1
|
Mondal S, Das P, Mukherjee S. Difluoroenoxysilanes in Catalytic Asymmetric Allylic Alkylation. Org Lett 2024; 26:11073-11079. [PMID: 39630127 DOI: 10.1021/acs.orglett.4c04279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An allylic substitution with difluoroenoxysilanes as the nucleophile is accomplished for the enantioselective synthesis of α-allylic α,α-difluoroketones. With racemic branched allylic alcohols as the easily accessible allylic electrophile, this branched-selective and enantioconvergent allylic alkylation reaction is catalyzed by an Ir(I)/(P,olefin) complex and overcomes the low nucleophilicity of difluoroenoxysilanes to furnish β-chiral α,α-difluoroketones in moderate to good yields with high enantioselectivity (up to >99.9:0.1 er).
Collapse
Affiliation(s)
- Subhajit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Priyotosh Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Melnykov KP, Liashuk OS, Holovach S, Shatnia V, Horbenko A, Lesyk D, Melnyk V, Skrypnik D, Beshtynarska A, Borysko P, Viniichuk O, Grygorenko OO. Physicochemical and Biological Evaluation of gem-Difluorinated Saturated Oxygen Heterocycles as Bioisosteres for Drug Discovery. Chemistry 2024:e202404390. [PMID: 39660537 DOI: 10.1002/chem.202404390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
A comprehensive study on the physicochemical properties of gem-fluorinated O-heterocyclic substituents is reported. Systematic additive effects of introducing O- and gem-CF2 group introduction on acidic properties (pKa) of the corresponding carboxylic acids/protonated primary amines were demonstrated. The impact of the O/CF2 moieties on lipophilicity (LogP) was found to be complex; significant mutual influence of the corresponding polar moieties governed the compound's overall properties in this case. Biological evaluation of MAPK kinase inhibitors incorporating the title substituents demonstrated their utility as promising fragments for bioisosteric replacements in drug discovery campaigns.
Collapse
Affiliation(s)
- Kostiantyn P Melnykov
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Serhii Holovach
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyїv, 02660, Ukraine
| | - Valeriia Shatnia
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Avenue 37, Kyїv, 03056, Ukraine
| | - Artur Horbenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- V. I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, Akademik Palladin Street 32/34, Kyїv, 03142, Ukraine
| | - Dmytro Lesyk
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Varvara Melnyk
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Daniil Skrypnik
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Anna Beshtynarska
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Petro Borysko
- Bienta/Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
| | - Oleksandr Viniichuk
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, 02094, Kyїv, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyїv, Ukraine
| |
Collapse
|
3
|
Chen X, Gao Y, Luo J, Liu Y, Chen Q, Huo Y, Li X. Access to Functionalized Amines and Medium N-Heterocycles via Amine-Enabled Remote C-H Alkynylation. J Org Chem 2024; 89:17544-17549. [PMID: 39541590 DOI: 10.1021/acs.joc.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
By using weakly coordinating amines, we developed remote C-H alkynylation with precise control of reactivity and regioselectivity, enabling modification of complex drugs, natural products, and materials. The readily transformable alkyne-containing amine products would facilitate expedient delivery of molecular libraries of functionalized amines and medium N-heterocycles, which are previously elusive to access. Moreover, the introduced alkyne functionality could serve as a versatile handle to expand the diversity and synthetic application of this remote C-H functionalization.
Collapse
Affiliation(s)
- Xiaojian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Ghaffari B, L T N Porto L, Johnson N, Ovens JS, Ehm C, Baker RT. Copper-Mediated -CF(OCF 3)(CF 2H) Transfer to Organic Electrophiles. ACS ORGANIC & INORGANIC AU 2024; 4:628-639. [PMID: 39649996 PMCID: PMC11621958 DOI: 10.1021/acsorginorgau.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 12/11/2024]
Abstract
The integration of fluorine into medicinal compounds has become a widely used strategy to improve the biochemical and therapeutic properties of drugs. Inclusion of -CF2H and -OCF3 fluoroalkyl groups has garnered attention due to their bioisosteric properties, enhanced lipophilicity, and potential hydrogen-bonding capability in bioactive substances. In this study, we prepared a series of stable Cu[CF(OCF3)(CF2H)]L n complexes by insertion of commercially available perfluoro(methyl vinyl ether), CF2=CF(OCF3), into Cu-H bonds derived from Stryker's reagent, [CuH(PPh3)]6, using ancillary ligands L. Notably, certain of these complexes effectively transfer the fluoroalkyl group to aroyl chlorides. Through reaction optimization and computational analysis, we identified dimethylsulfoxide as a pivotal coligand, playing a distinctive role in enabling the fluoroalkylation of a range of aroyl chlorides and aryl iodides. The latter also benefits from addition of CuBr to abstract PPh3, generating solvent-stabilized Cu[CF(OCF3)(CF2H)]. These methodologies allow for the introduction of geminal -OCF3 and -CF2H groups in a single transformation.
