1
|
Xu KD, Gong XY, Li M, Yi L, Qin HT, Liu F. N-Directed, Radical Relay Enantioconvergent Sulfinylation of Distal C(sp 3)-H Bonds via Cobalt Catalysis. Org Lett 2024; 26:8999-9004. [PMID: 39417715 DOI: 10.1021/acs.orglett.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of C(sp3)-H bonds with in situ-generated sulfenate anions is achieved to access chiral sulfoxides, which are found in the structures of many biologically active agents. The more challenging aliphatic C-H bonds as well as sterically hindered substrates containing tertiary C-H bonds could also be tolerated well. Mechanistic studies indicate that the transformation could undergo a CoIIS(O)R-mediated single-electron transfer with N-fluorocarboxamides, followed by a 1,5-hydrogen atom transfer and then a pivotal organocobalt(IV)-controlled enantioselective cross-coupling process. This novel asymmetric radical reaction for C-S bond construction could open a new door for the synthesis of sulfur-centered chiral compounds.
Collapse
Affiliation(s)
- Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xing-Yu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Meng Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lin Yi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Peng G, Yu X, Bai J, Yang R, Wei F, Xiao Q. Divergent Reaction of Alkynes and TsCN: Synthesis of β-Sulfinyl Alkenylsulfones and ( E)-Vinyl Sulfones. J Org Chem 2024; 89:12159-12169. [PMID: 39150242 DOI: 10.1021/acs.joc.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An efficient and high-selectivity approach for the divergent synthesis of β-sulfinyl alkenylsulfones and (E)-vinyl sulfones from alkynes and TsCN is described. A series of disulfurized products were constructed under mild conditions in the absence of transition metals. This transformation featured excellent regio- and stereoselectivity, good functional group compatibility, and broad substrate scope. The copper(I)-catalyzed sulfonation of alkynes with TsCN that affords (E)-vinyl sulfones in good to excellent yields was also developed.
Collapse
Affiliation(s)
- Guiting Peng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xin Yu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Bai
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Fang Wei
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
3
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
4
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
5
|
Liu Q, Lin T, Wang YE, Liang W, Cao L, Sheng X, Xiong D, Mao J. Nickel-Catalyzed Reductive Arylation of α-Bromo Sulfoxide. Org Lett 2023; 25:9153-9157. [PMID: 38096429 DOI: 10.1021/acs.orglett.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A nickel-catalyzed cross-electrophile coupling of aryl iodides with α-bromo sulfoxide to access a diverse array of aryl benzyl sulfoxides has been discovered. These reactions occurred under mild conditions with excellent functional group tolerance so that optically enriched sulfoxides could be coupled with aryl iodides, generating corresponding sulfoxides with excellent stereochemical integrity. Furthermore, the scalability of this transformation was demonstrated. Initial mechanistic studies revealed that the reaction undergoes a radical pathway.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Wenbiao Liang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuying Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xutao Sheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Wang L, Lu H, Jiang Y. Natural Polyketides Act as Promising Antifungal Agents. Biomolecules 2023; 13:1572. [PMID: 38002254 PMCID: PMC10669366 DOI: 10.3390/biom13111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Invasive fungal infections present a significant risk to human health. The current arsenal of antifungal drugs is hindered by drug resistance, limited antifungal range, inadequate safety profiles, and low oral bioavailability. Consequently, there is an urgent imperative to develop novel antifungal medications for clinical application. This comprehensive review provides a summary of the antifungal properties and mechanisms exhibited by natural polyketides, encompassing macrolide polyethers, polyether polyketides, xanthone polyketides, linear polyketides, hybrid polyketide non-ribosomal peptides, and pyridine derivatives. Investigating natural polyketide compounds and their derivatives has demonstrated their remarkable efficacy and promising clinical application as antifungal agents.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
7
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
8
|
Ganeshkumar A, Gonçale JC, Rajaram R, Junqueira JC. Anti-Candidal Marine Natural Products: A Review. J Fungi (Basel) 2023; 9:800. [PMID: 37623571 PMCID: PMC10455659 DOI: 10.3390/jof9080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been found in many different regions of the world. The increasing development of resistance to common antifungals by Candida species limits the therapeutic options. In light of this, the present review attempts to discuss the significance of marine natural products in controlling the proliferation and metabolism of C. albicans and non-albicans species. Natural compounds produced by sponges, algae, sea cucumber, bacteria, fungi, and other marine organisms have been the subject of numerous studies since the 1980s, with the discovery of several products with different chemical frameworks that can inhibit Candida spp., including antifungal drug-resistant strains. Sponges fall under the topmost category when compared to all other organisms investigated. Terpenoids, sterols, and alkaloids from this group exhibit a wide array of inhibitory activity against different Candida species. Especially, hippolide J, a pair of enantiomeric sesterterpenoids isolated from the marine sponge Hippospongia lachne, exhibited strong activity against Candida albicans, Candida parapsilosis, and Candida glabrata. In addition, a comprehensive analysis was performed to unveil the mechanisms of action and synergistic activity of marine products with conventional antifungals. In general, the results of this review show that the majority of chemicals derived from the marine environment are able to control particular functions of microorganisms belonging to the Candida genus, which can provide insights into designing new anti-candidal therapies.