorting of 2,6-pyridinedicarboxamide (pdc) ligands
of differing topicity and stereochemistry. Upon mixing achiral monotopic
and ditopic pdc-ligand strands in a 1:1:1 ratio with Lu(III), a well-defined
heteromeric complex featuring one of each ligand strand and the metal
ion is selectively formed. Introducing point-chiral centers into the
ligands leads to single-sense helical stereochemistry of the resulting
coordination complex. Covalent capture of the entangled structure
by ring-closing olefin metathesis then gives a socially self-sorted
trefoil knot of single topological handedness. In a related manner,
a heteromeric molecular granny knot (a six-crossing composite knot
featuring two trefoil tangles of the same handedness) was assembled
from social self-sorting of ditopic and tetratopic multi-pdc strands.
A molecular square knot (a six-crossing composite knot of two trefoil
tangles of opposite handedness) was assembled by social self-sorting
of a ditopic pdc strand with four (S)-centers and
a tetratopic strand with two (S)- and six (R)-centers. Each of the entangled structures was characterized
by 1H and 13C NMR spectroscopy, mass spectrometry,
and circular dichroism spectroscopy. The precise control of composition
and topological chirality through social self-sorting enables the
rapid assembly of well-defined sequences of entanglements for molecular
knots.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Olivia M Knapp
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | | |
Collapse
|
10
|
Li XL, Zhao L, Wu J, Shi W, Struch N, Lützen A, Powell AK, Cheng P, Tang J. Subcomponent self-assembly of circular helical Dy 6(L) 6 and bipyramid Dy 12(L) 8 architectures directed via second-order template effects. Chem Sci 2022; 13:10048-10056. [PMID: 36128245 PMCID: PMC9430530 DOI: 10.1039/d2sc03156f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
In situ metal-templated (hydrazone) condensation also called subcomponent self-assembly of 4,6-dihydrazino-pyrimidine, o-vanillin and dysprosium ions resulted in the formation of discrete hexa- or dodecanuclear metallosupramolecular Dy6(L)6 or Dy12(L)8 aggregates resulting from second-order template effects of the base and the lanthanide counterions used in these processes. XRD analysis revealed unique circular helical or tetragonal bipyramid architectures in which the bis(hydrazone) ligand L adopts different conformations and shows remarkable differences in its mode of metal coordination. While a molecule of trimethylamine acts as a secondary template that fills the void of the Dy6(L)6 assembly, sodium ions take on this role for the formation of heterobimetallic Dy12(L)8 by occupying vacant coordination sites, thus demonstrating that these processes can be steered in different directions upon subtle changes of reaction conditions. Furthermore, Dy6(L)6 shows an interesting spin-relaxation energy barrier of 435 K, which is amongst the largest values within multinuclear lanthanide single-molecular magnets.
Collapse
Affiliation(s)
- Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Lang Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Niklas Struch
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische-Friedrich-Wilhelms-University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische-Friedrich-Wilhelms-University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology Engesserstrasse 15, 76131 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, Eggensteinn-Leopoldshafen 76344 Karlsruhe Germany
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changch un Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
11
|
Investigating the synthesis and structure of [2]pseudorotaxanes assembled by crown ether as wheel component and dual-cation axle with phosphonium and ammonium cations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lei Y, Li Z, Wu G, Zhang L, Tong L, Tong T, Chen Q, Wang L, Ge C, Wei Y, Pan Y, Sue ACH, Wang L, Huang F, Li H. A trefoil knot self-templated through imination in water. Nat Commun 2022; 13:3557. [PMID: 35729153 PMCID: PMC9213439 DOI: 10.1038/s41467-022-31289-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation of topologically nontrivial molecules is often assisted by covalent, supramolecular or coordinative templates that provide spatial pre-organization for all components. Herein, we report a trefoil knot that can be self-assembled efficiently in water without involving additional templates. The direct condensation of three equivalents of a tetraformyl precursor and six equivalents of a chiral diamine produces successfully a [3 + 6] trefoil knot whose intrinsic handedness is dictated by the stereochemical configuration of the diamine linkers. Contrary to the conventional wisdom that imine condensation is not amenable to use in water, the multivalent cooperativity between all the imine bonds within the framework makes this trefoil knot robust in the aqueous environment. Furthermore, the presence of water is proven to be essential for the trefoil knot formation. A topologically trivial macrocycle composed of two tetraformyl and four diamino building blocks is obtained when a similar reaction is performed in organic media, indicating that hydrophobic effect is a major driving force behind the scene.
