1
|
Chen J, Sardjan AS, de Roo CM, Di Berto Mancini M, Draksharapu A, Angelone D, Hage R, Swart M, Browne WR. Generation of [(N4Py)Fe(IV)═O] 2+ through Heterolytic O-O Bond Cleavage in [(N4Py)Fe(II)(OOH)] . Inorg Chem 2025; 64:9408-9417. [PMID: 40315350 DOI: 10.1021/acs.inorgchem.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
High-valent Fe(IV) oxido species are important intermediates in the catalyzed oxidation of organic compounds by nonheme iron enzymes. These species can be generated in biomimetic model complexes directly using oxygen atom transfer oxidants, e.g., PhIO and ClO-. Their formation by heterolysis of the O-O bond of putative Fe(II)-OOH species (formed from Fe(II) precursors and H2O2) has scarcely been observed. Reaction with near-stoichiometric H2O2 typically shows initial formation of Fe(III)-OH and Fe(III)-OOH species, with homolytic O-O bond cleavage thereafter proposed to generate the Fe(IV)═O state. Here, we show that [(N4Py)Fe(IV)═O]2+ (where N4Py = 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) is formed with substoichiometric H2O2 in methanol through heterolytic cleavage of the O-O bond of an Fe(II)-OOH intermediate. Temperature-dependent studies show that the ligand exchange reactions preceding formation of the Fe(II)-OOH species and subsequent comproportionations limit the yield of the Fe(IV)═O species. Furthermore, comproportionation proceeds through hydrogen atom transfer from [(N4Py)Fe(II)(OH2)]2+ to [(N4Py)Fe(IV)═O]2+. These data rationalize the extent of the initial conversion of [(N4Py)Fe(II)(CH3CN)]2+ to [(N4Py)Fe(IV)═O]2+ under conditions relevant to catalytic oxidations. The heterolytic pathway to formation of [(N4Py)Fe(IV)═O]2+ is a key step in the development of iron(II) oxidation catalysts that can cycle between the Fe(II) and Fe(IV)═O states, avoiding nonselective reactive oxygen species.
Collapse
Affiliation(s)
- Juan Chen
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Andy S Sardjan
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - C Maurits de Roo
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Marika Di Berto Mancini
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Apparao Draksharapu
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Davide Angelone
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Ronald Hage
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Marcel Swart
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
- Institut de Quimica Computacional i Catalisi (IQCC), Departament de Quimica, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Zhao N, Li S, Wu H, Wei D, Pu N, Wang K, Liu Y, Tao Y, Song Z. Ferroptosis: An Energetic Villain of Age-Related Macular Degeneration. Biomedicines 2025; 13:986. [PMID: 40299661 PMCID: PMC12024642 DOI: 10.3390/biomedicines13040986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Iron homeostasis plays an important role in maintaining cellular homeostasis; however, excessive iron can promote the production of reactive oxygen species (ROS). Ferroptosis is iron-dependent programmed cell death that is characterized by excessive iron accumulation, elevated lipid peroxides, and the overproduction of ROS. The maintenance of iron homeostasis is contingent upon the activity of the transferrin receptor (TfR), ferritin (Ft), and ferroportin (FPn). In the retina, iron accumulation and lipid peroxidation can contribute to the development of age-related macular degeneration (AMD). This phenomenon can be explained by the occurrence of the Fenton reaction, in which the interaction between divalent iron and hydrogen peroxide leads to the generation of highly reactive hydroxyl radicals. The hydroxyl radicals exhibit a propensity to attack proteins, lipids, nucleic acids, and carbohydrates, thereby instigating oxidative damage and promoting lipid peroxidation. Ultimately, these processes culminate in cell death and retinal degeneration. In this context, a comprehensive understanding of the exact mechanisms underlying ferroptosis may hold significant importance for developing therapeutic interventions. This review summarizes recent findings on iron metabolism, cellular ferroptosis, and lipid metabolism in the aging retina. We also introduce developments in the therapeutic strategies using iron chelating agents. Further refinements of these knowledges would deepen our comprehension of the pathophysiology of AMD and advance the clinical management of degenerative retinopathy. A comprehensive search strategy was employed to identify relevant studies on the role of ferroptosis in AMD. We performed systematic searches of the PubMed and Web of Science electronic databases from inception to the current date. The keywords used in the search included "ferroptosis", "AMD", "age-related macular degeneration", "iron metabolism", "oxidative stress", and "ferroptosis pathways". Peer-reviewed articles, including original research, reviews, meta-analyses, and clinical studies, were included in this paper, with a focus on the molecular mechanisms of ferroptosis in AMDs. Studies not directly related to ferroptosis, iron metabolism, or oxidative stress in the context of AMD were excluded. Furthermore, articles that lacked sufficient data or were not peer-reviewed (e.g., conference abstracts, editorials, or opinion pieces) were not considered.
Collapse
Affiliation(s)
- Na Zhao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Hao Wu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Ning Pu
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (H.W.); (D.W.); (N.P.)
| | - Kexin Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Yashuang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People’s Hospital, Zhengzhou 450003, China; (N.Z.); (K.W.); (Y.L.)