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Juliana Caparroz Gonçale
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| |
Collapse
|
9
|
Abstract
Sulfoxides are ubiquitous in both naturally and synthetically bioactive molecules. We report herein a redox-neutral and mild approach for radical sulfinylation of redox-active esters via dual photoredox and copper catalysis, furnishing a series of functionalized sulfoxides. The reaction could accommodate a range of tertiary, secondary, and primary carboxylic acids, as well as exhibit wide functional group compatibility. The chemistry features a high degree of practicality, is scalable, and allows late-stage modification of bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Shi-Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Le Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xing-Yu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
10
|
Morgan KD. The use of nitrogen-15 in microbial natural product discovery and biosynthetic characterization. Front Microbiol 2023; 14:1174591. [PMID: 37234518 PMCID: PMC10206073 DOI: 10.3389/fmicb.2023.1174591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
This mini-review covers the use of nitrogen-15 in bacterial and fungal natural product discovery and biosynthetic characterization from 1970 to 2022. Nitrogen is an important element in a number of bioactive and structurally intriguing natural products including alkaloids, non-ribosomal peptides, and hybrid natural products. Nitrogen-15 can be detected at natural abundance utilizing two-dimensional nuclear magnetic resonance and mass spectrometry. Additionally, it is a stable isotope that can be added to growth media for both filamentous fungi and bacteria. With stable isotope feeding, additional two-dimensional nuclear magnetic resonance and mass spectrometry strategies have become available, and there is a growing trend to use nitrogen-15 stable isotope feeding for the biosynthetic characterization of natural products. This mini-review will catalog the use of these strategies, analyze the strengths and weaknesses of the different approaches, and suggest future directions for the use of nitrogen-15 in natural product discovery and biosynthetic characterization.
Collapse
|
11
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Wu Q, Bell BA, Yan JX, Chevrette MG, Brittin NJ, Zhu Y, Chanana S, Maity M, Braun DR, Wheaton AM, Guzei IA, Ge Y, Rajski SR, Thomas MG, Bugni TS. Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic Metallophores from a Marine Micromonospora. J Am Chem Soc 2023; 145:58-69. [PMID: 36535031 PMCID: PMC10570848 DOI: 10.1021/jacs.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.
Collapse
Affiliation(s)
- Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jia-Xuan Yan
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan J Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- The Small Molecule Screening Facility, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| |
Collapse
|
13
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
14
|
Choudhary M, Kumar V, Naik B, Verma A, Saris PEJ, Kumar V, Gupta S. Antifungal metabolites, their novel sources, and targets to combat drug resistance. Front Microbiol 2022; 13:1061603. [PMID: 36532457 PMCID: PMC9755354 DOI: 10.3389/fmicb.2022.1061603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Bindu Naik
- Department of Life Sciences (Food Technology & Nutrition), Graphic Era (Deemed to be University), Dehradun, India
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
15
|
Kou M, Wei Z, Li Z, Xu B. Copper-Catalyzed Sulfinyl Cross-Coupling Reaction of Sulfinamides. Org Lett 2022; 24:8514-8519. [DOI: 10.1021/acs.orglett.2c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengting Kou
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Pilathottathil F, Unnikrishnan S, Kaliyamoorthy A. Heteroarylation of Sulfenate Ions In Situ Generated from β-Sulfinyl Esters under Transition-Metal-Free Conditions. J Org Chem 2022; 87:14980-14990. [PMID: 36268936 DOI: 10.1021/acs.joc.2c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heteroaryl sulfoxides are an integral part of several bioactive molecules and pharmaceuticals. We have described a transition-metal-free route for the direct sulfinylation of 2-halobenzothiazoles and 2-halobenzimidazoles using β-sulfinyl esters as the source of the sulfenate ion in the presence of a Brønsted base such as LiOtBu, and the corresponding heteroaryl sulfoxides were isolated in yields of 30 to 94%. Moreover, we hypothesized a plausible concerted nucleophilic aromatic substitution (cSNAr) pathway for the direct incorporation of sulfinyl functionality into the 2-haloheteroarenes.