Collapse
Affiliation(s)
- Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lijie Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Tianyi Tong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lingxiang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| |
Collapse
|
13
|
Kim S, Park IH, Lee E, Jung JH, Lee SS. Metallosupramolecules of Pillar[5]arene with Two Flexible Thiopyridyl Arms: A Heterochiral Cyclic Dimer and Organic Guest-Assisted Homochiral Poly-Pseudo-Rotaxanes. Inorg Chem 2022; 61:7069-7074. [PMID: 35482519 DOI: 10.1021/acs.inorgchem.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a cyclic dimer complex (1) and a poly-pseudo-rotaxane (2) of a racemic A1/A2-thiopyridyl pillar[5]arene (rac-L) with different chirality is reported. A one-pot reaction of rac-L with HgCl2 afforded a heterochiral cyclic dimer complex, [Hg2(pR-L)(pS-L)Cl4]·8CH2Cl2 (1), in which two Hg2+ atoms and one (pR-L)/(pS-L) enantiomeric pair form a [2:2] metallacycle via a metal coordination-based cyclization. Interestingly, the same reaction in the presence of the linear dinitrile guest, CN(CH2)8CN (G), yielded a one-dimensional poly-pseudo-rotaxane, {[Hg(G@pR-L)Cl2][Hg(G@pS-L)Cl2]}n (2), probably due to the rigidified ligand structure resulting from the dinitrile guest (G) threading. In 2, pR-L and pS-L generate two separated homochiral poly-pseudo-rotaxanes in a crystal. Both products are new members of the pillararene-derivative family. This study improves our understanding of self-assembly in nature and leads to this approach being an engineering tool for the construction of mechanically interlocked supramolecules.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| |
Collapse
|
14
|
ABE T, Horiuchi S, Hiraoka S. Kinetically controlled narcissistic self-sorting of Pd(II)-linked self-assemblies from structurally similar tritopic ligands. Chem Commun (Camb) 2022; 58:10829-10832. [DOI: 10.1039/d2cc04496j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although many examples of self-sorting have been reported, self-sorting of structurally similar building blocks is potentially difficult. Herein, we present the narcissistic self-sorted state from two kinds of structurally similar...
Collapse
|
15
|
Gómez-González J, Bouzada D, Pérez-Márquez LA, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjug Chem 2021; 32:1564-1569. [PMID: 34320309 PMCID: PMC8485332 DOI: 10.1021/acs.bioconjchem.1c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Combining
coordination chemistry and peptide engineering offers
extraordinary opportunities for developing novel molecular (supra)structures.
Here, we demonstrate that the β-annulus motif is capable of
directing the stereoselective assembly of designed peptides containing
2,2′-bipyridine ligands into parallel three-stranded chiral
peptide helicates, and that these helicates selectively bind with
high affinity to three-way DNA junctions.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lidia A Pérez-Márquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Carpenter JP, McTernan CT, Greenfield JL, Lavendomme R, Ronson TK, Nitschke JR. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gómez-González J, Pérez Y, Sciortino G, Roldan-Martín L, Martínez-Costas J, Maréchal JD, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells*. Angew Chem Int Ed Engl 2021; 60:8859-8866. [PMID: 33290612 DOI: 10.1002/anie.202013039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Indexed: 01/03/2023]
Abstract
Although largely overlooked in peptide engineering, coordination chemistry offers a new set of interactions that opens unexplored design opportunities for developing complex molecular structures. In this context, we report new artificial peptide ligands that fold into chiral helicates in the presence of labile metal ions such as FeII and CoII . Heterochiral β-turn-promoting sequences encode the stereoselective folding of the peptide ligands and define the physicochemical properties of their corresponding metal complexes. Circular dichroism and NMR spectroscopy in combination with computational methods allowed us to identify and determine the structure of two isochiral ΛΛ-helicates, folded as topological isomers. Finally, in addition to the in-vitro characterization of their selective binding to DNA three-way junctions, cell-microscopy experiments demonstrated that a rhodamine-labeled FeII helicate was internalized and selectively stains DNA replication factories in functional cells.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| | - Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Lorena Roldan-Martín
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
18
|
Gómez‐González J, Pérez Y, Sciortino G, Roldan‐Martín L, Martínez‐Costas J, Maréchal J, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jacobo Gómez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| | - Yolanda Pérez
- NMR Facility Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Giuseppe Sciortino
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola Spain
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16 43007 Tarragona Spain
| | | | - José Martínez‐Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Bioquímica y Biología Molecular Universidade de Santiago de Compostela Spain
| | | | - Ignacio Alfonso
- Department of Biological Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Inorgánica Universidade de Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| |
Collapse
|
19
|
Li H, Yang Y, Xu F, Duan Z, Li R, Wen H, Tian W. Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01540g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A sequence-controlled supramolecular copolymer was constructed by self-sorting assembly of metal coordination and two types of host–guest interactions.