| |
Collapse
|
3
|
Zhang Y, Yu H, Liu G, Guo H, Yan S, Han L, Jin X, Luo Q, Wang L. Nano boron carbide effectively boost Fenton-like performance of hematite mediated systems: Roles of hematite exposed facets and synergistic catalysis between Fe and B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125050. [PMID: 39369866 DOI: 10.1016/j.envpol.2024.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The inherent properties of exposed facets of iron minerals played key roles in heterogeneous reactions at the mineral interface, and the addition of co-catalysts has been elucidated to further enhance the reactions for contaminants degradation. Here, synergistic Fenton-like catalytic reactivity of different hematite dominant exposed facets ({001}, {012}, {100}, and {113}) with nano boron carbide (B4C) was revealed. In 5 h, as compared with the cumulative •OH in the B4C/H2O2 system (96.9 μM), while that in the {001}/B4C/H2O2 system was decreased by 19.6%, those in the {012}/B4C/H2O2, {100}/B4C/H2O2, and {113}/B4C/H2O2 systems were increased by 53.8%, 75.9%, and 84.0%, respectively. Significantly, {113}/B4C/H2O2 system exhibited strong capability for degradation of a broad spectrum of organic pollutants, including typical phenol, endocrine disruptor (bisphenol A), antibiotic (sulfanilamide), dyes (Rhodamine B and methylene blue), and pesticide (atrazine). During the Fenton-like reactions, higher synergy factor, Fe(III)/Fe(II) cycling rate, and amount of Fe-O-B bond in the {113}/B4C/H2O2 system were shown than those in other systems, thus exhibiting its desirable catalytic performance for •OH production and pollutants oxidation. Iron species and X-ray photoelectron spectroscopy (XPS) analyses indicated that B-B bond and interfacial suboxide boron (e.g., B-O) could provide electrons to facilitate Fe(III) reduction for boosting the Fe(III)/Fe(II) cycling. Density functional theory (DFT) results demonstrated the formation of Fe-O-B bond on hematite {113}, {100}, and {012} facets, which were beneficial to the breakage of O-O bond of bound H2O2 molecule and thus improved the generation of •OH. This study emphasized the essential role of B4C in developing tailored hematite facets as a contaminant remediation substrate, and provided important insights into the design of efficient heterogeneous Fenton-like systems.
Collapse
Affiliation(s)
- Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110003, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Xinxin Jin
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Qing Luo
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110003, China
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China.
| |
Collapse
|
4
|
Auberger P, Favreau C, Savy C, Jacquel A, Robert G. Emerging role of glutathione peroxidase 4 in myeloid cell lineage development and acute myeloid leukemia. Cell Mol Biol Lett 2024; 29:98. [PMID: 38977956 PMCID: PMC11229210 DOI: 10.1186/s11658-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.
Collapse
Affiliation(s)
- Patrick Auberger
- University of Nice Cote d'Azur (UniCA), Nice, France.
- Mediterranean Centre for Molecular Medicine, C3M, Inserm U1065, Team 2 "Innovative Therapies in Myeloid Leukemia", Nice, France.
| | | | - Coline Savy
- University of Nice Cote d'Azur (UniCA), Nice, France
- Mediterranean Centre for Molecular Medicine, C3M, Inserm U1065, Team 2 "Innovative Therapies in Myeloid Leukemia", Nice, France
| | - Arnaud Jacquel
- University of Nice Cote d'Azur (UniCA), Nice, France
- Mediterranean Centre for Molecular Medicine, C3M, Inserm U1065, Team 2 "Innovative Therapies in Myeloid Leukemia", Nice, France
| | - Guillaume Robert
- University of Nice Cote d'Azur (UniCA), Nice, France.
- Mediterranean Centre for Molecular Medicine, C3M, Inserm U1065, Team 2 "Innovative Therapies in Myeloid Leukemia", Nice, France.
| |
Collapse
|
5
|
Su Y, Liu Z, Xie K, Ren Y, Li C, Chen W. Ferroptosis: A Novel Type of Cell Death in Male Reproduction. Genes (Basel) 2022; 14:genes14010043. [PMID: 36672785 PMCID: PMC9858973 DOI: 10.3390/genes14010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ferroptosis, an iron-dependent type of regulated cell death, is triggered by the accumulation of lethal lipid peroxides. Due to its potential in exploring disease progression and highly targeted therapies, it is still a widely discussed topic nowadays. In recent studies, it was found that ferroptosis was induced when testicular tissue was exposed to some high-risk factors, such as cadmium (Cd), busulfan, and smoking accompanied by a variety of reproductive damage characteristics, including changes in the specific morphology and ferroptosis-related features. In this literature-based review, we summarize the related mechanisms of ferroptosis and elaborate upon its relationship network in the male reproductive system in terms of three significant events: the abnormal iron metabolism, dysregulation of the Cyst(e)ine/GSH/GPX4 axis, and lipid peroxidation. It is meaningful to deeply explore the relationship between ferroptosis and the male reproductive system, which may provide suggestions regarding pristine therapeutic targets and novel drugs.