Collapse
Affiliation(s)
- Behnaz Ghaffari
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Luana L T N Porto
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Nicole Johnson
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S Ovens
- Faculty of Science, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Universitàdi Napoli Federico II, Via Cintia 80126, Napoli, Italy
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Lai J, Xiao X, Shao S, Wang S, Kan J, Su W. Photoinduced Transition-Metal and External Photosensitizer Free Benzylic Fluorination of Unactivated Alkylarenes. Chemistry 2024; 30:e202401669. [PMID: 38970448 DOI: 10.1002/chem.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.
Collapse
Affiliation(s)
- Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Xuan Xiao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shixing Shao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shuping Wang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou Fujian, P. R. China
| |
Collapse
|
6
|
Jati A, Mahato AK, Chanda D, Kumar P, Banerjee R, Maji B. Photocatalytic Decarboxylative Fluorination by Quinone-Based Isoreticular Covalent Organic Frameworks. J Am Chem Soc 2024; 146:23923-23932. [PMID: 39148225 DOI: 10.1021/jacs.4c06510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The strategic incorporation of fluorine atoms into molecules has become a cornerstone of modern pharmaceuticals, agrochemicals, and materials science. Herein, we have developed a covalent organic framework (COF)-based, robust photocatalyst that enables the photofluorodecarboxylation reaction of diverse carboxylic acids, producing alkyl fluorides with remarkable efficiency. The catalytic activity of an anthraquinone-based COF catalyst TpAQ outperforms other structurally analogous β-ketoenamine COFs. Through comprehensive control experiments, photoluminescence, and electrochemical studies, we have elucidated the unique features of the material and the mechanistic pathway. This in-depth understanding has paved the way for optimizing the reaction conditions and achieving high yields of alkyl fluorides. The versatility of this protocol extends to a broad range of aliphatic acids with diverse functional groups and heterocycles. It also enabled the late-stage diversification of anti-inflammatory drugs and steroid derivatives. This opens up exciting possibilities for synthesizing novel pharmaceuticals and functionalized molecules. The methodology was also generalized to other light-mediated decarboxylative halogenation reactions. Furthermore, our method demonstrates scalability under both batch and continuous flow conditions, offering a promising approach for large-scale production. Additionally, the TpAQ catalyst exhibits exceptional durability and can be reused multiple times without significant activity loss (>80% yield after the eighth cycle), making it a sustainable and cost-effective solution. This work lays the foundation for developing efficient and sustainable light-driven synthesis methods using COFs as photocatalysts with potential applications beyond alkyl halide synthesis.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Durba Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
7
|
Novaes LFT, Ho JSK, Mao K, Villemure E, Terrett JA, Lin S. α,β-Desaturation and Formal β-C(sp 3)-H Fluorination of N-Substituted Amines: A Late-Stage Functionalization Strategy Enabled by Electrochemistry. J Am Chem Soc 2024; 146:22982-22992. [PMID: 39132893 PMCID: PMC11366977 DOI: 10.1021/jacs.4c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Incorporation of C(sp3)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp3)-H fluorination of complex molecules, time-consuming de novo syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific β-C(sp3)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including N-heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,β-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of β-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Justin S K Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
8
|
Chen Z, Song G, Qi L, Gunasekar R, Aïssa C, Robertson C, Steiner A, Xue D, Xiao J. Reductive Transamination of Pyridinium Salts to N-Aryl Piperidines. J Org Chem 2024; 89:9352-9359. [PMID: 38872240 PMCID: PMC11232014 DOI: 10.1021/acs.joc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Saturated N-heterocycles are found in numerous bioactive natural products and are prevalent in pharmaceuticals and agrochemicals. While there are many methods for their synthesis, each has its limitations, such as scope and functional group tolerance. Herein, we describe a rhodium-catalyzed transfer hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The reaction proceeds via a reductive transamination process, involving the initial formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives, expanding the toolbox of dearomatization and skeletal editing.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Geyang Song
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Leiming Qi
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | | | - Christophe Aïssa