Collapse
Affiliation(s)
- Hui Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Ying Yang
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Fenfen Xu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhaozhao Duan
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Riqiang Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Herui Wen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
20
|
Yang Z, Lehn JM. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages. J Am Chem Soc 2020; 142:15137-15145. [PMID: 32809804 DOI: 10.1021/jacs.0c07131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic covalent component self-sorting processes have been investigated for constituents of different cyclic orders, macrocycles and macrobicyclic cages based on multiple reversible imine formation. The progressive assembly of the final structures from dialdehyde and polyamine components involved the generation of kinetic products and mixtures of intermediates which underwent component selection and self-correction to generate the final thermodynamic constituents. Importantly, constitutional dynamic networks (CDNs) of macrocycles and macrobicyclic cages were set up either from separately prepared constituents or by in situ assembly from their components. Over time, these CDNs underwent conversion from a kinetically trapped out-of-equilibrium distribution of constituents to the thermodynamically self-sorted one through component exchange in different dimensional orders.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
21
|
Chinnaraja E, Arunachalam R, Pillai RS, Peuronen A, Rissanen K, Subramanian PS. One‐pot synthesis of [2+2]‐helicate‐like macrocycle and 2+4‐μ
4
‐oxo tetranuclear open frame complexes: Chiroptical properties and asymmetric oxidative coupling of 2‐naphthols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eswaran Chinnaraja
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rajendran Arunachalam
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Renjith S. Pillai
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | - Anssi Peuronen
- Department of Chemistry, Nanoscience Center University of Jyvaskyla P.O. Box 35 Jyväskylä FI‐40014 Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center University of Jyvaskyla P.O. Box 35 Jyväskylä FI‐40014 Finland
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division Central Salt and Marine Chemicals Research Institute (CSIR‐CSMCRI) Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
22
|
Ayme J, Dhers S, Lehn J. Triple Self-Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine-Based Cu I , Fe II , and Zn II Complexes. Angew Chem Int Ed Engl 2020; 59:12484-12492. [PMID: 32286724 PMCID: PMC7383593 DOI: 10.1002/anie.202000818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Three imine-based metal complexes, having no overlap in terms of their compositions, have been simultaneously generated from the self-sorting of a constitutional dynamic library (CDL) containing three amines, three aldehydes, and three metal salts. The hierarchical ordering of the stability of the three metal complexes assembled and the leveraging of the antagonistic and agonistic relationships existing between the constituents within the constitutional dynamic network corresponding to the CDL were pivotal in achieving the sorting. Examination of the process by NMR spectroscopy showed that the self-sorting of the FeII and ZnII complexes depended on an interplay between the thermodynamic driving forces and a kinetic trap involved in their assembly. These results also exemplify the concept of "simplexity"-the fact that the output of a self-assembling system may be simplified by increasing its initial compositional complexity-as the two complexes could self-sort only in the presence of the third pair of organic components, those of the CuI complex.
Collapse
Affiliation(s)
- Jean‐François Ayme
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Sébastien Dhers
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Marie Lehn
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| |
Collapse
|
23
|
Ayme J, Dhers S, Lehn J. Triple Self‐Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine‐Based Cu
I
, Fe
II
, and Zn
II
Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean‐François Ayme
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean‐Marie Lehn
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
24
|
Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Coordination-Directed Construction of Molecular Links. Chem Rev 2020; 120:6288-6325. [PMID: 32558562 DOI: 10.1021/acs.chemrev.0c00321] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the emergence of the concept of chemical topology, interlocked molecular assemblies have graduated from academic curiosities and poorly defined species to become synthetic realities. Coordination-directed synthesis provides powerful, diverse, and increasingly sophisticated protocols for accessing interlocked molecules. Originally, metal ions were employed solely as templates to gather and position building blocks in entwined or threaded arrangements. Recently, metal centers have increasingly featured within the backbones of the integral structural elements, which in turn use noncovalent interactions to self-assemble into intricate topologies. By outlining ingenious recent examples as well as seminal classic cases, this Review focuses on the role of metal-ligand paradigms in assembling molecular links. In addition, the ever-evolving approaches to efficient assembly, the structural features of the resulting architectures, and their prospects for the future are also presented.
