1
|
Pessemesse Q, Mendoza SD, Peltier JL, Gojiashvili E, Ravn AK, Lorkowski J, Gembicky M, Bera SS, Payard PA, Engle KM, Jazzar R. Harnessing Multi-Center-2-Electron Bonds for Carbene Metal-Hydride Nanocluster Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419537. [PMID: 39821435 DOI: 10.1002/anie.202419537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
N-Heterocyclic carbene (NHC) ligands possess the ability to stabilize metal-based nanomaterials for a broad range of applications. With respect to metal-hydride nanomaterials, however, carbenes are rare, which is surprising if one considers the importance of metal-hydride bonds across the chemical sciences. In this study, we introduce a bottom-up approach that leverages preexisting metal-metal m-center-n-electron (mc-ne) bonds to access a highly stable cyclic(alkyl)amino carbene (CAAC) copper-hydride nanocluster, [(CAAC)6Cu14H12][OTf]2 with superior stability compared to Stryker's reagent, a popular commercial phosphine-based copper hydride catalyst. Density functional theory (DFT) calculations reveal that the enhanced stability stems from hydride-to-ligand backbonding with the π-accepting carbene. This new cluster emerges as an efficient and selective copper-hydride pre-catalyst, thereby providing a bench-stable alternative for catalytic applications.
Collapse
Affiliation(s)
- Quentin Pessemesse
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
| | - Skyler D Mendoza
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jesse L Peltier
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
- Departments of Chemistry & Chemical Biology, and Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Elguja Gojiashvili
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States
| | - Anne K Ravn
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jan Lorkowski
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Milan Gembicky
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sourav S Bera
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Pierre-Adrien Payard
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States
| |
Collapse
|
2
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
3
|
Yadav V, Jana A, Acharya S, Malola S, Nagar H, Sharma A, Kini AR, Antharjanam S, Machacek J, Adarsh KNVD, Base T, Häkkinen H, Pradeep T. Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties. Nat Commun 2025; 16:1197. [PMID: 39885129 PMCID: PMC11782596 DOI: 10.1038/s41467-025-56385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
We report the synthesis of [Ag17(o1-CBT)12]3- abbreviated as Ag17, a stable 8e⁻ anionic cluster with a unique Ag@Ag12@Ag4 core-shell structure, where o1-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg16(o1-CBT)12]3- (AuAg16), [Ag13Cu4(o1-CBT)12]3- (Ag13Cu4) and [AuAg12Cu4(o1-CBT)12]3- (AuAg12Cu4). These substitutions make systematic modulation of their structural and electronic properties. We show that Au preferentially occupies the core, while Cu localizes in the tetrahedral shell, influencing stability and structural diversity of the clusters. The band gap expands systematically (2.09 eV for Ag17 to 2.28 eV for AuAg12Cu4), altering optical absorption and emission. Ultrafast optical measurements reveal longer excited-state lifetimes for Cu-containing clusters, highlighting the effect of heteroatom incorporation. These results demonstrate a tunable platform for designing nanoclusters with tailored electronic properties, with implications for optoelectronics and catalysis.
Collapse
Affiliation(s)
- Vivek Yadav
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Arijit Jana
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sami Malola
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland
| | - Harshita Nagar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ankit Sharma
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic.
| | - Hannu Häkkinen
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India.
| |
Collapse
|
4
|
Liang H, Chiu TH, Kahlal S, Liao JH, Liu CW, Saillard JY. Hydride-containing Ag- and Au-rich 8-electron superatomic icosahedral cores: a DFT investigation. NANOSCALE 2025; 17:2860-2870. [PMID: 39835807 DOI: 10.1039/d4nr04862h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Following several reports on ligand-protected atom-precise nanoclusters which encapsulate hydrides as interstitial dopants within their icosahedral core, the stability, structure and bonding of MHx@Ag12 and MHx@Au12 (M = Mo-Ag; W-Au) 8-electron cores is investigated through DFT calculations. The encapsulation of up to x = 3 hydrides appears to be possible but at the cost of substantial structural distortions. In most of the computed models, the hydrides are found nearly free to move inside their icosahedral cages. Systems with one (nido-type) or two (arachno-type) missing vertices on the icosahedron are also predicted to be viable. In general, the MHx@Au12 species appear to be of lower stability than their MHx@Ag12 homologs. We believe that this the work will provide some new directions for the synthesis of hydride-encapsulating superatoms.