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Craig Robertson
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alexander Steiner
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Dong Xue
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
9
|
Yu Q, Zhou D, Ma J, Song C. Decarboxylative Nucleophilic Fluorination of Aliphatic Carboxylic Acids. Org Lett 2024; 26:4257-4261. [PMID: 38738813 DOI: 10.1021/acs.orglett.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, we present a decarboxylative nucleophilic fluorination of carboxylic acids with a silver catalyst. This strategy enables the synthesis of a myriad of diverse and valuable fluorinated motifs under mild conditions, demonstrating good functional-group tolerance and utility in late-stage functionalization. In contrast to traditional electrophilic fluorination, this nucleophilic method utilizes a more readily available nucleophilic fluorinating reagent, providing substantial advantages in terms of cost efficiency, broad substrate scope, and functional-group compatibility.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junjun Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Li R, Zhang J, Sun M, Wang Z, Yang J. HFIP-Promoted Divergent Cycloadditions of Difluoroenoxysilanes with 2-Indolylmethanols: Synthesis of Fluoro 2 H-Pyrano[3,4- b]indoles and gem-Difluoro Cyclopenta[ b]indoles. Org Lett 2024. [PMID: 38780049 DOI: 10.1021/acs.orglett.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
An oxa-6π-electrocyclization of difluoroenoxysilanes with diaryl 2-indolylmethanols has been developed. In addition, a rarely reported C3-nucleophilic [3+2] cycloaddition of difluoroenoxysilanes with dialkyl 2-indolylmethanols has been disclosed. This divergent cycloaddition approach affording readily available difluoroenoxysilanes as three-atom and C2 synthons provides rapid access to fluoro 2H-pyrano[3,4-b]indoles and gem-difluoro cyclopenta[b]indoles in good to excellent yields with good functional group tolerance. The metal-free and mild conditions using only HFIP as the solvent without any external acid catalyst illuminate practical and environmentally benign advantages.
Collapse
Affiliation(s)
- Rongyao Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
11
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Vesseur D, Li S, Mallet-Ladeira S, Miqueu K, Bourissou D. Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl-F Coupling at Gold(III). J Am Chem Soc 2024. [PMID: 38607393 DOI: 10.1021/jacs.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Collapse
Affiliation(s)
- David Vesseur
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Shuo Li
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS/Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|
13
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
14
|
Wu H, Li Y, Sun M, Zhang J, Li J, Yang J. Highly Diastereoselective [3 + 2] Cycloaddition of Aziridines with Difluorinated Silyl Enol Ethers: Divergent Synthesis of 4,4-Difluoropyrrolidines and 4-Fluoropyrroles. Org Lett 2024; 26:751-756. [PMID: 38214536 DOI: 10.1021/acs.orglett.3c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A highly diastereoselective [3 + 2] cycloaddition of aziridines with difluorinated silyl enol ethers has been developed. This approach provides a facile methodology for highly functionalized gem-difluorinated pyrrolidines in good to excellent yields with good functional group tolerance. A one-pot, two-step approach for synthesis of structurally interesting fluorinated pyrroles has also been developed through a cycloaddition/aromatization/desulfonation sequence. Moreover, readily available substrates, mild reaction conditions, and easy scale-up synthesis show practical advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Yanan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| |
Collapse
|
15
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
17
|
Chen CL, Wang HY, Weng ZZ, Long LS, Zheng LS, Kong XJ. Uranyl Polyoxotungstate Cluster for Visible-Light-Driven Heterogeneous C-H Selective Fluorination. Inorg Chem 2023; 62:17041-17045. [PMID: 37819767 DOI: 10.1021/acs.inorgchem.3c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.
Collapse
Affiliation(s)
- Chao-Long Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| |
Collapse
|
18
|
Li R, Zhang J, Sun M, Xu J, Huang GB, Yan J, Yang J, Wang Z, Ma C. Synthesis of Fluoro 3(2H)-Furanones via a TFA-Catalyzed Dehydrofluorinative Cyclization of 2,2-Difluoro-3-hydroxy-1,4-diketones. Org Lett 2023; 25:7057-7061. [PMID: 37702796 DOI: 10.1021/acs.orglett.3c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A TFA-catalyzed dehydrofluorinative cyclization of 2,2-difluoro-3-hydroxy-1,4-diketones has been developed in the presence of amines under mild conditions in which the difluorinated substrates are readily prepared according to our reported literature. This protocol provides a rapid construction of fluoro 3(2H)-furanones in good to excellent yields with good functional group tolerance. Easy scale-up synthesis also shows a practical advantage.