Collapse
Affiliation(s)
- Wen-Xi Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
25
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020; 59:13807-13813. [PMID: 32384209 DOI: 10.1002/anie.202001523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short-lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel-dependent and fuel-independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.
Collapse
Affiliation(s)
| | - Joshua L Atkinson
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
26
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joshua L. Atkinson
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
27
|
Ayme JF, Lehn JM, Bailly C, Karmazin L. Simultaneous Generation of a [2 × 2] Grid-Like Complex and a Linear Double Helicate: a Three-Level Self-Sorting Process. J Am Chem Soc 2020; 142:5819-5824. [DOI: 10.1021/jacs.0c00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
28
|
Zhang Z, Liu Y, Zhao J, Yan X. Engineering orthogonality in the construction of an alternating rhomboidal copolymer with high fidelity via integrative self-sorting. Polym Chem 2020. [DOI: 10.1039/c9py00848a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternating rhomboidal copolymer was prepared through the combination of orthogonal self-assembly between metal-coordination and host-guest chemistry as well as integrative self-sorting strategy associated with molecular size and steric effect.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
29
|
Ayme JF, Lehn JM. Self-sorting of two imine-based metal complexes: balancing kinetics and thermodynamics in constitutional dynamic networks. Chem Sci 2019; 11:1114-1121. [PMID: 34084368 PMCID: PMC8146771 DOI: 10.1039/c9sc04988f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
A major hurdle in the development of complex constitutional dynamic networks (CDNs) is the lack of strategies to simultaneously control the output of two (or more) interconnected dynamic processes over several species, namely reversible covalent imine bond formation and dynamic metal-ligand coordination. We have studied in detail the self-sorting process of 11 constitutional dynamic libraries containing two different amines, aldehydes and metal salts into two imine-based metal complexes, having no overlap in terms of their compositions. This study allowed us to determine the factors influencing the fidelity of this process (concentration, electronic and steric parameters of the organic components, and nature of the metal cations). In all 11 systems, the outcome of the process was primarily determined by the ability of the octahedral metal ion to select its pair of components from the initial pool of components, with the composition of the weaker tetrahedral complex being imposed by the components rejected by the octahedral metal ions. Different octahedral metal ions required different levels of precision in the "assembling instructions" provided by the organic components of the CDN to guide it towards a sorted output. The concentration of the reaction mixture, and the electronic and steric properties of the initial components of the library were all found to influence the lifetime of unwanted metastable intermediates formed during the assembling of the two complexes.
Collapse
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
30
|
Anhäuser J, Puttreddy R, Glanz L, Schneider A, Engeser M, Rissanen K, Lützen A. Subcomponent Self-Assembly of a Cyclic Tetranuclear Fe II Helicate in a Highly Diastereoselective Self-Sorting Manner. Chemistry 2019; 25:12294-12297. [PMID: 31314931 PMCID: PMC6790559 DOI: 10.1002/chem.201903164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/23/2022]
Abstract
An enantiomerically pure diamine based on the 4,15-difunctionalized [2.2]paracyclophane scaffold and 2-formylpyridine self-assemble into an optically pure cyclic metallosupramolecular Fe4 L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self-assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple-stranded helicate, and hence, leads to the larger strain-free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic chiral self-sorting manner given the fact that the assembly contains ten stereogenic elements, which can in principle give rise to 149 different diastereomers. The metallosupramolecular aggregates could be characterized by NMR, UV/Vis and CD spectroscopy, mass spectrometry, and X-ray crystallography.