Collapse
Affiliation(s)
- Yanjing Su
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zelan Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Keyu Xie
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yingxin Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Clinical Medicine, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Nursing, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| |
Collapse
|
6
|
Supramolecular photocatalyst of perylene bisimide decorated with α-Fe2O3: Efficient photo-Fenton degradation of organic pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sulfur ligated oxoiron(IV) centre in fenton-like reaction: Theoretical postulation and experimental verification. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A, Zhou D. Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol 2022; 12:989896. [PMID: 36249003 PMCID: PMC9557197 DOI: 10.3389/fonc.2022.989896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a regulatory form of iron-dependent cell death caused by the accumulation of lipid-based reactive oxygen species (ROS) and differs from apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the susceptibility of tumor cells to ferroptosis affects prognosis and is associated with complex effects. Gliomas are the most common primary intracranial tumors, accounting for disease in 81% of patients with malignant brain tumors. An increasing number of studies have revealed the particular characteristics of iron metabolism in glioma cells. Therefore, agents that target a wide range of molecules involved in ferroptosis may regulate this process and enhance glioma treatment. Here, we review the underlying mechanisms of ferroptosis and summarize the potential therapeutic options for targeting ferroptosis in glioma.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| |
Collapse
|
9
|
Bohn A, Sénéchal‐David K, Rebilly J, Herrero C, Leibl W, Anxolabéhère‐Mallart E, Banse F. Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex. Chemistry 2022; 28:e202201600. [PMID: 35735122 PMCID: PMC9804275 DOI: 10.1002/chem.202201600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/05/2023]
Abstract
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEACNRS91198Gif-sur-YvetteFrance
| | | | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
10
|
Wang B, Zhang X, Fang W, Rovira C, Shaik S. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Acc Chem Res 2022; 55:2280-2290. [PMID: 35926175 DOI: 10.1021/acs.accounts.2c00304] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This Account describes the manner whereby nature controls the Fenton-type reaction of O-O homolysis of hydrogen peroxide and harnesses it to carry out various useful oxidative transformations in metalloenzymes. H2O2 acts as the cosubstrate for the heme-dependent peroxidases, P450BM3, P450SPα, P450BSβ, and the P450 decarboxylase OleT, as well as the nonheme enzymes HppE and the copper-dependent lytic polysaccharide monooxygenases (LPMOs). Whereas heme peroxidases use the Poulos-Kraut heterolytic mechanism for H2O2 activation, some heme enzymes prefer the alternative Fenton-type mechanism, which produces •OH radical intermediates. The fate of the •OH radical is controlled by the protein environment, using tight H-bonding networks around H2O2. The so-generated •OH radical is constrained by the surrounding H-bonding interactions, the orientation of which is targeted to perform H-abstraction from the Fe(III)-OH group and thereby leading to the formation of the active species, called Compound I (Cpd I), Por+•Fe(IV)═O, which performs oxidation of the substrate. Alternatively, for the nonheme HppE enzyme, the O-O homolysis catalyzed by the resting state Fe(II) generates an Fe(III)-OH species that effectively constrains the •OH radical species by a tight H-bonding network. The so-formed H-bonded •OH radical acts directly as the oxidant, since it is oriented to perform H-abstraction from the C-H bond of the substrate (S)-2-HPP. The Fenton-type H2O2 activation is strongly suggested by computations to occur also in copper-dependent LPMOs and pMMO. In LPMOs, the Cu(I)-catalyzed O-O homolysis of the H2O2 cosubstrate generates an •OH radical that abstracts a hydrogen atom from Cu(II)-OH and forms thereby the active species of the enzyme, Cu(II)-O•. Such Fenton-type O-O activation can be shared by both the O2-dependent activations of LPMOs and pMMOs, in which the O2 cosubstrate may be reduced to H2O2 by external reductants. Our studies show that, generally, the H2O2 activation is highly dependent on the protein environment, as well as on the presence/absence of substrates. Since H2O2 is a highly flexible and hydrophilic molecule, the absence of suitable substrates may lead to unproductive binding or even to the release of H2O2 from the active site, as has been suggested in P450cam and LPMOs, whereas the presence of the substrate seems to play a role in steering a Fenton-type H2O2 activation. In the absence of a substrate, the hydrophilic active site of P450BM3 disfavors the binding and activation of H2O2 and protects thereby the enzyme from the damage by the Fenton reaction. Due to the distinct coordination and reaction environment, the Fenton-type H2O2 activation mechanism by enzymes differs from the reaction in synthetic systems. In nonenzymatic reactions, the H-bonding networks are quite dynamic and flexible and the reactivity of H2O2 is not strategically constrained as in the enzymatic environment. As such, our Account describes the controlled Fenton-type mechanism in metalloenzymes, and the role of the protein environment in constraining the •OH radical against oxidative damage, while directing it to perform useful oxidative transformations.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
11
|
Chen Y, Chen G, Man WL. Effect of Alkyl Group on Aerobic Peroxidation of Hydrocarbons Catalyzed by Cobalt(III) Alkylperoxo Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunzhou Chen
- Hong Kong Baptist University Chemistry HONG KONG
| | - Gui Chen
- Dongguan University of Technology School of Environment and Civil Engineering HONG KONG
| | - Wai-Lun Man
- Hong Kong Baptist University Chemistry Waterloo RoadKowloong Tong 0000 Hong Kong HONG KONG
| |
Collapse
|
12
|
Jiang J, Zhao Z, Gao J, Li T, Li M, Zhou D, Dong S. Nitrogen Vacancy-Modulated Peroxymonosulfate Nonradical Activation for Organic Contaminant Removal via High-Valent Cobalt-Oxo Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5611-5619. [PMID: 35442647 DOI: 10.1021/acs.est.2c01913] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid generation of high-valent cobalt-oxo species (Co(IV)═O) for the removal of organic contaminants has been challenging because of the low conversion efficiency of Co(III)/Co(II) and the high activation energy barrier of the Co(II)-oxidant complex. Herein, we introduced nitrogen (N) vacancies into graphite carbon nitride imbedded with cobalt carbonate (CCH/CN-Vn) in a peroxymonosulfate (PMS)/visible light system to break the limitations of a conventional two-electron transfer path. These N vacancies enhanced the electron distribution of the Co 3d orbital and lowered the energy barrier to cleave the O-O bond of PMS in the Co(II)-PMS complex, achieving the modulation of major active species from 1O2 to Co(IV)═O. The developed synergistic system that exhibited adsorption and oxidation showed remarkable selectivity and contaminant removal performance in inorganic (Cl-, NO3-, HCO3-, and HPO4-) organic (HA) and even practical aqueous matrices (tap water and secondary effluent). This study provides a novel mechanistic perspective to modulate the nonradical path for refractory contaminant treatment via defect engineering.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Ziqing Zhao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Jiaying Gao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tianren Li
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Mingyu Li
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Dandan Zhou
- School of Environment, Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, Jilin 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
13
|
Cao X, Song H, Li XX, Zhao Y, Qiao Q, Wang Y. Which is the real oxidant in the competitive ligand self-hydroxylation and substrate oxidation, a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one? Dalton Trans 2022; 51:7571-7580. [DOI: 10.1039/d2dt00797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonheme iron(II)-hydroperoxo species (FeII-(η2-OOH)) 1 and the concomitant oxo-iron(IV)-hydroxyl one 2 are proposed as the key intermediates of a large class of 2-oxoglutarate dependent dioxygenases (e.g., isopenicillin N synthase). Extensive...