Collapse
Affiliation(s)
- Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | | |
Collapse
|
5
|
Chiu TH, Pillay MN, Wu YY, Niihori Y, Negishi Y, Chen JY, Chen YJ, Kahlal S, Saillard JY, Liu CW. Controlled aggregation of Pt/PtH/Rh/RhH doped silver superatomic nanoclusters into 16-electron supermolecules. Chem Sci 2024:d4sc02920h. [PMID: 39246344 PMCID: PMC11376050 DOI: 10.1039/d4sc02920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
The assembly of discrete superatomic nanoclusters into larger constructs is a significant stride towards developing a new set of artificial/pseudo-elements. Herein, we describe a novel series of 16-electron supermolecules derived from the combination of discrete 8-electron superatomic synthons containing interstitial hydrides as vertex-sharing building blocks. The symmetric (RhH)2Ag33[S2P(OPr)2]17 (1) and asymmetric PtHPtAg32[S2P(OPr)2]17 (2) are characterized by ESI-MS, SCXRD, NMR, UV-vis absorption spectra, electrochemical and computational methods. Cluster 1 represents the first group 9-doped 16-electron supermolecule, composed of two icosahedral (RhH)@Ag12 8-electron superatoms sharing a silver vertex. Cluster 2 results from the assembly of two distinct icosahedral units, Pt@Ag12, and (PtH)@Ag12. In both cases, the presence of the interstitial hydrides is unprecedented. The stability of the supermolecules is investigated, and 2 spontaneously transforms into Pt2Ag33[S2P(OPr)2]17 (3) with thermal treatment. The lability of the hydride within the icosahedral framework in solution at low-temperature was confirmed by the VT-NMR.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Yoshiki Niihori
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Jie-Ying Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| |
Collapse
|
6
|
Kumar P, Khirid S, Jangid DK, Nishad CS, Chauhan P, Kumari P, Meena S, Bose SK, Kumar A, Banerjee B, Dhayal RS. Dithiophosphonate-Protected Eight-Electron Superatomic Ag 21 Nanocluster: Synthesis, Isomerism, Luminescence, and Catalytic Activity. Inorg Chem 2024; 63:13724-13737. [PMID: 38970493 DOI: 10.1021/acs.inorgchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The structure-property relationship considering isomerism-tuned photoluminescence and efficient catalytic activity of silver nanoclusters (NCs) is exclusive. Asymmetrical dithiophosphonate NH4[S2P(OR)(p-C6H4OCH3)] ligated first atomically precise silver NCs [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 {where, R = nPr (1), Et (2)} were established by single-crystal X-ray diffraction and characterized by electrospray ionization mass spectrometry, NMR (31P, 1H, 2H), X-ray photoelectron spectroscopy, UV-visible, energy-dispersive X-ray spectroscopy, Fourier transforms infrared, thermogravimetric analysis, etc. NCs 1 and 2 consist of eight silver atoms in a cubic framework and enclose an Ag@Ag12-centered icosahedron to constitute an Ag21 core of Th symmetry, which is concentrically inscribed within the S24 snub-cube, P12 cuboctahedron, and the O12 truncated tetrahedron formed by 12 dithiophosphonate ligands. These NCs facilitate to be an eight-electron superatom (1S21P6), in which eight capping Ag atoms exhibit structural isomerism with documented isoelectronic [Ag21{S2P(OiPr)2}12]PF6, 3. In contrast to 3, the stapling of dithiophosphonates in 1 and 2 triggered bluish emission within the 400 to 500 nm region at room temperature. The density functional theory study rationalized isomerization and optical properties of 1, 2, and 3. Both (1, and 2) clusters catalyzed a decarboxylative acylarylation reaction for rapid oxindole synthesis in 99% yield under ambient conditions and proposed a multistep reaction pathway. Ultimately, this study links nanostructures to their physical and catalytic properties.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Samreet Khirid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Dilip Kumar Jangid
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | | | - Poonam Chauhan
- Department of Physics, Central University of Punjab, Bathinda 151401, India
| | - Priti Kumari
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Sangeeta Meena
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain (Deemed-to-be-University), Jain Global Campus, Bangalore 562112, India
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rajendra S Dhayal
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
7
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
8
|
Ma QQ, Zhai XJ, Huang JH, Si Y, Dong XY, Zang SQ, Mak TCW. Construction of novel Ag(0)-containing silver nanoclusters by regulating auxiliary phosphine ligands. NANOSCALE 2024. [PMID: 38660780 DOI: 10.1039/d4nr01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Controlled synthesis of metal clusters through minor changes in surface ligands holds significant interest because the corresponding entities serve as ideal models for investigating the ligand environment's stereochemical and electronic contributions that impact the corresponding structures and properties of metal clusters. In this work, we obtained two Ag(0)-containing nanoclusters (Ag17 and Ag32) with near-infrared emissions by regulating phosphine auxiliary ligands. Ag17 and Ag32 bear similar shells wherein Ag17 features a trigonal bipyramid Ag5 kernel while Ag32 has a bi-icosahedral interpenetrating an Ag20 kernel. Ag17 and Ag32 showed a near-infrared emission (NIR) of around 830 nm. Benefiting from the rigid structure, Ag17 displayed a more intense near-infrared emission than Ag32. This work provides new insight into the construction of novel superatomic silver nanoclusters by regulating phosphine ligands.