Collapse
Affiliation(s)
- Jana Anhäuser
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Rakesh Puttreddy
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Lukas Glanz
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Andreas Schneider
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Marianne Engeser
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Kari Rissanen
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| |
Collapse
|
31
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019; 58:11324-11328. [DOI: 10.1002/anie.201904541] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
32
|
Wang H, Li Y, Yu H, Song B, Lu S, Hao XQ, Zhang Y, Wang M, Hla SW, Li X. Combining Synthesis and Self-Assembly in One Pot To Construct Complex 2D Metallo-Supramolecules Using Terpyridine and Pyrylium Salts. J Am Chem Soc 2019; 141:13187-13195. [PMID: 31345024 DOI: 10.1021/jacs.9b05682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot. The high compatibility of this pair of interactions smoothly and efficiently converted three and four types of components into the desired complex structures, which are supramolecular Kandinsky Circles and spiderwebs, respectively.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Yuan Zhang
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Saw-Wai Hla
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
33
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
34
|
Ibáñez S, Peris E. A Matter of Fidelity: Self‐Sorting Behavior of Di‐Gold Metallotweezers. Chemistry 2019; 25:8254-8258. [DOI: 10.1002/chem.201901880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| |
Collapse
|
35
|
Tian H, Wang C, Li H, Deng R, Li R, Meguellati K. A New Cationic Functionalized Pillar[5]arene and Applications for Adsorption of Anionic Dyes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Huasheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Haiying Li
- Faculty of Chemistry; College of Chemistry; Northeast Normal University; 5268 Renmin Street 130024 Changchun PR China
| | - Rong Deng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Runan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| |
Collapse
|
36
|
Danon JJ, Leigh DA, Pisano S, Valero A, Vitorica‐Yrezabal IJ. A Six-Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot. Angew Chem Int Ed Engl 2018; 57:13833-13837. [PMID: 30152565 PMCID: PMC6221036 DOI: 10.1002/anie.201807135] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Indexed: 11/17/2022]
Abstract
A molecular 6 2 3 link (a six crossing, doubly interlocked, [2]catenane with twisted rings) and a 31 #31 granny knot (a composite knot made up of two trefoil tangles of the same handedness) were constructed by ring-closing olefin metathesis of an iron(II)-coordinated 2×2 interwoven grid. The connections were directed by pendant phenyl groups to be between proximal ligand ends on the same faces of the grid. The 6 2 3 link was separated from the topoisomeric granny knot by recycling size-exclusion chromatography. The identity of each topoisomer was determined by tandem mass spectrometry and the structure of the 6 2 3 link confirmed by X-ray crystallography, which revealed two 82-membered macrocycles, each in figure-of-eight conformations, linked through both pairs of loops.
Collapse
Affiliation(s)
- Jonathan J. Danon
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Simone Pisano
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alberto Valero
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | |
Collapse
|
37
|
Tian Y, Wang G, Ma Z, Xu L, Wang H. Homochiral Double Helicates Based on Cyclooctatetrathiophene: Chiral Self-Sorting with the Intramolecular S⋅⋅⋅N Interaction. Chemistry 2018; 24:15993-15997. [DOI: 10.1002/chem.201803948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Yu Tian
- Engineering Research Center for Nanomaterials; Henan University; Kaifeng 475004 P. R. China
| | - Guangxia Wang
- Engineering Research Center for Nanomaterials; Henan University; Kaifeng 475004 P. R. China
| | - Zhiying Ma
- Engineering Research Center for Nanomaterials; Henan University; Kaifeng 475004 P. R. China
| | - Li Xu
- College of Chemistry and Chemical Engineering; Henan University; Kaifeng 475004 P. R. China
| | - Hua Wang
- Engineering Research Center for Nanomaterials; Henan University; Kaifeng 475004 P. R. China
| |
Collapse
|
38
|
Danon JJ, Leigh DA, Pisano S, Valero A, Vitorica‐Yrezabal IJ. A Six‐Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jonathan J. Danon
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Simone Pisano
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Alberto Valero
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | | |
Collapse
|
39
|
Tian H, Wang C, Lin PH, Meguellati K. Synthesis and characterization of a new pillar[5]arene-based [1]rotaxane. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Wang X, Peng P, Xuan W, Wang Y, Zhuang Y, Tian Z, Cao X. Narcissistic chiral self-sorting of molecular face-rotating polyhedra. Org Biomol Chem 2018; 16:34-37. [DOI: 10.1039/c7ob02727c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Narcissistic chiral self-sorting prevailed in the assembly of molecular face-rotating polyhedra from a C3h building block 5,5,10,10,15,15-hexabutyl-truxene-2,7,12-tricarbaldehyde and racemic mixtures of 1,2-diamines.