Collapse
|
14
|
Malik DD, Chandra A, Seo MS, Lee YM, Farquhar ER, Mebs S, Dau H, Ray K, Nam W. Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(ii) center. Dalton Trans 2021; 50:11889-11898. [PMID: 34373886 PMCID: PMC8499697 DOI: 10.1039/d1dt01996a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear nonheme cobalt(ii) complex, [(TMG3tren)CoII(OTf)](OTf) (1), activates dioxygen in the presence of hydrogen atom donor substrates, such as tetrahydrofuran and cyclohexene, resulting in the generation of a cobalt(ii)-alkylperoxide intermediate (2), which then converts to the previously reported cobalt(iv)-oxo complex, [(TMG3tren)CoIV(O)]2+-(Sc(OTf)3)n (3), in >90% yield upon addition of a redox-inactive metal ion, Sc(OTf)3. Intermediates 2 and 3 represent the cobalt analogues of the proposed iron(ii)-alkylperoxide precursor that converts to an iron(iv)-oxo intermediate via O-O bond heterolysis in pterin-dependent nonheme iron oxygenases. In reactivity studies, 2 shows an amphoteric reactivity in electrophilic and nucleophilic reactions, whereas 3 is an electrophilic oxidant. To the best of our knowledge, the present study reports the first example showing the generation of cobalt-oxygen intermediates by activating dioxygen at a cobalt(ii) center and the reactivities of the cobalt-oxygen intermediates in oxidation reaction.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
He Y, Jin X, Guo S, Zhao H, Liu Y, Ju H. Conjugated Polymer-Ferrocence Nanoparticle as an NIR-II Light Powered Nanoamplifier to Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31452-31461. [PMID: 34197086 DOI: 10.1021/acsami.1c06613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) is a promising therapeutic modality with transition metal ions and endogenous H2O2 as reagents, but its efficiency is impaired by low endogenous H2O2 levels and nonregeneration of metal ions. Most intracellular H2O2 supplement strategies use oxidases and are intensively dependent on oxygen participation. The hypoxia microenvironments of solid tumors weaken their performance. Here, we develop a near-infrared II light powered nanoamplifier to improve the local oxygen level and to enhance CDT. The nanoamplifier CPNP-Fc/Pt consists of ferrocene (Fc)- and cisplatin prodrug (Pt(IV))-modified conjugated polymer nanoparticles (CPNPs). CPNP has a donor-acceptor structure and demonstrates a good photothermal effect under 1064 nm light irradiation, which accelerates blood flow and efficiently elevates the local oxygen content. In response to intracellular glutathione, Pt(II) is released from CPNP-Fc/Pt and triggers enzymatic cascade reactions with nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and superoxide dismutase to convert oxygen into H2O2. The enhanced oxygen level results in efficient intracellular H2O2 supply. Fc is reacted with H2O2 and converted to Fc+ via the Fenton reaction, with the generation of hydroxyl radicals for CDT. Unlike free metal ions, the Fe(III) in Fc+ is reduced to Fe(II) by intracellular NAD(P)H, which achieves the regeneration of Fc. The sufficient intracellular H2O2 supply and efficient Fc regeneration effectively enhance the Fenton reaction and demonstrate good in vivo CDT results with tumor growth suppression. This design offers a promising strategy to enhance CDT efficiency in the hypoxia microenvironment of solid tumors.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medic, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Jana RD, Das A, Paine TK. Enhancing Chemo- and Stereoselectivity in C-H Bond Oxygenation with H 2O 2 by Nonheme High-Spin Iron Catalysts: The Role of Lewis Acid and Multimetal Centers. Inorg Chem 2021; 60:5969-5979. [PMID: 33784082 DOI: 10.1021/acs.inorgchem.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
17
|
Castillo CE, Gamba I, Vicens L, Clémancey M, Latour JM, Costas M, Basallote MG. Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry 2021; 27:4946-4954. [PMID: 33350013 DOI: 10.1002/chem.202004921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/08/2022]
Abstract
Oxoiron(IV) complexes bearing tetradentate ligands have been extensively studied as models for the active oxidants in non-heme iron-dependent enzymes. These species are commonly generated by oxidation of their ferrous precursors. The mechanisms of these reactions have seldom been investigated. In this work, the reaction kinetics of complexes [FeII (CH3 CN)2 L](SbF6 )2 ([1](SbF6 )2 and [2](SbF6 )2 ) and [FeII (CF3 SO3 )2 L] ([1](OTf)2 and [2](OTf)2 (1, L=Me,H Pytacn; 2, L=nP,H Pytacn; R,R' Pytacn=1-[(6-R'-2-pyridyl)methyl]-4,7- di-R-1,4,7-triazacyclononane) with Bu4 NIO4 to form the corresponding [FeIV (O)(CH3 CN)L]2+ (3, L=Me,H Pytacn; 4, L=nP,H Pytacn) species was studied in acetonitrile/acetone at low temperatures. The reactions occur in a single kinetic step with activation parameters independent of the nature of the anion and similar to those obtained for the substitution reaction with Cl- as entering ligand, which indicates that formation of [FeIV (O)(CH3 CN)L]2+ is kinetically controlled by substitution in the starting complex to form [FeII (IO4 )(CH3 CN)L]+ intermediates that are converted rapidly to oxo complexes 3 and 4. The kinetics of the reaction is strongly dependent on the spin state of the starting complex. A detailed analysis of the magnetic susceptibility and kinetic data for the triflate complexes reveals that the experimental values of the activation parameters for both complexes are the result of partial compensation of the contributions from the thermodynamic parameters for the spin-crossover equilibrium and the activation parameters for substitution. The observation of these opposite and compensating effects by modifying the steric hindrance at the ligand illustrates so far unconsidered factors governing the mechanism of oxygen atom transfer leading to high-valent iron oxo species.