Collapse
Affiliation(s)
- Fathima Pilathottathil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sreelakshmi Unnikrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
17
|
Wang L, Wu S, Zhang S, Hu Q, Wang Q, Sun J, Han Y, Yan CG. Synthesis of Heterobenzyl Sulfoxides Enabled by Palladium-Catalyzed Allylic Alkylation of Sulfenate Anions with Allenamides. J Org Chem 2022; 87:14646-14656. [DOI: 10.1021/acs.joc.2c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuaijie Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuting Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qianqian Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
Shen SM, Appendino G, Guo YW. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat Prod Rep 2022; 39:1803-1832. [PMID: 35770685 DOI: 10.1039/d2np00023g] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: July 2010 to August 2021This article summarizes more than 200 cases of misassigned marine natural products reported between July 2010 and August 2021, sorting out errors according to the structural elements. Based on a comparative analysis of the original and the revised structures, major pitfalls still plaguing the structural elucidation of small molecules were identified, emphasizing the role of total synthesis, crystallography, as well as chemical- and biosynthetic logic to complement spectroscopic data. Distinct "trends" in natural product misassignment are evident between compounds of marine and plant origin, with an overall much lower incidence of "impossible" structures within misassigned marine natural products.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Universitá degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
19
|
Yu Y, Wu SF, Zhu XB, Yuan Y, Li Z, Ye KY. Electrochemical Sulfoxidation of Thiols and Alkyl Halides. J Org Chem 2022; 87:6942-6950. [PMID: 35512330 DOI: 10.1021/acs.joc.2c00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfoxides are actively engaged as versatile synthetic building blocks, chiral ligands, bioactive molecules, and function materials. However, their oxidative syntheses from thioethers are inevitably impeded by overoxidation, excess oxidants, and the tedious preparation of thioethers. To address these shortcomings, we report herein a highly selective electrochemical sulfoxidation reaction featuring the use of simple starting materials, i.e., thiols and alkyl halides, in a single operation.
Collapse
Affiliation(s)
- Yi Yu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shao-Fen Wu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Bin Zhu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
20
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
21
|
Yu Y, Jiang YM, Zhu XB, Lin YY, Yuan Y, Ye KY. Electrochemical β-chlorosulfoxidation of alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01111e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and sustainable electrochemical β-chlorosulfoxidation of alkenes with readily available thiols and hydrochloride as the limiting agents has been developed.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Min Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao-Bin Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yong-Ying Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
22
|
Bacillimidazoles A-F, Imidazolium-Containing Compounds Isolated from a Marine Bacillus. Mar Drugs 2022; 20:md20010043. [PMID: 35049898 PMCID: PMC8779896 DOI: 10.3390/md20010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Chemical investigations of a marine sponge-associated Bacillus revealed six new imidazolium-containing compounds, bacillimidazoles A-F (1-6). Previous reports of related imidazolium-containing natural products are rare. Initially unveiled by timsTOF (trapped ion mobility spectrometry) MS data, extensive HRMS and 1D and 2D NMR analyses enabled the structural elucidation of 1-6. In addition, a plausible biosynthetic pathway to bacillimidazoles is proposed based on isotopic labeling experiments and invokes the highly reactive glycolytic adduct 2,3-butanedione. Combined, the results of structure elucidation efforts, isotopic labeling studies and bioinformatics suggest that 1-6 result from a fascinating intersection of primary and secondary metabolic pathways in Bacillus sp. WMMC1349. Antimicrobial assays revealed that, of 1-6, only compound six displayed discernible antibacterial activity, despite the close structural similarities shared by all six natural products.
Collapse
|
23
|
Chen J, Xu L, Zhou Y, Han B. Natural Products from Actinomycetes Associated with Marine Organisms. Mar Drugs 2021; 19:629. [PMID: 34822500 PMCID: PMC8621598 DOI: 10.3390/md19110629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
The actinomycetes have proven to be a rich source of bioactive secondary metabolites and play a critical role in the development of pharmaceutical researches. With interactions of host organisms and having special ecological status, the actinomycetes associated with marine animals, marine plants, macroalgae, cyanobacteria, and lichens have more potential to produce active metabolites acting as chemical defenses to protect the host from predators as well as microbial infection. This review focuses on 536 secondary metabolites (SMs) from actinomycetes associated with these marine organisms covering the literature to mid-2021, which will highlight the taxonomic diversity of actinomycetes and the structural classes, biological activities of SMs. Among all the actinomycetes listed, members of Streptomyces (68%), Micromonospora (6%), and Nocardiopsis (3%) are dominant producers of secondary metabolites. Additionally, alkaloids (37%), polyketides (33%), and peptides (15%) comprise the largest proportion of natural products with mostly antimicrobial activity and cytotoxicity. Furthermore, the data analysis and clinical information of SMs have been summarized in this article, suggesting that some of these actinomycetes with multiple host organisms deserve more attention to their special ecological status and genetic factors.