Collapse
Affiliation(s)
- Xinchang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Pixian Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Wei Xuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Yu Wang
- Department of Materials Science & Engineering
- University of California
- Berkeley
- USA
| | - Yongbin Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- iChEM and Key Laboratory of Chemical Biology of Fujian Province
- Xiamen University
- Xiamen 361005
| |
Collapse
|
41
|
From Self-Sorting of Dynamic Metal–Ligand Motifs to (Supra)Molecular Machinery in Action. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Affiliation(s)
- Anna J. McConnell
- Otto Diels-Institute of Organic Chemistry, Kiel University, Kiel, Germany
| |
Collapse
|
43
|
Kai S, Sakuma Y, Mashiko T, Kojima T, Tachikawa M, Hiraoka S. The Effect of Solvent and Coordination Environment of Metal Source on the Self-Assembly Pathway of a Pd(II)-Mediated Coordination Capsule. Inorg Chem 2017; 56:12652-12663. [PMID: 28945075 DOI: 10.1021/acs.inorgchem.7b02152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of reaction environment on the self-assembly process of an octahedron-shaped Pd6L8 capsule was investigated. Quantitative analysis of self-assembly process with 1H NMR spectroscopy revealed that the self-assembly pathway of the capsule was altered by solvent and a leaving ligand coordinating to the metal source, which are not the components of the final self-assembly. Solvents definitively determine the pathway of the self-assembly at a very early stage of the self-assembly. Contrary to the expectation that the weaker the coordination ability of the leaving ligand is, the faster the formation of the final assembly becomes, a leaving ligand with weak coordination ability tends to generate a kinetically trapped species to prevent the capsule formation under mild conditions.
Collapse
Affiliation(s)
- Shumpei Kai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902, Japan
| | - Yui Sakuma
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University 22-2 Seto , Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Takako Mashiko
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University 22-2 Seto , Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University 22-2 Seto , Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
44
|
Bloch WM, Holstein JJ, Hiller W, Clever GH. Morphological Control of Heteroleptic cis- and trans-Pd 2 L 2 L' 2 Cages. Angew Chem Int Ed Engl 2017; 56:8285-8289. [PMID: 28544072 PMCID: PMC5499718 DOI: 10.1002/anie.201702573] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Indexed: 11/25/2022]
Abstract
Control over the integrative self-sorting of metallo-supramolecular assemblies opens up possibilities for introducing increased complexity and function into a single self-assembled architecture. Herein, the relationship between the geometry of three ligand components and morphology of three self-sorted heteroleptic [Pd2 L2 L'2 ]4+ cages is examined. Pd-mediated assembly of two bis-monodentate pyridyl ligands with native bite angles of 75° and 120° affords a cis-[Pd2 L2 L'2 ]4+ cage while the same reaction with two ligands with bite angles of 75° and 60° gives an unprecedented, self-penetrating structural motif; a trans-[Pd2 (anti-L)2 L'2 ]4+ heteroleptic cage with a "doubly bridged figure eight" topology. Each heteroleptic assembly can be formed by cage-to-cage conversion of the homoleptic precursors and morphological control of [Pd2 L2 L'2 ] cages is achieved by selective ligand displacement transformations in a system of three ligands and at least six possible cage products.
Collapse
Affiliation(s)
- Witold M. Bloch
- Fakultät für Chemie und Chemische BiologieTU DortmundOtto-Hahn-Strasse 644227DortmundGermany
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische BiologieTU DortmundOtto-Hahn-Strasse 644227DortmundGermany
| | - Wolf Hiller
- Fakultät für Chemie und Chemische BiologieTU DortmundOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische BiologieTU DortmundOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
45
|
Zhang Z, Wang H, Wang X, Li Y, Song B, Bolarinwa O, Reese RA, Zhang T, Wang XQ, Cai J, Xu B, Wang M, Liu C, Yang HB, Li X. Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules. J Am Chem Soc 2017; 139:8174-8185. [PMID: 28558196 DOI: 10.1021/jacs.7b01326] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the goal of increasing the complexity of metallo-supramolecules, two rhombus star-shaped supramolecular architectures, namely, supersnowflakes, were designed and assembled using multiple 2,2':6',2″-terpyridine (tpy) ligands in a stepwise manner. In the design of multicomponent self-assembly, ditopic and tritopic ligands were bridged through Ru(II) with strong coordination to form metal-organic ligands for the subsequent self-assembly with a hexatopic ligand and Zn(II). The combination of Ru(II)-organic ligands with high stability and Zn(II) ions with weak coordination played a key role in the self-assembly of giant heteroleptic supersnowflakes, which encompassed three types of tpy-based organic ligands and two metal ions. With such a stepwise strategy, the self-sorting of individual building blocks was prevented from forming the undesired assemblies, e.g., small macrocycles and coordination polymers. Furthermore, the intra- and intermolecular dynamic exchange study of two supersnowflakes by NMR and mass spectrometry revealed the remarkable stability of these giant supramolecular complexes.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China.,Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Heng Wang