Collapse
Affiliation(s)
- Carmen E Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| | - Ilaria Gamba
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Laia Vicens
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Martin Clémancey
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Jean-Marc Latour
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| |
Collapse
|
18
|
Yu J, Lai W. Mechanistic insights into dioxygen activation by a manganese corrole complex: a broken-symmetry DFT study. RSC Adv 2021; 11:24852-24861. [PMID: 35481047 PMCID: PMC9036905 DOI: 10.1039/d1ra02722k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The Mn–oxygen species have been implicated as key intermediates in various Mn-mediated oxidation reactions. However, artificial oxidants were often used for the synthesis of the Mn–oxygen intermediates. Remarkably, the Mn(v)–oxo and Mn(iv)–peroxo species have been observed in the activation of O2 by Mn(iii) corroles in the presence of base (OH−) and hydrogen donors. In this work, density functional theory methods were used to get insight into the mechanism of dioxygen activation and formation of Mn(v)–oxo. The results demonstrated that the dioxygen cannot bind to Mn without the axial OH− ligand. Upon the addition of the axial OH− ligand, the dioxygen can bind to Mn in an end-on fashion to give the Mn(iv)–superoxo species. The hydrogen atom transfer from the hydrogen donor (substrate) to the Mn(iv)–superoxo species is the rate-limiting step, having a high reaction barrier and a large endothermicity. Subsequently, the O–C bond formation is concerted with an electron transfer from the substrate radical to the Mn and a proton transfer from the hydroperoxo moiety to the nearby N atom of the corrole ring, generating an alkylperoxo Mn(iii) complex. The alkylperoxo O–O bond cleavage affords a Mn(v)–oxo complex and a hydroxylated substrate. This novel mechanism for the Mn(v)–oxo formation via an alkylperoxo Mn(iii) intermediate gives insight into the O–O bond activation by manganese complexes. DFT calculations revealed a novel mechanism for the formation of Mn(v)–oxo in the dioxygen activation by a Mn(iii) corrole complex involving a Mn(iii)–alkylperoxo intermediate.![]()
Collapse
Affiliation(s)
- Jiangfeng Yu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenzhen Lai
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|
19
|
2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63602-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Farnetti E, Crotti C, Zangrando E. Iron complexes with polydentate phosphines as unusual catalysts for alcohol oxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5080843. [PMID: 31737171 PMCID: PMC6815535 DOI: 10.1155/2019/5080843] [Citation(s) in RCA: 1165] [Impact Index Per Article: 194.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species- (ROS-) induced lipid peroxidation plays a critical role in cell death including apoptosis, autophagy, and ferroptosis. This fundamental and conserved mechanism is based on an excess of ROS which attacks biomembranes, propagates lipid peroxidation chain reactions, and subsequently induces different types of cell death. A highly evolved sophisticated antioxidant system exists that acts to protect the cells from oxidative damage. In this review, we discussed how ROS propagate lipid peroxidation chain reactions and how the products of lipid peroxidation initiate apoptosis and autophagy in current models. We also discussed the mechanism of lipid peroxidation during ferroptosis, and we summarized lipid peroxidation in pathological conditions of critical illness. We aim to bring a more global and integrative sight to know how different ROS-induced lipid peroxidation occurs among apoptosis, autophagy, and ferroptosis.
Collapse
Affiliation(s)
- Lian-Jiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Jia-Hao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Hernando Gomez
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, 15223 PA, USA
| | - Raghavan Murugan
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, 15223 PA, USA
| | - Xing Hong
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Dongxue Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Fan Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Zhi-Yong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, 15223 PA, USA
| |
Collapse
|
22
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C-H and C=C Bonds by a Mononuclear Nonheme High-Spin Iron(III)-Alkylperoxo Species. Angew Chem Int Ed Engl 2019; 58:12534-12539. [PMID: 31246329 DOI: 10.1002/anie.201906978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The reactivity of a mononuclear high-spin iron(III)-alkylperoxo intermediate [FeIII (t-BuLUrea )(OOCm)(OH2 )]2+ (2), generated from [FeII (t-BuLUrea )(H2 O)(OTf)](OTf) (1) [t-BuLUrea =1,1'-(((pyridin-2-ylmethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C-H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C-H bonds of aliphatic substrates with high chemo- and stereoselectivity in the presence of 2,6-lutidine. While 2 itself is a sluggish oxidant, 2,6-lutidine assists the heterolytic O-O bond cleavage of the metal-bound alkylperoxo, giving rise to a reactive metal-based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Satadal Paul
- Darjeeling Polytechnic, Kurseong, Darjeeling, 734203, India
| | - Teresa Corona
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
23
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Satadal Paul
- Darjeeling Polytechnic Kurseong Darjeeling 734203 India
| | - Teresa Corona
- Humboldt-Universität zu BerlinDepartment of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
24
|
Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W. Size-Tunable Assemblies Based on Ferrocene-Containing DNA Polymers for Spatially Uniform Penetration. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Engelmann X, Malik DD, Corona T, Warm K, Farquhar ER, Swart M, Nam W, Ray K. Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xenia Engelmann
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deesha D. Malik
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120-750 Korea
| | - Teresa Corona
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Katrin Warm
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Erik R. Farquhar
- Case Center for Synchrotron Biosciences, NSLS-IIBrookhaven National Laboratory Upton NY 11973 USA
| | - Marcel Swart
- ICREA Pg. Lluis Companys 23 08010 Barcelona Spain
- IQCCUniversitat de Girona Campus Montilivi 17003 Girona Spain
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120-750 Korea
| | - Kallol Ray
- Department of ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
26
|
Engelmann X, Malik DD, Corona T, Warm K, Farquhar ER, Swart M, Nam W, Ray K. Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angew Chem Int Ed Engl 2019; 58:4012-4016. [PMID: 30663826 DOI: 10.1002/anie.201812758] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Indexed: 11/08/2022]
Abstract
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV (O)(CH3 CN)]2+ (2; cyclam=1,4,8,11-tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII ]2+ with aqueous hydrogen peroxide (H2 O2 ) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo- and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII ]2+ and H2 O2 . In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high-yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.