Collapse
Affiliation(s)
- Rongyao Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jinjing Xu
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Guo-Bo Huang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianbo Yan
- Zhejiang Lepu Pharmaceutical Co., Ltd., Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
19
|
Arimitsu S. Syntheses and Synthetic Applications of Functionalized Propargylic and Allylic Fluorides. CHEM REC 2023; 23:e202300021. [PMID: 36912721 DOI: 10.1002/tcr.202300021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Indexed: 03/14/2023]
Abstract
This account presents the synthesis and application of propargylic and allylic fluorides containing hydroxy or carbonyl functional groups. In particular, the Barbier-type reaction of difluoropropargyl bromides with aldehydes or chloroformates provides versatile propargylic fluorides, and the organocatalytic fluorination of dienamine intermediates has been demonstrated as an effective method to obtain allylic fluorides stereoselectively. Additionally, mechanistic insights into such reactions are discussed with the aid of density functional theory calculations. The report also describes the preparation of fluorinated 1,7-diyne or 1,7-enyne derivatives of these compounds. These propargylic and allylic fluorides can be used as building blocks for fluorinated heterocycles, such as fluorinated furans, tetrahydrofurans, and lactams. Additionally, fluorinated bi- or tri-heterocyclic compounds can be synthesized via transition-metal-catalyzed reactions with fluorinated 1,7-diyne or 1,7-enyne derivatives.
Collapse
Affiliation(s)
- Satoru Arimitsu
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Nagagami, Okinawa, 903-0213, Japan
| |
Collapse
|
20
|
Briand M, Anselmi E, Dagousset G, Magnier E. The Revival of Enantioselective Perfluoroalkylation - Update of New Synthetic Approaches from 2015-2022. CHEM REC 2023; 23:e202300114. [PMID: 37219007 DOI: 10.1002/tcr.202300114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Over the last years, methods devoted to the synthesis of asymmetric molecules bearing a perfluoroalkylated chain have been limited in number. Among them, only a few can be used on a large variety of scaffolds. This microreview aims at summarizing these recent advances in enantioselective perfluoroalkylation (-CF3 , -CF2 H, -Cn F2n+1 ) and highlights the need for new enantioselective methods to easily synthesize chiral fluorinated molecules which would be useful for the pharmaceutical and agrochemical industries. Some perspectives are also mentioned.
Collapse
Affiliation(s)
- Marina Briand
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Elsa Anselmi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
- Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Avenue Monge, 37200, Tours, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
21
|
Lin J, Chen K, Wang J, Guo J, Dai S, Hu Y, Li J. Salt-stabilized alkylzinc pivalates: versatile reagents for cobalt-catalyzed selective 1,2-dialkylation. Chem Sci 2023; 14:8672-8680. [PMID: 37592988 PMCID: PMC10430519 DOI: 10.1039/d3sc02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The construction of Csp3-Csp3 bonds through Negishi-type reactions using alkylzinc reagents as the pronucleophiles is of great importance for the synthesis of pharmaceuticals and agrochemicals. However, the use of air and moisture sensitive solutions of conventional alkylzinc halides, which show unsatisfying reactivity and limitation of generality in twofold Csp3-Csp3 cross-couplings, still represents drawbacks. We herein report the first preparation of solid and salt-stabilized alkylzinc pivalates by OPiv-coordination, which exhibit enhanced stability and a distinct advantage of reacting well in cobalt-catalyzed difluoroalkylation-alkylation of dienoates, thus achieving the modular and site-selective installation of CF2- and Csp3-groups across double bonds in a stereoretentive manifold. This reaction proceeds under simple and mild conditions and features broad substrate scope and functional group compatibility. Kinetic experiments highlight that OPiv-tuning on the alkylzinc pivalates is the key for improving their reactivity in twofold Csp3-Csp3 cross-couplings. Furthermore, facile modifications of bioactive molecules and fluorinated products demonstrate the synthetical utility of our salt-stabilized alkylzinc reagents and cobalt-catalyzed alkyldifluoroalkylation protocol.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jiawei Guo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Siheng Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Ye Y, Kim ST, King RP, Baik MH, Buchwald SL. Studying Regioisomer Formation in the Pd-Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification. Angew Chem Int Ed Engl 2023; 62:e202300109. [PMID: 36775802 PMCID: PMC10161128 DOI: 10.1002/anie.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Pd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of regioisomeric products that are often difficult to separate. While investigating the Pd-catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a substoichiometric quantity of TESCF3 significantly improved the regioselectivity of the reaction. Herein, we report a combined experimental and computational study on the mechanism of this transformation focusing on the role of TESCF3 . The poor regioselectivity of the reaction in the absence of additives results from the formation of LPd-cyclohexyne complexes (L=biaryl monophosphine ligand). When TESCF3 is added to the reaction mixture, the generation of the Pd-cyclohexyne complexes is diminished by an unexpected pathway involving the dearomatization of the ligand by nucleophilic attack from a trifluoromethyl anion (CF3 - ).