Collapse
Affiliation(s)
| | | | | | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.C.); (L.X.); (Y.Z.)
| |
Collapse
|
24
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
25
|
Stonik VA, Makarieva TN, Shubina LK. Antibiotics from Marine Bacteria. BIOCHEMISTRY (MOSCOW) 2021; 85:1362-1373. [PMID: 33280579 DOI: 10.1134/s0006297920110073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review discusses main directions and results of the studies on antibiotics produced by bacteria living in the marine environment. In recent years many obligate marine species and strains were studied, diverse metabolites were isolated, and their chemical structures were elucidated. Among them here were natural compounds toxic against tumor cells, pathogenic bacteria, viruses, and malaria plasmodial species; these compounds often had no analogues among the natural products of terrestrial origin. Some isolated compounds form a basis of active ingredients in medicinal preparations used in clinic practice, while others are under different stages of preclinical or clinical studies. Much attention has been paid in recent years to producers of marine-derived antibiotics isolated from the deep-sea habitats, from the surface of marine invertebrates and algae, as well as from symbiotic microorganisms.
Collapse
Affiliation(s)
- V A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia.
| | - T N Makarieva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia
| | - L K Shubina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia
| |
Collapse
|
26
|
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, Seixas A, Gilmore MS. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs 2021; 19:328. [PMID: 34204046 PMCID: PMC8229437 DOI: 10.3390/md19060328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
Collapse
Affiliation(s)
- Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Muriel Primon-Barros
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Romeu C. Z. Luz
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Ícaro M. S. Castro
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Thiago G. S. Paim
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Maurício Tavares
- Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), Campus Litoral Norte, Imbé 95625-000, RS, Brazil;
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Pedro A. d’Azevedo
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Porto Alegre 90035-003, RS, Brazil;
| | - Ana P. G. Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90050-170, RS, Brazil;
| | - Adriana Seixas
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Heard SC, Wu G, Winter JM. Antifungal natural products. Curr Opin Biotechnol 2021; 69:232-241. [PMID: 33640596 DOI: 10.1016/j.copbio.2021.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
Natural products are specialized small molecules produced in Nature and play pivotal roles in many cellular processes. These compounds possess exquisite chemical diversity and represent some of the most important pharmaceutical agents in human health care. With the rampant rise of fungal pathogens that are becoming resistant to nearly all clinically available antibiotics, there is an increased urgency to find new antifungal therapies with novel modes of action. To meet this need, we must be able to quickly identify new bioactive chemical scaffolds within complex natural extracts, determine their mechanisms of action, and generate appreciable yields for preclinical studies. In this review, we will highlight naturally derived antifungal agents of clinical importance as well as those with strong potential as leads in drug development.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Guangwei Wu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, and Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
28
|
Hoang KM, Lees NR, Herzon SB. General Method for the Synthesis of α- or β-Deoxyaminoglycosides Bearing Basic Nitrogen. J Am Chem Soc 2021; 143:2777-2783. [PMID: 33555855 DOI: 10.1021/jacs.0c11262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of glycosides bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, because many aminoglycosides lack a C2 substituent, diastereomeric mixtures of O-glycosides are often produced. Herein, we present a method for the synthesis of α- or β- 2,3,6-trideoxy-3-amino- and 2,4,6-trideoxy-4-amino O-glycosides from a common precursor. Our strategy proceeds by the reductive lithiation of thiophenyl glycoside donors and trapping of the resulting anomeric anions with 2-methyltetrahydropyranyl peroxides. We apply this strategy to the synthesis of α- and β-forosamine, pyrrolosamine, acosamine, and ristosamine derivatives using primary and secondary peroxides as electrophiles. α-Linked products are obtained in 60-96% yield and with >50:1 selectivity. β-Linked products are obtained in 45-94% yield and with 1.7->50:1 stereoselectivity. Contrary to donors bearing an equatorial amine substituent, donors bearing an axial amine substituent favored β-products at low temperatures. This work establishes a general strategy to synthesize O-glycosides bearing a basic nitrogen.