Collapse
Affiliation(s)
- Xenia Engelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Teresa Corona
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Katrin Warm
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Erik R Farquhar
- Case Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Marcel Swart
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.,IQCC, Universitat de Girona, Campus Montilivi, 17003, Girona, Spain
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
27
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an FeIV
O or an FeIII
OOH Intermediate From Iron(II) and H2
O2
: Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| |
Collapse
|
28
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an Fe IV O or an Fe III OOH Intermediate From Iron(II) and H 2 O 2 : Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018; 58:854-858. [PMID: 30485630 DOI: 10.1002/anie.201812724] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 11/06/2022]
Abstract
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2 O2 from the usual formation of FeIII species towards the selective generation of an FeIV -oxo intermediate. The FeIV -oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable-temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O-O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII -H2 O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O-O cleavage immediately followed by a proton-coupled electron transfer (PCET) that leads to the formation of the FeIV -oxo and release of water through a concerted mechanism.
Collapse
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| |
Collapse
|
29
|
Microwave-assisted green oxidation of alcohols with hydrogen peroxide catalyzed by iron complexes with nitrogen ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Tseng TH, Chen PPY. A Switch from Mechanistic Competition Mediated by a Combination of Temperature and Concentration Effects in the Oxidation Reaction of [Fe II (N4Py/TPA)](OTf) 2. Chemistry 2018; 24:11568-11572. [PMID: 29889323 DOI: 10.1002/chem.201801028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/03/2018] [Indexed: 01/23/2023]
Abstract
The formation of [(N4Py)FeIV =O]2+ species was accomplished by the reaction of [FeII (N4Py)]2+ with 20 equivalents of tBuO2 H (TBHP, 70 % in H2 O). The temperature, [FeII (N4Py)]2+ -concentration and H2 O-concentration in anhydrous TBHP (5.5 m in decane) dependences of its yields and rates were analyzed to indicate that the proton migration from [(N4Py)FeII -HOOtBu]2+ to [(N4Py)FeII -OO⊕ HtBu]2+ is the rate-determining step followed by rapid heterolytic O-O bond cleavage of FeII -OO⊕ HtBu to FeIV =O complex. The formation of [(TPA)FeIV =O]2+ is thus revealed to be greatly enhanced by the similar oxidation of [FeII (TPA)]2+ (40 mm) with 10 equivalents of tBuO2 H at -45 °C. These results demonstrate the heterolytic O-O bond cleavage of FeII -alkylperoxo species to form FeIV =O originating from the direct reaction of iron(II) complexes/TBHP. The observation of concentration and temperature effects leads to the hypothesis that O-O bond homolysis is a kinetic control pathway and O-O bond heterolysis is a thermodynamic control pathway.
Collapse
Affiliation(s)
- Tzu-Hsien Tseng
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| | - Peter Ping-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| |
Collapse
|
31
|
Serrano-Plana J, Acuña-Parés F, Dantignana V, Oloo WN, Castillo E, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Basallote MG, Luis JM, Que L, Costas M, Company A. Acid-Triggered O-O Bond Heterolysis of a Nonheme Fe III (OOH) Species for the Stereospecific Hydroxylation of Strong C-H Bonds. Chemistry 2018; 24:5331-5340. [PMID: 29193378 DOI: 10.1002/chem.201704851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/11/2022]
Abstract
A novel hydroperoxoiron(III) species [FeIII (OOH)(MeCN)(PyNMe3 )]2+ (3) has been generated by reaction of its ferrous precursor [FeII (CF3 SO3 )2 (PyNMe3 )] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low-spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C-H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C-H bonds with high stereospecificity. Stopped-flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic-acid-assisted heterolytic cleavage of the O-O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high-valent [(Porph. )FeIV (O)] (Compound I).
Collapse
Affiliation(s)
- Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Ferran Acuña-Parés
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Esther Castillo
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher J Whiteoak
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
32
|
Guo M, Lee YM, Gupta R, Seo MS, Ohta T, Wang HH, Liu HY, Dhuri SN, Sarangi R, Fukuzumi S, Nam W. Dioxygen Activation and O-O Bond Formation Reactions by Manganese Corroles. J Am Chem Soc 2017; 139:15858-15867. [PMID: 29056043 PMCID: PMC5711437 DOI: 10.1021/jacs.7b08678] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of dioxygen (O2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O-O bond formation, which is the reverse of the O2-activation reaction, has been the focus of current research. Herein, we report the O2-activation and O-O bond formation reactions by manganese corrole complexes. In the O2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O2 in the presence of base (e.g., OH-) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O2-activation reaction did not occur in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O-O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O-O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O-O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present study reports the first example of using the same manganese complex in both O2-activation and O-O bond formation reactions.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Hua-Hua Wang
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Sunder N. Dhuri
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Goa University, Goa 403 206, India
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
33
|
Kleinlein C, Bendelsmith AJ, Zheng SL, Betley TA. C-H Activation from Iron(II)-Nitroxido Complexes. Angew Chem Int Ed Engl 2017; 56:12197-12201. [PMID: 28766325 PMCID: PMC5672810 DOI: 10.1002/anie.201706594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/31/2017] [Indexed: 11/08/2022]
Abstract
The reaction of nitroxyl radicals TEMPO (2,2',6,6'-tetramethylpiperidinyloxyl) and AZADO (2-azaadamantane-N-oxyl) with an iron(I) synthon affords iron(II)-nitroxido complexes (Ar L)Fe(κ1 -TEMPO) and (Ar L)Fe(κ2 -N,O-AZADO) (Ar L=1,9-(2,4,6-Ph3 C6 H2 )2 -5-mesityldipyrromethene). Both high-spin iron(II)-nitroxido species are stable in the absence of weak C-H bonds, but decay via N-O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4-cyclohexadiene. Whereas (Ar L)Fe(κ1 -TEMPO) reacts to give a diferrous hydroxide [(Ar L)Fe]2 (μ-OH)2 , the reaction of four-coordinate (Ar L)Fe(κ2 -N,O-AZADO) with hydrogen atom donors yields ferric hydroxide (Ar L)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C-H substrate and are consistent with rate-determining hydrogen atom transfer.
