1
|
Liu J, Zhu Y, Li S, Hu Y, Chen K, Li T, Zhang Y. Benzothiadiazole-Based Ordered Mesoporous Polymer as a Versatile, Metal-Free Heterogeneous Photocatalyst. Chemistry 2024; 30:e202402040. [PMID: 39007169 DOI: 10.1002/chem.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Visible-light active heterogeneous organophotocatalysts have recently gained considerable interest in organic synthetic community. Ordered mesoporous polymers (OMPs) are highly promising as heterogeneous alternative to traditional precious metal/organic dyes-based photocatalysts. Herein, we report the preparation of a benzothiadiazole functionalized OMPs (BT-MPs) through a "bottom-up" strategy. High ordered periodic porosity, large surface area, excellent stability and rational energy-band structures guarantee the high catalytic activity of BT-MPs. As a result, at least six conversions, e. g., the [3+2] cycloaddition of phenols with olefins, the selective oxidation of sulfides, the C-3 thiocyanation of indole and the aminothiocyanation of β-keto ester, could be promoted smoothly by BT-MPs. In addition, BT-MPs was readily recovered with well maintaining its photocatalytic activity and could be reused for at least eight times. This study highlights the potential of exploiting photoactive OMPs as recyclable, robust and metal-free heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Tingyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Guo Y, Wang WD, Li S, Zhu Y, Wang X, Liu X, Zhang Y. A TEMPO-Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chem Asian J 2021; 16:3689-3694. [PMID: 34519415 DOI: 10.1002/asia.202100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
The properties of high stability, periodic porosity, and tunable nature of ordered mesoporous polymers make these materials ideal catalytic nanoreactors. However, their application in organocatalysis has been rarely explored. We report herein for the first time the incorporation of a versatile organocatalyst, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), into the pores of an FDU-type mesoporous polymer via a pore surface engineering strategy. The resulting FDU-15-TEMPO possesses a highly ordered mesoporous organic framework and enhanced stability, and shows excellent catalytic activity in the selective oxidation of alcohols and aerobic oxidative synthesis of 2-substituted benzoxazoles, benzimidazoles and benzothiazoles. Moreover, the catalyst can be easily recovered and reused for up to 7 consecutive cycles.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Esteban N, Ferrer ML, Ania CO, de la Campa JG, Lozano ÁE, Álvarez C, Miguel JA. Porous Organic Polymers Containing Active Metal Centers for Suzuki-Miyaura Heterocoupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56974-56986. [PMID: 33305572 DOI: 10.1021/acsami.0c16184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new generation of confined palladium(II) catalysts covalently attached inside of porous organic polymers (POPs) has been attained. The synthetic approach employed was straightforward, and there was no prerequisite for making any modification of the precursor polymer. First, POP-based catalytic supports were obtained by reacting one symmetric trifunctional aromatic monomer (1,3,5-triphenylbenzene) with two ketones having electron-withdrawing groups (4,5-diazafluoren-9-one, DAFO, and isatin) in superacidic media. The homopolymers and copolymers were made using stoichiometric ratios between the functional groups, and they were obtained with quantitative yields after the optimization of reaction conditions. Moreover, the number of chelating groups (bipyridine moieties) available to bind Pd(II) ions to the catalyst supports was modified using different DAFO/isatin ratios. The resulting amorphous polymers and copolymers showed high thermal stability, above 500 °C, and moderate-high specific surface areas (from 760 to 935 m2 g-1), with high microporosity contribution (from 64 to 77%). Next, POP-supported Pd(II) catalysts were obtained by simple immersion of the catalyst supports in a palladium(II) acetate solution, observing that the metal content was similar to that theoretically expected according to the amount of bipyridine groups present. The catalytic activity of these heterogeneous catalysts was explored for the synthesis of biphenyl and terphenyl compounds, via the Suzuki-Miyaura cross-coupling reaction using a green solvent (ethanol/water), low palladium loads, and aerobic conditions. The findings showed excellent catalytic activity with quantitative product yields. Additionally, the recyclability of the catalysts, by simply washing it with ethanol, was excellent, with a sp2-sp2 coupling yield higher than 95% after five cycles of use. Finally, the feasibility of these catalysts to be employed in tangible organic reactions was assessed. Thus, the synthesis of a bulky compound, 4,4'-dimethoxy-5'-tert-butyl-m-terphenylene, which is a precursor of a thermal rearrangement monomer, was scaled-up to 2 g, with high conversion and 96% yield of the pure product.