Collapse
Affiliation(s)
- Kevin M Hoang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas R Lees
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
29
|
Marine-Derived Compounds and Prospects for Their Antifungal Application. Molecules 2020; 25:molecules25245856. [PMID: 33322412 PMCID: PMC7763435 DOI: 10.3390/molecules25245856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
The introduction of antifungals in clinical practice has an enormous impact on the provision of medical care, increasing the expectancy and quality of life mainly of immunocompromised patients. However, the emergence of pathogenic fungi that are resistant and multi-resistant to the existing antifungal therapy has culminated in fungal infections that are almost impossible to treat. Therefore, there is an urgent need to discover new strategies. The marine environment has proven to be a promising rich resource for the discovery and development of new antifungal compounds. Thus, this review summarizes more than one hundred marine natural products, or their derivatives, which are categorized according to their sources—sponges, bacteria, fungi, and sea cucumbers—as potential candidates as antifungal agents. In addition, this review focus on recent developments using marine antifungal compounds as new and effective approaches for the treatment of infections caused by resistant and multi-resistant pathogenic fungi and/or biofilm formation; other perspectives on antifungal marine products highlight new mechanisms of action, the combination of antifungal and non-antifungal agents, and the use of nanoparticles and anti-virulence therapy.
Collapse
|
30
|
Demeritte A, Wuest WM. A look around the West Indies: The spices of life are secondary metabolites. Bioorg Med Chem 2020; 28:115792. [PMID: 33038665 PMCID: PMC7528826 DOI: 10.1016/j.bmc.2020.115792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Natural products possess a wide range of bioactivities with potential for therapeutic usage. While the distribution of these molecules can vary greatly there is some correlation that exists between the biodiversity of an environment and the uniqueness and concentration of natural products found in that region or area. The Caribbean and pan-Caribbean area is home to thousands of species of endemic fauna and flora providing huge potential for natural product discovery and by way, potential leads for drug development. This can especially be said for marine natural products as many of are rapidly diluted through diffusion once released and therefore are highly potent to achieve long reaching effects. This review seeks to highlight a small selection of marine natural products from the Caribbean region which possess antiproliferative, anti-inflammatory and antipathogenic properties while highlighting any synthetic efforts towards bioactive analogs.
Collapse
Affiliation(s)
- Adrian Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Zhang F, Zhao M, Braun DR, Ericksen SS, Piotrowski JS, Nelson J, Peng J, Ananiev GE, Chanana S, Barns K, Fossen J, Sanchez H, Chevrette MG, Guzei IA, Zhao C, Guo L, Tang W, Currie CR, Rajski SR, Audhya A, Andes DR, Bugni TS. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020; 370:974-978. [PMID: 33214279 PMCID: PMC7756952 DOI: 10.1126/science.abd6919] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | | | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Barns
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Changgui Zhao
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Guo
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Weiping Tang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
32
|
Sangkanu S, Rukachaisirikul V, Suriyachadkun C, Phongpaichit S. Antifungal activity of marine-derived actinomycetes against Talaromyces marneffei. J Appl Microbiol 2020; 130:1508-1522. [PMID: 33010096 DOI: 10.1111/jam.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/27/2023]
Abstract
AIMS This study aimed to isolate actinomycetes from marine environments and examine their antifungal activity against Talaromyces marneffei both in vitro and in vivo. METHODS AND RESULTS Nineteen out of 101 actinomycete extracts were active and further determined for their minimum inhibitory concentrations (MIC). Three extracts of AMA50 that isolated from sediment showed strong antifungal activity against T. marneffei yeast (MICs ≤0·03-0·25 µg ml-1 ) and mould (MICs 0·5-16 µg ml-1 ) forms. The hexane extract from the cells of AMA50 (AMA50CH) exhibited the best activity against both the forms (MIC ≤ 1 µg ml-1 ). Three extracts from AMA50 killed the melanized yeast cells at 0·5 µg ml-1 . The AMA50CH was further tested for protective effects in Caenorhabditis elegans model. At concentrations of 1-8 µg ml-1 , the AMA50CH prolonged survival of T. marneffei-infected C. elegans with a 60-70% survival rate. The composition of AMA50CH was determined by gas chromatography-mass spectrometry. The major components were n-hexadecanoic acid, tetradecanoic acid and pentadecanoic acid. Sequencing analysis revealed that isolate AMA50 belonged to the genus Streptomyces. CONCLUSIONS The AMA50CH from Streptomyces sp. AMA50 was the most effective extract against T. marneffei. SIGNIFICANCE AND IMPACT OF THE STUDY Talaromyces marneffei is one of the most important thermally dimorphic pathogenic fungi. These results indicated the potency of marine-derived actinomycete extracts against T. marneffei both in vitro and in vivo.