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Ryan P King
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Ye Y, Kim S, King RP, Baik M, Buchwald SL. Studying Regioisomer Formation in the Pd‐Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Seoung‐Tae Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Ryan P. King
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
25
|
Xu W, Shao Q, Xia C, Zhang Q, Xu Y, Liu Y, Wu M. Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chem Sci 2023; 14:916-922. [PMID: 36755709 PMCID: PMC9890929 DOI: 10.1039/d2sc06290a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
To provide α-polyfluoroarylalcohols, a novel protocol for the selective defluoroalkylation of polyfluoroarenes with easily accessible alcohols was reported via the cooperation of photoredox and hydrogen atom transfer (HAT) strategies with the assistance of Lewis acids under visible light irradiation. The protocol featured broad scope, excellent regioselectivity for both C-H and C-F bond cleavages, and mild conditions. Mechanistic studies suggested that the reaction occurred through Lewis acid-promoted HAT to provide an alkyl radical and sequential addition to polyfluoroarenes. Impressively, the regioselectivity for C-F cleavage was verified with the Fukui function. The feasibility and application of this protocol on fluoroarene synthesis were well illustrated by gram-scale synthesis under both batch and flow conditions, late-stage decoration of bioactive compounds, and further transformations of the fluoroarylalcohols.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Qi Shao
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Congjian Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Qiao Zhang
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yadi Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China .,College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
26
|
Feng Z, Marset X, Tostado J, Kircher J, She Z, Golz C, Mata RA, Simon M, Alcarazo M. 5-(Trifluorovinyl)dibenzothiophenium Triflate: Introducing the 1,1,2-Trifluoroethylene Tether in Drug-Like Structures. Chemistry 2022; 29:e202203966. [PMID: 36545870 DOI: 10.1002/chem.202203966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reports the synthesis and structure of an unprecedented sulfonium salt, 5-(trifluorovinyl)dibenzothiophenium triflate, and its use as a versatile reagent for the introduction of the bioisosteric 1,1,2-trifluoroethylene linker in drug-like structures. The protocol developed consists of the reaction of this compound with alcohols and phenols to deliver a complete set of 1,2,2-trifluoro-2-(alkoxy-/aryloxy)ethyl sulfonium salts, which have been purified by column chromatography and fully characterized. Subsequent single electron reduction under mild photochemical conditions efficiently affords the corresponding fluoroalkyl radicals that are trapped either intra- or intermolecularly through their reaction with (hetero)arenes. Theoretical calculations are used to evaluate the conformational consequences derived from the presence of the CF2 -CHF tether.
Collapse
Affiliation(s)
- Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Xavier Marset
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Jaime Tostado
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Johannes Kircher
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Zhijie She
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
27
|
Li X, Li Y, Yang J, Shi H, Ai Z, Han C, He J, Du Y. Synthesis of 3-SCF 2H-/3-SCF 3-chromones via Interrupted Pummerer Reaction/Intramolecular Cyclization Mediated by Difluoromethyl or Trifluoromethyl Sulfoxide and Tf 2O. Org Lett 2022; 24:7216-7221. [PMID: 36148991 DOI: 10.1021/acs.orglett.2c03017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of alkynyl aryl ketones bearing an o-methoxy group with difluoromethyl sulfoxide in the presence of Tf2O was found to conveniently afford the corresponding 3-SCF2H-substituted chromones. The combining use of difluoromethyl sulfoxide/Tf2O could represent the first reagents system that can introduce the biologically important SCF2H moiety under base-free conditions via an interrupted Pummerer reaction. The same protocol could also be applied to the synthesis of 3-SCF3-substituted chromones by replacing difluoromethyl sulfoxide with trifluoromethyl sulfoxide and CH3CN with toluene.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenkang Ai
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chi Han
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Steffann M, Tisseraud M, Bluet G, Roy S, Aubert C, Fouquet E, Hermange P. Last-step 18F-fluorination of supported 2-(aryl-di- tert-butylsilyl)- N-methyl-imidazole conjugates for applications in positron emission tomography. Chem Commun (Camb) 2022; 58:9140-9143. [PMID: 35894218 DOI: 10.1039/d2cc03258a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming for potential applications in positron emission tomography, fully automated productions of 18F-labelled bioconjugates were achieved using heterogenous precursors obtained by anchoring imidazole-di-tert-butyl-arylsilanes to a polystyrene resin. The reactions were performed using either "batch" or "flow" procedures, avoiding both the time-consuming azeotropic drying and HPLC purifications usually required.