Collapse
Affiliation(s)
- Noelia Esteban
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - María L Ferrer
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Conchi O Ania
- CEMHTI CNRS (UPR 3079), University of Orléans, 45071 Orléans, France
| | - José G de la Campa
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ángel E Lozano
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, Universidad de Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Cristina Álvarez
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, Universidad de Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Jesús A Miguel
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| |
Collapse
|
4
|
Wu Q, Gong W, Li G. Porous Organic Polymers with Thiourea Linkages (POP-TUs): Effective and Recyclable Organocatalysts for the Michael Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17861-17869. [PMID: 32208633 DOI: 10.1021/acsami.0c01280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As novel porous organic polymers with thiourea linkages, POP-TUs were successfully synthesized with tris(4-aminophenyl) amine (TAA) and 1,4-phenylene diisothiocyanate (PDT) under different conditions. The as-synthesized POP-TUs possess distinctly different morphological characteristics and can effectively catalyze the Michael reaction of trans-β-nitrostyrenes to diethyl malonate. Particularly, the POP-TU-2-catalyzed Michael reaction can proceed smoothly even using an ultralow catalyst dosage of 0.03 mol %, whose turnover number (TON) and turnover frequency (TOF) can reach up to 2700 and 25 h-1, respectively. Besides, POP-TU-2 also exhibits excellent recyclability and reusability. Only 2% decline in the isolated yield was found after five consecutive runs. This work shows a significant improvement over previously reported thiourea-based catalysts and can offer an effective strategy for developing highly efficient heterogeneous organocatalysts.
Collapse
Affiliation(s)
- Qianqian Wu
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Gong
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangji Li
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Fabrication of Hollow Silica Nanospheres with Ultra-High Acid Density for Efficient Heterogeneous Catalysis. Catalysts 2019. [DOI: 10.3390/catal9050481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hollow silica nanospheres with ultra-high acid density were fabricated successfully via sulfonation of phenyl-functionalized hollow silica nanospheres, which were synthesized through a single micelle (F127 (EO106PO70EO106))-templated method, with phenyltrimethoxysilane and tetramethoxysilane (TMOS) as silane precursors under neutral conditions. The density of sulfonic acid reached as high as 1.97 mmol/g. The characterization results of 31P-NMR using triethylphosphine oxide as a probe molecule suggested that the acid strength of hybrid solid acids could be systematically tuned by tuning the content of sulfonic acid and higher acid density results in stronger acid strength. Attributed to the unique hollow structure and high-acid density, the sulfonic acid-functionalized hollow silica nanospheres exhibited good catalytic performance in the condensation reaction of benzaldehyde with ethylene glycol. Notably, this study found that the catalytic activity was significantly influenced by the acid density and the ultra-high acid loading was beneficial for the activity due to the enhanced acid strength. This novel solid-acid catalyst also showed good recyclability and could be reused for at least 11 runs.
Collapse
|
6
|
Khaledian D, Rostami A, Rouhani S. Magnetic core-shell nanoparticle-supported Sc (III): A novel and robust Lewis acid nanocatalyst for the selective oxidation of sulfides to sulfoxides by H2O2 under solvent-free conditions. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
7
|
Mao Z, Cao L, Zhang F, Zhang F. Microwave-Assisted Rapid Preparation of Mesoporous Phenolic Resin Nanospheres toward Highly Efficient Solid Acid Catalysts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28709-28718. [PMID: 30086220 DOI: 10.1021/acsami.8b10410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel microwave-assisted polymerization and self-assembly protocol was developed to prepare ordered mesoporous phenolic resin (MPRN) with nanospherical morphology for the first time. This unique strategy dramatically saved the synthesis time about 2 days with an energy-efficient way. Owing to its abundant phenyl groups in the framework, it was easily transformed to benzenesulfonic acid-functionalized MPRN (SO3H-MPRN) by simple sulfonation treatment. The obtained SO3H-MPRN sample still possessed a large surface area, two-dimensional hexagonal mesoporous structure, and uniform spherical shape. Importantly, because of its intrinsic organic framework, the pore surface of SO3H-MPRN was hydrophobic. Accordingly, it exhibited the excellent catalytic activity and selectivity in aqueous formaldehyde-participated Prins reaction and water-medium Fischer-indole reaction. On the basis of material characterizations and the control experiments, this remarkable catalytic performance could be ascribed to the synergetic effect derived from its short mesoporous channel and hydrophobic pore surface, which resulted in the decreased reactant diffusion limitation and the reduced water competitive adsorption. Also, it was stable in water because of the periodically arranged acid species in the resin framework and thus was easily recycled and used repetitively for at least five times.