Collapse
Affiliation(s)
- S Sangkanu
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - V Rukachaisirikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - C Suriyachadkun
- BIOTEC Culture Collection, Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - S Phongpaichit
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
33
|
Chanana S, Thomas CS, Zhang F, Rajski SR, Bugni TS. hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R. Metabolites 2020; 10:E297. [PMID: 32708222 PMCID: PMC7407629 DOI: 10.3390/metabo10070297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry. While these tools have shown successful outcomes in the past, datasets are becoming much larger and require a new approach. Since PCA models are dependent on the members of the group being modeled, large datasets with many members make it difficult to accurately model the variance in the data. Our tool, hcapca, first groups strains based on the similarity of their chemical composition, and then applies PCA to the smaller sub-groups yielding more robust PCA models. This allows for scalable chemical comparisons among hundreds of strains with thousands of molecular features. As a proof of concept, we applied our open-source tool to a dataset with 1046 LCMS profiles of marine invertebrate associated bacteria and discovered three new analogs of an established anticancer agent from one promising strain.
Collapse
Affiliation(s)
| | | | | | | | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (C.S.T.); (F.Z.); (S.R.R.)
| |
Collapse
|
34
|
Wang C, Lu Y, Cao S. Antimicrobial compounds from marine actinomycetes. Arch Pharm Res 2020; 43:677-704. [PMID: 32691395 DOI: 10.1007/s12272-020-01251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 04/03/2023]
Abstract
Marine actinomycetes were the main origin of marine natural products in the past 40 years. This review was to present the sources, structures and antimicrobial activities of 313 new natural products from marine actinomycetes reported from 1976 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yuanyu Lu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.
| |
Collapse
|
35
|
Chen L, Liu C, Liu X, Wang GY. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of culturable bacteria associated with the ascidian Botryllus schlosseri. J Appl Microbiol 2020; 129:892-905. [PMID: 32311814 DOI: 10.1111/jam.14667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 11/26/2022]
Abstract
AIMS Isolating culturable bacteria associated with ascidian (Botryllus schlosseri) and investigating their bioactivities to discover new marine microbial resources with potential to produce novel bioactive natural products. METHODS AND RESULTS A total of 357 bacteria were isolated from the ascidian B. schlosseri from the coast of Weihai in the north Yellow Sea, China. Of these, 203 isolates were identified by 16S rRNA gene sequencing and they belonged to 52 genera from 30 families in five phyla. The antimicrobial activities and cytotoxic activities of all isolates were determined. Of the 357 isolates, 135 isolates demonstrated antimicrobial activities, and the crude extracts of five isolates showed strong cytotoxicity against human hepatocellular carcinoma Bel 7402 or human cervical carcinoma HeLa cells. CONCLUSIONS Our study revealed the diversity of bacteria associated with the ascidian B. schlosseri and reported a broad spectrum of antimicrobial and cytotoxic activities displayed by these isolates. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that the culturable bacteria associated with the ascidian B. schlosseri may be a potential source for novel bioactive compounds.
Collapse
Affiliation(s)
- L Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - C Liu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - X Liu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - G-Y Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
36
|
Stuart KA, Welsh K, Walker MC, Edrada-Ebel R. Metabolomic tools used in marine natural product drug discovery. Expert Opin Drug Discov 2020; 15:499-522. [PMID: 32026730 DOI: 10.1080/17460441.2020.1722636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The marine environment is a very promising resource for natural product research, with many of these reaching the market as new drugs, especially in the field of cancer therapy as well as the drug discovery pipeline for new antimicrobials. Exploitation for bioactive marine compounds with unique structures and novel bioactivity such as the isoquinoline alkaloid; trabectedin, the polyether macrolide; halichondrin B, and the peptide; dolastatin 10, requires the use of analytical techniques, which can generate unbiased, quantitative, and qualitative data to benefit the biodiscovery process. Metabolomics has shown to bridge this understanding and facilitate the development of new potential drugs from marine sources and particularly their microbial symbionts.Areas covered: In this review, articles on applied secondary metabolomics ranging from 1990-2018 as well as to the last quarter of 2019 were probed to investigate the impact of metabolomics on drug discovery for new antibiotics and cancer treatment.Expert opinion: The current literature review highlighted the effectiveness of metabolomics in the study of targeting biologically active secondary metabolites from marine sources for optimized discovery of potential new natural products to be made accessible to a R&D pipeline.