Collapse
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew J Bendelsmith
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Theodore A Betley
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
34
|
Kleinlein C, Bendelsmith AJ, Zheng S, Betley TA. C−H Activation from Iron(II)‐Nitroxido Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Andrew J. Bendelsmith
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Shao‐Liang Zheng
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Theodore A. Betley
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
35
|
Devi T, Lee Y, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)‐Superoxo Complex as a Three‐Electron Oxidant with a Large Tunneling Effect in Multi‐Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering SENTAN Japan Science and Technology Agency (JST) Meijo University Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
36
|
Devi T, Lee YM, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017; 56:3510-3515. [PMID: 28266771 DOI: 10.1002/anie.201611709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/15/2017] [Indexed: 11/06/2022]
Abstract
Metal-superoxo species are involved in a variety of enzymatic oxidation reactions, and multi-electron oxidation of substrates is frequently observed in those enzymatic reactions. A CrIII -superoxo complex, [CrIII (O2 )(TMC)(Cl)]+ (1; TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is described that acts as a novel three-electron oxidant in the oxidation of dihydronicotinamide adenine dinucleotide (NADH) analogues. In the reactions of 1 with NADH analogues, a CrIV -oxo complex, [CrIV (O)(TMC)(Cl)]+ (2), is formed by a heterolytic O-O bond cleavage of a putative CrII -hydroperoxo complex, [CrII (OOH)(TMC)(Cl)], which is generated by hydride transfer from NADH analogues to 1. The comparison of the reactivity of NADH analogues with 1 and p-chloranil (Cl4 Q) indicates that oxidation of NADH analogues by 1 proceeds by proton-coupled electron transfer with a very large tunneling effect (for example, with a kinetic isotope effect of 470 at 233 K), followed by rapid electron transfer.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, SENTAN Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
37
|
|
38
|
Bae SH, Lee Y, Fukuzumi S, Nam W. Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redox‐Inactive Metal Ions. Angew Chem Int Ed Engl 2016; 56:801-805. [DOI: 10.1002/anie.201610828] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Seong Hee Bae
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering, SENTAN (Japan) Science and Technology Agency (JST) Meijo University Nagoya Aichi 468-8502 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
39
|
Bae SH, Lee Y, Fukuzumi S, Nam W. Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redox‐Inactive Metal Ions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seong Hee Bae
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering, SENTAN (Japan) Science and Technology Agency (JST) Meijo University Nagoya Aichi 468-8502 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
40
|
Abstract
Mononuclear nonheme iron-oxygen species, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, are key intermediates involved in dioxygen activation and oxidation reactions catalyzed by nonheme iron enzymes. Because these iron-oxygen intermediates are short-lived due to their thermal instability and high reactivity, it is challenging to investigate their structural and spectroscopic properties and reactivity in the catalytic cycles of the enzymatic reactions themselves. One way to approach such problems is to synthesize biomimetic iron-oxygen complexes and to tune their geometric and electronic structures for structural characterization and reactivity studies. Indeed, a number of biologically important iron-oxygen species, such as mononuclear nonheme iron(III)-superoxo, iron(III)-peroxo, iron(III)-hydroperoxo, iron(IV)-oxo, and iron(V)-oxo complexes, were synthesized recently, and the first X-ray crystal structures of iron(III)-superoxo, iron(III)-peroxo, and iron(IV)-oxo complexes in nonheme iron models were successfully obtained. Thus, our understanding of iron-oxygen intermediates in biological reactions has been aided greatly from the studies of the structural and spectroscopic properties and the reactivities of the synthetic biomimetic analogues. In this Account, we describe our recent results on the synthesis and characterization of mononuclear nonheme iron-oxygen complexes bearing simple macrocyclic ligands, such as N-tetramethylated cyclam ligand (TMC) and tetraamido macrocyclic ligand (TAML). In the case of iron-superoxo complexes, an iron(III)-superoxo complex, [(TAML)Fe(III)(O2)](2-), is described, including its crystal structure and reactivities in electrophilic and nucleophilic oxidative reactions, and its properties are compared with those of a chromium(III)-superoxo complex, [(TMC)Cr(III)(O2)(Cl)](+), with respect to its reactivities in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions. In the case of iron-peroxo intermediates, an X-ray crystal structure of an iron(III)-peroxo complex binding the peroxo ligand in a side-on (η(2)) fashion, [(TMC)Fe(III)(O2)](+), is described. In addition, iron(III)-peroxo complexes binding redox-inactive metal ions are described and discussed in light of the role of redox-inactive metal ions in O-O bond activation in cytochrome c oxidase and O2-evolution in photosystem II. In the case of iron-hydroperoxo intermediates, mononuclear nonheme iron(III)-hydroperoxo complexes can be generated upon protonation of iron(III)-peroxo complexes or by hydrogen atom abstraction (HAA) of hydrocarbon C-H bonds by iron(III)-superoxo complexes. Reactivities of the iron(III)-hydroperoxo complexes in both electrophilic and nucleophilic oxidative reactions are described along with a discussion of O-O bond cleavage mechanisms. In the last section of this Account, a brief summary is presented of developments in mononuclear nonheme iron(IV)-oxo complexes since the first structurally characterized iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+), was reported. Although the field of nonheme iron-oxygen intermediates (e.g., Fe-O2, Fe-O2H, and Fe-O) has been developed greatly through intense synthetic, structural, spectroscopic, reactivity, and theoretical studies in the communities of bioinorganic and biomimetic chemistry over the past 10 years, there is still much to be explored in trapping, characterizing, and understanding the chemical properties of the key iron-oxygen intermediates involved in dioxygen activation and oxidation reactions by nonheme iron enzymes and their biomimetic compounds.