Collapse
Affiliation(s)
- Marine Steffann
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405, Talence Cedex, France. .,Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Marion Tisseraud
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405, Talence Cedex, France.
| | - Guillaume Bluet
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Sebastien Roy
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Catherine Aubert
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Eric Fouquet
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405, Talence Cedex, France.
| | - Philippe Hermange
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405, Talence Cedex, France.
| |
Collapse
|
29
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes-Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022; 61:e202202175. [PMID: 35415937 DOI: 10.1002/anie.202202175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Stereoselective cyclopropanation reaction of alkenes is usually achieved by metal complexes via singlet-metal-carbene intermediates. However, previous transition-metal-catalyzed cyclopropanation of alkenes with acylsilanes afforded low diastereoselectivity. Herein, we report the first visible-light-induced transition-metal-free cyclopropanation reaction of terminal alkenes with trifluoroacetylsilanes and difluoroacetylsilanes. Both aromatic and aliphatic alkenes as well as electron-deficient alkenes are suitable substrates for the highly cis-selective [2+1] cyclization reaction. A combination of experimental and computational studies identified triplet carbenes as being key intermediates in this transformation. The gram scale reaction and late-stage functionalization demonstrated the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xingxing Gong
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
30
|
Miele M, Castoldi L, Simeone X, Holzer W, Pace V. Straightforward synthesis of bench-stable heteroatom-centered difluoromethylated entities via controlled nucleophilic transfer from activated TMSCHF 2. Chem Commun (Camb) 2022; 58:5761-5764. [PMID: 35450981 DOI: 10.1039/d2cc00886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The commercially available and experimentally convenient (bp 65 °C) difluoromethyltrimethylsilane (TMSCHF2) is proposed as a valuable difluoromethylating transfer reagent for delivering the CHF2 moiety to various heteroatom-based electrophiles. Upon activation with an alkoxide, a conceptually intuitive nucleophilic displacement directly furnishes in high yields the bench-stable analogues.
Collapse
Affiliation(s)
- Margherita Miele
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Laura Castoldi
- University of Milano - Department of Pharmaceutical Sciences, Via Golgi 19, 20133 Milano, Italy
| | - Xenia Simeone
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Wolfgang Holzer
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria.
| | - Vittorio Pace
- University of Vienna - Department of Pharmaceutical Chemistry, Althanstrasse, 14 1090 Vienna, Austria. .,University of Torino - Department of Chemistry, Via Giuria 7, 10125 Torino, Italy
| |
Collapse
|
31
|
Wu Y, Wu FW, Zhou K, Li Y, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Rapid access to 9-arylfluorene and spirobifluorene through Pd-catalysed C-H arylation/deaminative annulation. Chem Commun (Camb) 2022; 58:6280-6283. [PMID: 35507823 DOI: 10.1039/d2cc01355j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe here a facile synthesis of 9-arylfluorenes and spirobifluorenes from readily available 1,1-diarylmethylamines and iodoarenes through Pd-cataylsed C(sp2)-H arylation and a sequential deaminative annulation. The reaction features high efficiency and simplicity of operation, constituting an interesting shortcut to access fluorene compounds.
Collapse
Affiliation(s)
- Yu Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiming Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
32
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Gang Zhou
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xingxing Gong
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiao Shen
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| |
Collapse
|
34
|
Xu J, Peng C, Yao B, Xu HJ, Xie Q. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. J Org Chem 2022; 87:6471-6478. [PMID: 35442691 DOI: 10.1021/acs.joc.2c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes a method for the deoxyfluorination of alcohols with KF as the fluorine source via in situ generation of highly active CF3SO2F. Diverse functionalities, including halogen, nitro, ketone, ester, alkene, and alkyne, are well tolerated. Mild conditions, a short reaction time, and a wide substrate scope make this method an excellent choice for the construction of C-F bonds.
Collapse
Affiliation(s)
- Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bolin Yao
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| |
Collapse
|
35
|
Pupo G, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Alkali Metal Fluorides and Beyond. J Am Chem Soc 2022; 144:5200-5213. [PMID: 35294171 PMCID: PMC9084554 DOI: 10.1021/jacs.2c00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.