Collapse
Affiliation(s)
- Kevin Andrew Stuart
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Keira Welsh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Molly Clare Walker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
37
|
Zhang F, Wyche TP, Zhu Y, Braun DR, Yan JX, Chanana S, Ge Y, Guzei IA, Chevrette MG, Currie CR, Thomas MG, Rajski SR, Bugni TS. MS-Derived Isotopic Fine Structure Reveals Forazoline A as a Thioketone-Containing Marine-Derived Natural Product. Org Lett 2020; 22:1275-1279. [PMID: 32017574 DOI: 10.1021/acs.orglett.9b04535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Forazoline A is a structurally complex PKS-NRPS hybrid produced by marine-derived Actinomadura sp. During the course of studies highlighting the application of IFS analysis as a powerful tool for natural products analysis, we were alerted to an earlier misinterpretation with respect to forazoline A structure elucidation. In particular, IFS reveals that forazoline A contains a thioketone moiety rarely seen in secondary metabolites and, thus, constitutes an even more intriguing structure than originally thought.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Thomas P Wyche
- Merck & Co., Inc. , 320 Bent Street , Cambridge , Massachusetts 02141 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Doug R Braun
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Jia-Xuan Yan
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Ying Ge
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ilia A Guzei
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Marc G Chevrette
- Department of Genetics , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cameron R Currie
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael G Thomas
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| |
Collapse
|
38
|
Liu Q, Zhao X, Xu F, Li G. Metal-free oxidative coupling of alkyl chlorides with thiols: An efficient access to sulfoxides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
40
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
41
|
Yan JX, Chevrette MG, Braun DR, Harper MK, Currie CR, Bugni TS. Madurastatin D1 and D2, Oxazoline Containing Siderophores Isolated from an Actinomadura sp.. Org Lett 2019; 21:6275-6279. [PMID: 31380646 PMCID: PMC6941472 DOI: 10.1021/acs.orglett.9b02159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new siderophores, madurastatin D1 and D2, together with (-)-madurastatin C1, the enantiomer of a known compound, were isolated from marine-derived Actinomadura sp. The presence of an unusual 4-imidazolidinone ring in madurastatins D1 and D2 inspired us to sequence the Actinomadura sp. genome and to identify the mad biosynthetic gene cluster, knowledge of which enables us to now propose a biosynthetic pathway. Madurastatin D1 and D2 are moderately active in antimicrobial assays with M. luteus.
Collapse
Affiliation(s)
- Jia-Xuan Yan
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Marc G. Chevrette
- Department of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Ave, Madison, WI, 53706, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Ave, Madison, WI, 53706, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
42
|
Ranjan A, Westrick NM, Jain S, Piotrowski JS, Ranjan M, Kessens R, Stiegman L, Grau CR, Conley SP, Smith DL, Kabbage M. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1567-1581. [PMID: 30672092 PMCID: PMC6662107 DOI: 10.1111/pbi.13082] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia sclerotiorum, a predominately necrotrophic fungal pathogen with a broad host range, causes a significant yield-limiting disease of soybean called Sclerotinia stem rot. Resistance mechanisms against this pathogen in soybean are poorly understood, thus hindering the commercial deployment of resistant varieties. We used a multiomic approach utilizing RNA-sequencing, gas chromatography-mass spectrometry-based metabolomics and chemical genomics in yeast to decipher the molecular mechanisms governing resistance to S. sclerotiorum in soybean. Transcripts and metabolites of two soybean recombinant inbred lines, one resistant and one susceptible to S. sclerotiorum were analysed in a time course experiment. The combined results show that resistance to S. sclerotiorum in soybean is associated in part with an early accumulation of JA-Ile ((+)-7-iso-jasmonoyl-L-isoleucine), a bioactive jasmonate, increased ability to scavenge reactive oxygen species, and importantly, a reprogramming of the phenylpropanoid pathway leading to increased antifungal activities. Indeed, we noted that phenylpropanoid pathway intermediates, such as 4-hydroxybenzoate, cinnamic acid, ferulic acid and caffeic acid, were highly accumulated in the resistant line. In vitro assays show that these metabolites and total stem extracts from the resistant line clearly affect S. sclerotiorum growth and development. Using chemical genomics in yeast, we further show that this antifungal activity targets ergosterol biosynthesis in the fungus, by disrupting enzymes involved in lipid and sterol biosynthesis. Overall, our results are consistent with a model where resistance to S. sclerotiorum in soybean coincides with an early recognition of the pathogen, leading to the modulation of the redox capacity of the host and the production of antifungal metabolites.