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Xu Wang
- Department of Chemistry, Texas State University , San Marcos, Texas 78666, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Bo Song
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Olapeju Bolarinwa
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - R Alexander Reese
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Tong Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University , Shanghai 200062, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia , Athens, Georgia 30602, United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun, Jilin 130012, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University , Wuhan, Hubei 430079, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University , Shanghai 200062, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
46
|
Bloch WM, Holstein JJ, Hiller W, Clever GH. Morphologische Kontrolle von heteroleptischen cis
- und trans
-Pd2
L2
L′2
-Käfigen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702573] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Witold M. Bloch
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Wolf Hiller
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
47
|
Kumar V, Pilati T, Terraneo G, Meyer F, Metrangolo P, Resnati G. Halogen bonded Borromean networks by design: topology invariance and metric tuning in a library of multi-component systems. Chem Sci 2017; 8:1801-1810. [PMID: 28694953 PMCID: PMC5477818 DOI: 10.1039/c6sc04478f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
A library of supramolecular anionic networks showing Borromean interpenetration has been prepared by self-assembly of crypt-222, several metal or ammonium halides, and five bis-homologous α,ω-diiodoperfluoroalkanes. Halogen bonding has driven the formation of these anionic networks. Borromean entanglement has been obtained starting from all the four used cations, all the three used anions, but only two of the five used diiodoperfluoroalkanes. As the change of the diiodoperfluoroalkane, the cation, or the anion has a different relative effect on the metrics and bondings of the self-assembled systems, it can be generalized that bonding, namely energetic, features play here a less influential role than metric features in determining the topology of the prepared tetra-component cocrystals. This conclusion may hold true for other multi-component systems and may function as a general heuristic principle when pursuing the preparation of multi-component systems having the same topology but different composition.
Collapse
Affiliation(s)
- Vijith Kumar
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
| | - Tullio Pilati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
| | - Giancarlo Terraneo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
| | - Franck Meyer
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
| | - Pierangelo Metrangolo
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
- VTT-Technical Research Centre of Finland , P. O. Box 1000, FI-02044 VTT , Finland
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab) , Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" , Politecnico di Milano , Via L. Mancinelli 7 , 20131 Milano , Italy .
| |
Collapse
|
48
|
|
49
|
Li XL, Wu J, Zhao L, Shi W, Cheng P, Tang J. End-to-end azido-pinned interlocking lanthanide squares. Chem Commun (Camb) 2017; 53:3026-3029. [DOI: 10.1039/c7cc00048k] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-assembled end-to-end azido-pinned interlocking lanthanide square displays a record energy barrier of 152(4) K among lanthanide azido-bridged SMMs in a zero dc field.
Collapse
Affiliation(s)
- Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Lang Zhao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Wei Shi
- Department of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Peng Cheng
- Department of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
50
|
Baradel N, Mobian P, Khalil G, Henry M. Titanium(iv)-based helicates incorporating the ortho-phenylenediamine ligand: a structural and a computational investigation. Dalton Trans 2017; 46:7594-7602. [DOI: 10.1039/c7dt00912g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report neutral Ti(iv)-based helical architectures formed with the ortho-phenylenediamine ligand and strands bearing 2,2-biphenolato units. Experimental observations are explained through a computational study.
Collapse
Affiliation(s)
- Nathalie Baradel
- Laboratoire de Chimie Moléculaire de l'Etat solide
- UMR 7140
- University of Strasbourg
- Strasbourg
- France
| | - Pierre Mobian
- Laboratoire de Chimie Moléculaire de l'Etat solide
- UMR 7140
- University of Strasbourg
- Strasbourg
- France
| | - Georges Khalil
- Laboratoire de Chimie Moléculaire de l'Etat solide
- UMR 7140
- University of Strasbourg
- Strasbourg
- France
| | - Marc Henry
- Laboratoire de Chimie Moléculaire de l'Etat solide
- UMR 7140
- University of Strasbourg
- Strasbourg
- France
| |
Collapse
|