Collapse
Affiliation(s)
- Wonwoo Nam
- Department of Chemistry and
Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
41
|
Lee YM, Bang S, Yoon H, Bae SH, Hong S, Cho KB, Sarangi R, Fukuzumi S, Nam W. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules. Chemistry 2015; 21:10676-80. [PMID: 26096281 DOI: 10.1002/chem.201502143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/14/2022]
Abstract
Redox-inactive metal ions play important roles in tuning chemical properties of metal-oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)-peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn(2+) ion in (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 (1-Zn(2+) ) decreases the Lewis acidity of the Zn(2+) ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn(2+) . This further changes the reactivities of 1-Zn(2+) in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn(2+) , whereas 1-Zn(2+) coordinating two water molecules, (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 -(OH2 )2 [1-Zn(2+) -(OH2 )2 ], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn(2+) was converted to its corresponding iron(IV)-oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn(2+) -(OH2 )2 . The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal-oxygen intermediates.
Collapse
Affiliation(s)
- Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114
| | - Suhee Bang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114
| | - Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871 (Japan)
| | - Seong Hee Bae
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114
| | - Seungwoo Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114
| | - Kyung-Bin Cho
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (USA)
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114. .,Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871 (Japan). .,Faculty of Science and Technology, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Shiogamaguchi, Tempaku, Nagoya, Aichi 468-8502 (Japan).
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea), Fax: (+82) 2-3277-4114.
| |
Collapse
|
42
|
Chatterjee S, Paine TK. Olefincis-Dihydroxylation and Aliphatic CH Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Chatterjee S, Paine TK. Olefin cis-Dihydroxylation and Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant. Angew Chem Int Ed Engl 2015; 54:9338-42. [PMID: 26088714 DOI: 10.1002/anie.201502229] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Indexed: 12/22/2022]
Abstract
Many iron-containing enzymes involve metal-oxygen oxidants to carry out O2-dependent transformation reactions. However, the selective oxidation of C-H and C=C bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron-oxygen oxidants generated from an Fe(II)-benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic Fe(II)-hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O-O bond cleavage in the presence of a Lewis acid to generate an Fe(IV)-oxo-hydroxo oxidant. The electrophilic iron-oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis-diols, and it hydroxylates the C-H bonds of alkanes, including that of cyclohexane.
Collapse
Affiliation(s)
- Sayanti Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032 (India)
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032 (India).
| |
Collapse
|
44
|
Zhang H, Chingin K, Zhu L, Chen H. Molecular Characterization of Ongoing Enzymatic Reactions in Raw Garlic Cloves Using Extractive Electrospray Ionization Mass Spectrometry. Anal Chem 2015; 87:2878-83. [DOI: 10.1021/ac504371z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hua Zhang
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang 330013 P.R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang 330013 P.R. China
| | - Liang Zhu
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang 330013 P.R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang 330013 P.R. China
| |
Collapse
|
45
|
Haslinger S, Lindhorst AC, Kück JW, Cokoja M, Pöthig A, Kühn FE. Isocyanide substitution reactions at the trans labile sites of an iron(ii) N-heterocyclic carbene complex. RSC Adv 2015. [DOI: 10.1039/c5ra18270k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A variety of isocyanide-substituted Fe(ii) N-heterocyclic carbene (NHC) complexes has been synthesized, starting from an Fe(ii) NHC complex with an equatorial, tetradentate bis(pyridyl-NHC) ligand (NCCN).
Collapse
Affiliation(s)
- S. Haslinger
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - A. C. Lindhorst
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - J. W. Kück
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - M. Cokoja
- Chair of Inorganic and Organometallic Chemistry
- Technische Universität München (TUM)
- D-85747 Garching bei München
- Germany
| | - A. Pöthig
- Catalysis Research Center
- Technische Universität München (TUM)
- D-85747 Garching bei München
- Germany
| | - F. E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| |
Collapse
|
46
|
Chen J, Yoon H, Lee YM, Seo MS, Sarangi R, Fukuzumi S, Nam W. Tuning the Reactivity of Mononuclear Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. Chem Sci 2015; 6:3624-3632. [PMID: 26146538 PMCID: PMC4486364 DOI: 10.1039/c5sc00535c] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+-(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependence of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)-(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+-(HOTf)2 complexes resulted in much enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+-(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+-(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.
Collapse
Affiliation(s)
- Junying Chen
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea ; Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
47
|
Ray K, Pfaff FF, Wang B, Nam W. Status of Reactive Non-Heme Metal–Oxygen Intermediates in Chemical and Enzymatic Reactions. J Am Chem Soc 2014; 136:13942-58. [DOI: 10.1021/ja507807v] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kallol Ray
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Florian Felix Pfaff
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
48
|
So H, Park YJ, Cho KB, Lee YM, Seo MS, Cho J, Sarangi R, Nam W. Spectroscopic characterization and reactivity studies of a mononuclear nonheme Mn(III)-hydroperoxo complex. J Am Chem Soc 2014; 136:12229-32. [PMID: 25116698 PMCID: PMC4156864 DOI: 10.1021/ja506275q] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 12/25/2022]
Abstract
We report the first example of a mononuclear nonheme manganese(III)-hydroperoxo complex derived from protonation of an isolated manganese(III)-peroxo complex bearing an N-tetramethylated cyclam (TMC) ligand, [Mn(III)(TMC)(OOH)](2+). The Mn(III)-hydroperoxo intermediate is characterized with various spectroscopic methods as well as with density functional theory (DFT) calculations, showing the binding of a hydroperoxide ligand in an end-on fashion. The Mn(III)-hydroperoxo species is a competent oxidant in oxygen atom transfer (OAT) reactions, such as the oxidation of sulfides. The electrophilic character of the Mn(III)-hydroperoxo complex is demonstrated unambiguously in the sulfoxidation of para-substituted thioanisoles.
Collapse
Affiliation(s)
- Hee So
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| | - Young Jun Park
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| | - Kyung-Bin Cho
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| | - Mi Sook Seo
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| | - Jaeheung Cho
- Department
of Emerging Materials Science, DGIST, Daegu 711-873, Korea
| | - Ritimukta Sarangi
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025-7015, United States
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 120-750, Korea
| |
Collapse
|