Collapse
Affiliation(s)
- Ashish Ranjan
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Sachin Jain
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jeff S. Piotrowski
- The Great Lakes Bioenergy Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Yumanity TherapeuticsCambridgeMAUSA
| | - Manish Ranjan
- School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Ryan Kessens
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Logan Stiegman
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig R. Grau
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Shawn P. Conley
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
43
|
Ji YZ, Zhang JY, Li HJ, Han C, Yang YK, Wu YC. Regioselective and oxidant-free sulfinylation of indoles and pyrroles with sulfinamides. Org Biomol Chem 2019; 17:4789-4800. [PMID: 31033985 DOI: 10.1039/c9ob00526a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unexpected time-controlled highly selective C3- or C2-sulfinylation of pyrroles with sulfinamides is reported for the first time. The sulfinylation of indoles with sulfinamides using this protocol is oxidant-free and can be performed under obviously more feasible conditions (1.2 equiv. of indoles, 10 min) in comparison with the precedent procedure (3-20 equiv. of indoles, 16-18 h, ammonium persulfate as oxidant, hv). A variety of functional groups were tolerated, and various C2-thioindoles and C2/3-thiopyrroles were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Yuan-Zhao Ji
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
45
|
Klüppel A, Gille A, Karayel CE, Hiersemann M. Synthesis of a Diastereomer of the Marine Macrolide Lytophilippine A. Org Lett 2019; 21:2421-2425. [PMID: 30900455 DOI: 10.1021/acs.orglett.9b00722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a diastereomer of lytophilippine A required 22 longest linear steps using known building blocks. Cross-metathesis/asymmetric aldol addition and regioselective esterification/ring-closing metathesis served as efficient combi tools for scaffold construction. Detailed NMR investigations in different solvent (systems) provide evidence for a deep-seated configurational misassignment of the molecule named lytophilippine A.
Collapse
Affiliation(s)
- André Klüppel
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| | - Annika Gille
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| | - Ceren Ester Karayel
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| | - Martin Hiersemann
- Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , 44227 Dortmund , Germany
| |
Collapse
|
46
|
Wu C, Berritt S, Liang X, Walsh PJ. Palladium-Catalyzed Enantioselective Alkenylation of Sulfenate Anions. Org Lett 2019; 21:960-964. [PMID: 30694063 DOI: 10.1021/acs.orglett.8b03943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel approach to synthesize enantio-enriched alkenyl/aryl sulfoxides is achieved by using CsF to generate sulfenate anions and conducting the catalytic enantioselective alkenylation with [Pd(allyl)Cl]2/(2 R)-1-[(1 R)-1-[bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino)ferrocene (SL-J002-1). A wide variety of sulfoxides bearing sensitive functional groups are produced with high yields (up to 94%) and enantioselectivities (up to 92%).
Collapse
Affiliation(s)
- Chen Wu
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Simon Berritt
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Xiaoxia Liang
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States.,Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
47
|
From Yeast to Humans: Leveraging New Approaches in Yeast to Accelerate Discovery of Therapeutic Targets for Synucleinopathies. Methods Mol Biol 2019; 2049:419-444. [PMID: 31602625 DOI: 10.1007/978-1-4939-9736-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.
Collapse
|
48
|
Di Micco S, Giannini C, Previtali A, Lucenti E, Bifulco G. Chemical shift assignment of mono- and di-bromo triimidazo[1,2-a:1',2'-c:1″,2″-e][1,3,5]triazine derivatives by DFT/NMR integrated approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 57:82-92. [PMID: 30421826 DOI: 10.1002/mrc.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Mono- and di-bromo derivatives of triimidazo[1,2-a:1',2'-c:1″,2″-e][1,3,5]triazine have been proposed as new organic molecules presenting a very rich and complex photophysical behavior. Thus, we afforded the correct chemical shift assignment by integrating the experimental data with DFT calculation of NMR parameters. Our findings lay foundation for a structural reference in the organic synthesis and characterization of new congeners of this intriguing class of molecules.
Collapse
Affiliation(s)
- Simone Di Micco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Clelia Giannini
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Andrea Previtali
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Elena Lucenti
- ISTM-CNR, Institute of Molecular Science and Technologies, INSTM RU, National Interuniversity Consortium of Material Science and Technology, Milan, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
49
|
Yu H, Li Z, Bolm C. Transition-Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts. Org Lett 2018; 20:7104-7106. [DOI: 10.1021/acs.orglett.8b03046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Yu
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Zhen Li
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
50
|
Liang X, Wu C, Zheng Z, Walsh PJ. Nickel-Catalyzed Oxidative Coupling Reaction of Phenyl Benzyl Sulfoxides. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Chen Wu
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhipeng Zheng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|