Collapse
Affiliation(s)
- Zhan Mao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Linqing Cao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Fei Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Fang Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
8
|
Malinowski M, Rowicki T, Guzik P, Wielechowska M, Sas W. Synthesis of Carbohydrate Mimetics by Intramolecular 1,3-Dipolar Cycloaddition of N
-(3-Alkenyl)nitrones Derived from Unprotected d
-Aldopentoses. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Rowicki
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Guzik
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Monika Wielechowska
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Wojciech Sas
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
9
|
Xu W, Ollevier T, Kleitz F. Iron-Modified Mesoporous Silica as an Efficient Solid Lewis Acid Catalyst for the Mukaiyama Aldol Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03485] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wan Xu
- Département
de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Thierry Ollevier
- Département
de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Freddy Kleitz
- Département
de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Inorganic Chemistry-Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
10
|
Zhang F, Liang C, Wang Z, Li H. Efficient Mukaiyama-Aldol Reaction with Aqueous Formaldehyde on a Hydrophobic Mesoporous Lewis Acid Polymer. ChemCatChem 2018. [DOI: 10.1002/cctc.201701426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fang Zhang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; Shanghai 200234 P.R. China
| | - Chao Liang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; Shanghai 200234 P.R. China
| | - Zhen Wang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; Shanghai 200234 P.R. China
| | - Hexing Li
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials; Shanghai Normal University; Shanghai 200234 P.R. China
| |
Collapse
|
11
|
Pirouzmand M, Gharehbaba AM, Ghasemi Z, Azizi Khaaje S. [CTA]Fe/MCM-41: An efficient and reusable catalyst for green synthesis of xanthene derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
12
|
Ultrasensitive chemiluminescence assay for the lung cancer biomarker cytokeratin 21-1 via a dual amplification scheme based on the use of encoded gold nanoparticles and a toehold-mediated strand displacement reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2430-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Jiang B, Li C, Dag Ö, Abe H, Takei T, Imai T, Hossain MSA, Islam MT, Wood K, Henzie J, Yamauchi Y. Mesoporous metallic rhodium nanoparticles. Nat Commun 2017; 8:15581. [PMID: 28524873 PMCID: PMC5454530 DOI: 10.1038/ncomms15581] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ∼2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2. Mesoporous noble metal nanostructures offer great promise in catalytic applications. Here, Yamauchi and co-workers synthesize mesoporous rhodium nanoparticles using polymeric micelle templates, and report appreciable activities for methanol oxidation and NO remediation.
Collapse
Affiliation(s)
- Bo Jiang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Hideki Abe
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tsubasa Imai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Md Shahriar A Hossain
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Australian Institute for Innovative Materials (AIIM), University of Wollongong (UOW), Squires Way, North Wollongong, New South Wales 2500, Australia
| | - Md Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, New South Wales 2234, Australia
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.,Australian Institute for Innovative Materials (AIIM), University of Wollongong (UOW), Squires Way, North Wollongong, New South Wales 2500, Australia
| |
Collapse
|
14
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
15
|
Malinowski M, Rowicki T, Guzik P, Wielechowska M, Sobiepanek A, Sas W. Diversity-Oriented Synthesis and Biological Evaluation of Iminosugars from Unprotected 2-Deoxy-d
-ribose. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maciej Malinowski
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Rowicki
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Guzik
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Monika Wielechowska
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Anna Sobiepanek
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| | - Wojciech Sas
- Faculty of Chemistry; Warsaw University of Technology; ul. Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
16
|
Pan J, Mao Y, Gao H, Xiong Q, Qiu F, Zhang T, Niu X. Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate. Carbohydr Polym 2016; 143:212-22. [DOI: 10.1016/j.carbpol.2016.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/28/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
|
17
|
Zhang Y, Chen Y, Shen Y, Yan Y, Pan J, Shi W, Yu L. Hierarchically Macro-/Mesoporous Polymer Foam as an Enhanced and Recyclable Catalyst System for the Sustainable Synthesis of 5-Hydroxymethylfurfural from Renewable Carbohydrates. Chempluschem 2015; 81:108-118. [DOI: 10.1002/cplu.201500357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Yunlei Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yao Chen
- School of the Environment and Safety Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yating Shen
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| | - Longbao Yu
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301# Zhenjiang 212013 P. R. China
| |
Collapse
|
18
|
Zheng P, Liu T, Zhang J, Zhang L, Liu Y, Huang J, Guo S. Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. RSC Adv 2015. [DOI: 10.1039/c5ra03482e] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sweet potato is produced abundantly around the word and its derived nano-carbon delivers high capacity as anode for LIBs, which should satisfy the increasing need for anodes for LIBs.
Collapse
Affiliation(s)
- Peng Zheng
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Ting Liu
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Jinzheng Zhang
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Lifeng Zhang
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Yi Liu
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Jianfeng Huang
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
| | - Shouwu Guo
- School of Materials Science and Engineering
- Shaanxi University of Science and Technology
- Xian 710021
- P. R. China
- Department of Electronic Engineering
| |
Collapse
|