Collapse
Affiliation(s)
- Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
36
|
Niu Y, Cao CK, Ge C, Qu H, Chen C. The Pd-catalyzed synthesis of difluoroethyl and difluorovinyl compounds with a chlorodifluoroethyl iodonium salt (CDFI). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Hu Y, Liu X, Ren Z, Hu B, Li J. Csp3‒H Monofluoroalkenylation via Stereoselective C‒F Bond Cleavage. Chem Commun (Camb) 2022; 58:2734-2737. [DOI: 10.1039/d1cc06247f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical nickel- and photoredox-catalyzed Csp3‒H monofluoroalkenylation through chelation-assisted Csp2‒F bond cleavage of gem-difluoroalkenes has been developed, which provides an expedient access to the synthesis of tetrasubstituted fluoroalkenes with complete...
Collapse
|
38
|
Rachor SG, Müller R, Wittwer P, Kaupp M, Braun T. Synthesis, Reactivity, and Bonding of Gold(I) Fluorido-Phosphine Complexes. Inorg Chem 2021; 61:357-367. [PMID: 34913690 DOI: 10.1021/acs.inorgchem.1c02959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold(I) fluorido complexes with phosphine ligands have been synthesized from their respective iodido precursors. The bonding situation in comparison between complexes bearing phosphines and N-heterocyclic carbenes (NHCs) was explored quantum-chemically, obtaining similar results for both. Calculations of the 19F NMR chemical shifts match the experimental values well, including the approximately 40 ppm low-field shifts for the phosphine complexes compared to the NHC complexes, in spite of similar negative charges on fluorine. The reactivity of the highly water-sensitive gold(I) fluorido complexes was studied, resulting in substitution at the metal using trimethylsilyl reagents. The compounds studied were characterized using NMR as well as X-ray diffraction methods.
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Philipp Wittwer
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
39
|
Yang S, Shi S, Chen Y, Ding Z. Synthesis of Dihydroxazines and Fluorinated Oxazepanes Using a Hypervalent Fluoroiodine Reagent. J Org Chem 2021; 86:14004-14010. [PMID: 33787277 DOI: 10.1021/acs.joc.1c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Application of a hypervalent fluoroiodane for the regiodivergent synthesis of dihydroxazines and fluorinated oxazepanes from allylaminoethanol was investigated. The reaction was carried out under mild conditions and gave the products in moderate to good yields. The selectivity of this transformation is controlled by the substituents of the allylaminoethanol.
Collapse
Affiliation(s)
- Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shoujie Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuhang Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Dong T, Tsui GC. Construction of Carbon-Fluorine Bonds via Copper-Catalyzed/-Mediated Fluorination Reactions. CHEM REC 2021; 21:4015-4031. [PMID: 34618399 DOI: 10.1002/tcr.202100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
The construction of carbon-fluorine bonds is an important yet challenging task in organic synthesis. Transition metal-catalyzed/-mediated C-F bond forming processes have recently emerged as a viable strategy and provided access to value-added monofluorinated compounds. A dramatic increase in fluorination methods using inexpensive and earth-abundant copper can be seen in the past decade surpassing those using palladium and silver. This review discusses the recent development of Cu-catalyzed/-mediated formation of C(sp2 )-F and C(sp3 )-F bonds.
Collapse
Affiliation(s)
- Tao Dong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
41
|
Kaźmierczak M, Bilska‐Markowska M. Diethylaminosulfur Trifluoride (DAST) Mediated Transformations Leading to Valuable Building Blocks and Bioactive Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
42
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
43
|
Cormier M, Tabey A, Christine T, Audrain H, Fouquet E, Hermange P. Synthesis and [*C]CO-labelling of (C,N) gem-dimethylbenzylamine-palladium complexes for potential applications in positron emission tomography. Dalton Trans 2021; 50:10608-10614. [PMID: 34282814 DOI: 10.1039/d1dt01633d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various aryl-palladium complexes were synthesised from gem-dimethylbenzylamine derivatives by C-H activation under extremely mild conditions. Interestingly, these highly stable structures reacted with [13C]carbon monoxide to produce the desired labelled lactams in 29% to 51% yields over the C-H activation/carbonylation steps. As representative examples, a non-natural amino acid and an estradiol-based conjugate were prepared and labelled in model experiments with [13C]CO in homogeneous or heterogeneous conditions. Especially, the latter was radiolabelled with [11C]CO using a convenient procedure from the resin-supported palladium complex precursor. Thus, these results strongly suggest that cyclometallated palladium complexes obtained from gem-dimethylbenzylamine moieties are promising precursors for the practical synthesis of new [11C]tracers for Positron Emission Tomography.
