1
|
Xu W, Zou G, Hou H, Ji X. Single Particle Electrochemistry of Collision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804908. [PMID: 30740883 DOI: 10.1002/smll.201804908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 05/23/2023]
Abstract
A novel electrochemistry method using stochastic collision of particles at microelectrode to study their performance in single-particle scale has obtained remarkable development in recent years. This convenient and swift analytical method, which can be called "nanoimpact," is focused on the electrochemical process of the single particle rather than in complex ensemble systems. Many researchers have applied this nanoimpact method to investigate various kinds of materials in many research fields, including sensing, electrochemical catalysis, and energy storage. However, the ways how they utilize the method are quite different and the key points can be classified into four sorts: sensing particles at ultralow concentration, theory optimization, kinetics of mediated catalytic reaction, and redox electrochemistry of the particles. This review gives a brief overview of the development of the nanoimpact method from the four aspects in a new perspective.
Collapse
Affiliation(s)
- Wei Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Mergel O, Schneider S, Tiwari R, Kühn PT, Keskin D, Stuart MCA, Schöttner S, de Kanter M, Noyong M, Caumanns T, Mayer J, Janzen C, Simon U, Gallei M, Wöll D, van Rijn P, Plamper FA. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization. Chem Sci 2019; 10:1844-1856. [PMID: 30842853 PMCID: PMC6371888 DOI: 10.1039/c8sc04369h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Controlling and understanding the electrochemical properties of electroactive polymeric colloids is a highly topical but still a rather unexplored field of research. This is especially true when considering more complex particle architectures like stimuli-responsive microgels, which would entail different kinetic constraints for charge transport within one particle. We synthesize and electrochemically address dual stimuli responsive core-shell microgels, where the temperature-responsiveness modulates not only the internal structure, but also the microgel electroactivity both on an internal and on a global scale. In detail, a facile one-step precipitation polymerization results in architecturally advanced poly(N-isopropylacrylamide-co-vinylferrocene) P(NIPAM-co-VFc) microgels with a ferrocene (Fc)-enriched (collapsed/hard) core and a NIPAM-rich shell. While the remaining Fc units in the shell are electrochemically accessible, the electrochemical activity of Fc in the core is limited due to the restricted mobility of redox active sites and therefore restricted electron transfer in the compact core domain. Still, prolonged electrochemical action and/or chemical oxidation enable a reversible adjustment of the internal microgel structure from core-shell microgels with a dense core to completely oxidized microgels with a highly swollen core and a denser corona. The combination of thermo-sensitive and redox-responsive units being part of the network allows for efficient amplification of the redox response on the overall microgel dimension, which is mainly governed by the shell. Further, it allows for an electrochemical switching of polarity (hydrophilicity/hydrophobicity) of the microgel, enabling an electrochemically triggered uptake and release of active guest molecules. Hence, bactericidal drugs can be released to effectively kill bacteria. In addition, good biocompatibility of the microgels in cell tests suggests suitability of the new microgel system for future biomedical applications.
Collapse
Affiliation(s)
- Olga Mergel
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Sabine Schneider
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Rahul Tiwari
- DWI - Leibniz Institute for Interactive Materials , RWTH Aachen University , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Philipp T Kühn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Damla Keskin
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Marc C A Stuart
- Groningen Biomolecular Sciences and Biotechnology Institute , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Martinus de Kanter
- Chair for Laser Technology LLT , RWTH Aachen University , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Michael Noyong
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Joachim Mayer
- GFE Central Facility for Electron Microscopy , RWTH Aachen University , Ahornstraße 55 , D-52074 Aachen , Germany
| | - Christoph Janzen
- Fraunhofer Institute for Laser Technology (ILT) , Steinbachstr. 15 , 52074 Aachen , Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry , JARA-SOFT , RWTH Aachen University , Landoltweg 1 , 52056 Aachen , Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , D-64287 Darmstadt , Germany
| | - Dominik Wöll
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40 , University of Groningen , University Medical Center Groningen , A. Deusinglaan 1 , Groningen , 9713 AV , The Netherlands
| | - Felix A Plamper
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- Institute of Physical Chemistry , TU Bergakademie Freiberg , Leipziger Straße 29 , 09599 Freiberg , Germany . ; ; Tel: +49-3731-39-2139
| |
Collapse
|
3
|
Fu K, Han D, Crouch GM, Kwon SR, Bohn PW. Voltage-Gated Nanoparticle Transport and Collisions in Attoliter-Volume Nanopore Electrode Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703248. [PMID: 29377558 PMCID: PMC8287793 DOI: 10.1002/smll.201703248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Single nanoparticle analysis can reveal how particle-to-particle heterogeneity affects ensemble properties derived from traditional bulk measurements. High-bandwidth, low noise electrochemical measurements are needed to examine the fast heterogeneous electron-transfer behavior of single nanoparticles with sufficient fidelity to resolve the behavior of individual nanoparticles. Herein, nanopore electrode arrays (NEAs) are fabricated in which each pore supports two vertically spaced, individually addressable electrodes. The top ring electrode serves as a particle gate to control the transport of silver nanoparticles (AgNPs) within individual attoliter volume NEAs nanopores, as shown by redox collisions of AgNPs collisions at the bottom disk electrode. The AgNP-nanoporeis system has wide-ranging technological applications as well as fundamental interest, since the transport of AgNPs within the NEA mimics the transport of ions through cell membranes via voltage-gated ion channels. A voltage threshold is observed above which AgNPs are able to access the bottom electrode of the NEAs, i.e., a minimum potential at the gate electrode is required to switch between few and many observed collision events on the collector electrode. It is further shown that this threshold voltage is strongly dependent on the applied voltage at both electrodes as well as the size of AgNPs, as shown both experimentally and through finite-element modeling. Overall, this study provides a precise method of monitoring nanoparticle transport and in situ redox reactions within nanoconfined spaces at the single particle level.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, US
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, US
| | | |
Collapse
|
4
|
Batchelor-McAuley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A. Recent Advances in Voltammetry. ChemistryOpen 2015; 4:224-60. [PMID: 26246984 PMCID: PMC4522172 DOI: 10.1002/open.201500042] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/10/2022] Open
Abstract
Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'.
Collapse
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Edward O Barnes
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| | - Angela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| |
Collapse
|