Collapse
Affiliation(s)
- Morgan Cormier
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Alexis Tabey
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Thifanie Christine
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Hélène Audrain
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Palle Juul-Jensen Boulevard 165, 8200 Aarhus N, Denmark
| | - Eric Fouquet
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Philippe Hermange
- Univ. Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
44
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Maria Faisca Phillips A, Pombeiro AJL. Recent Developments in Enantioselective Organocatalytic Cascade Reactions for the Construction of Halogenated Ring Systems. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Рeoples' Friendship University of Russia RUDN University) 6 Miklukho-Maklaya Street Moscow 117198 Russian Federation
| |
Collapse
|
46
|
Richardson P. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery. Expert Opin Drug Discov 2021; 16:1261-1286. [PMID: 34074189 DOI: 10.1080/17460441.2021.1933427] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction There continues to be an exponential rise in the number of small molecule drugs that contain either a fluorine atom or a fluorinated fragment. While the unique properties of fluorine enable the precise modulation of a molecule's physicochemical properties, strategic bioisosteric replacement of fragments with fluorinated moieties represents an area of significant growth.Areas covered This review discusses the strategic employment of fluorine substitution in the design and development of bioisosteres in medicinal chemistry. In addition, the classic exploitation of trifluoroethylamine group as an amide bioisostere is discussed. In each of the case studies presented, emphasis is placed on the context-dependent influence of the fluorinated fragment on the overall properties/binding of the compound of interest.Expert opinion Whereas utilization of bioisosteric replacements to modify molecular structures is commonplace within drug discovery, the overarching lesson to be learned is that the chances of success with this strategy significantly increase as the knowledge of the structure/environment of the biological target grows. Coupled to this, breakthroughs and learnings achieved using bioisosteres within a specific program are context-based, and though may be helpful in guiding future intuition, will not necessarily be directly translated to future programs. Another important point is to bear in mind what implications a structural change based on a bioisosteric replacement will have on the candidate molecule. Finally, the development of new methods and reagents for the controlled regioselective introduction of fluorine and fluorinated moieties into biologically relevant compounds particularly in drug discovery remains a contemporary challenge in organic chemistry.
Collapse
|
47
|
Hernández-Valdés D, Sadeghi S. Electrochemical Radiofluorination of Small Molecules: New Advances. CHEM REC 2021; 21:2397-2410. [PMID: 34010479 DOI: 10.1002/tcr.202100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Indexed: 12/14/2022]
Abstract
The development of new 18 F-based radiopharmaceuticals constantly demands innovations in the search for new radiofluorination methods. [18 F]fluoride is the simplest and most convenient chemical form of the isotope for the synthesis of 18 F-based radiopharmaceuticals. The ease of production and handling, as well as the possibility of obtaining high molar activities, makes it the preferred choice for radiofluorination. However, the use of [18 F]fluoride in late-stage radiofluorination comes with challenges, especially for the radiolabeling of electron-rich molecules where SN 2 and SN Ar reactions are not suitable. New developments in fluorination chemistry have been extensively studied to overcome these difficulties. Selective electrochemical oxidation of precursors, using a controlled potential, is one method to create reactive intermediates and overcome the activation energy required for nucleophilic fluorination of electron-rich moieties. This method has been used for years in cold fluorination of organic molecules and more recently has been adapted as an alternative to traditional radiofluorination methods. Although relatively young, this field stands out as a promising route for the synthesis of new PET probes as well as fluorinated pharmaceuticals. This review focuses on recent advances in electrochemical radiofluorination as an alternative for the late-stage radiolabeling of organic molecules.
Collapse
Affiliation(s)
- Daniel Hernández-Valdés
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8, Canada.,Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Wu Q, Mao YJ, Zhou K, Wang S, Chen L, Xu ZY, Lou SJ, Xu DQ. Pd-Catalysed direct C(sp 2)-H fluorination of aromatic ketones: concise access to anacetrapib. Chem Commun (Camb) 2021; 57:4544-4547. [PMID: 33956008 DOI: 10.1039/d1cc01047f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Pd-cataylsed direct ortho-C(sp2)-H fluorination of aromatic ketones has been developed for the first time. The reaction features good regioselectivity and simple operations, constituting an alternative shortcut to access fluorinated ketones. A concise synthesis of anacetrapib has also been achieved by using late-stage C-H fluorination as a key step.
Collapse
Affiliation(s)
- Qiuzi Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
49
|
Sharma S, Singh J, Sharma A. Visible Light Assisted Radical‐Polar/Polar‐Radical Crossover Reactions in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
50
|
Wang Y, Qi X, Ma Q, Liu P, Tsui GC. Stereoselective Palladium-Catalyzed Base-Free Suzuki–Miyaura Cross-Coupling of Tetrasubstituted gem-Difluoroalkenes: An Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yanhui Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiao Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|