Collapse
Affiliation(s)
- Qing-Qing Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xue-Jing Zhai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jia-Hong Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| |
Collapse
|
9
|
Ni YR, Pillay MN, Chiu TH, Rajaram J, Wu YY, Kahlal S, Saillard JY, Liu CW. Diselenophosphate Ligands as a Surface Engineering Tool in PdH-Doped Silver Superatomic Nanoclusters. Inorg Chem 2024; 63:2766-2775. [PMID: 38253002 PMCID: PMC10848256 DOI: 10.1021/acs.inorgchem.3c04253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The first hydride-doped Pd/Ag superatoms stabilized by selenolates are reported: [PdHAg19(dsep)12] [dsep = Se2P(OiPr)2] 1 and [PdHAg20(dsep)12]+ 2. 1 was derived from the targeted transformation of [PdHAg19(dtp)12] [dtp = S2P(OiPr)2] by ligand exchange, whereas 2 was obtained from the addition of trifluoroacetic acid to 1, resulting in a symmetric redistribution of the capping silver atoms. The transformations are all achieved while retaining an 8-electron superatomic configuration. VT-NMR attests to the good stability of the NCs in solution, and single-crystal X-ray diffraction reveals the crucial role that the interstitial hydride plays in directing the position of the capping silver atoms. The total structures are reported alongside their electronic and optical properties. 1 and 2 are phosphorescent with a lifetime of 73 and 84 μs at 77 K, respectively. The first antibacterial activity data for superatomic bimetallic Pd/Ag nanoclusters are also reported.
Collapse
Affiliation(s)
- Yu-Rong Ni
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Michael N. Pillay
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Tzu-Hao Chiu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Jagadeesh Rajaram
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Ying-Yann Wu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Samia Kahlal
- Univ
Rennes CNRS, ISC-UMR 6226, F-35000 Rennes, France
| | | | - C. W. Liu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| |
Collapse
|
10
|
Li H, Wei X, Kang X, Zhu M. Effects of bromine-containing counterion salts in directing the structures of medium-sized silver nanoclusters. NANOSCALE 2024; 16:1254-1259. [PMID: 38117189 DOI: 10.1039/d3nr05464k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The preparation and structural determination of silver nanoclusters (especially the medium-sized Ag clusters) remain more challenging relative to those of their gold counterparts because of the comparative instability of the former. In this work, three medium-sized Ag clusters were controllably synthesized and structurally determined, namely, [Ag52(S-Adm)30Br4H20]2- (Ag52 for short), Ag54(S-Adm)30Br4H20 (Ag54 for short), and [Ag58(S-Adm)30Br4(NO3)2H22]2+ (Ag58 for short) nanoclusters. Specifically, the introduction of PPh4Br gave rise to the generation of Ag52 and Ag54 nanoclusters with homologous compositions and configurations, while the TOABr salt selected Ag58 as the sole cluster product, whose geometric structure was completely different from those of Ag52 and Ag54 nanoclusters. In addition, the optical absorptions and emissions of the three medium-sized silver nanoclusters were compared. The findings in this work not only provide three uniquely medium-sized nanoclusters to enrich the silver cluster family but also point out a new approach (i.e., changing the counterion salt) for the preparation of new nanoclusters with novel structures.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
11
|
Wang Z, Zhao H, Li YZ, Zhang C, Gupta RK, Tung CH, Sun D. Thiacalix[4]arene-Protected Silver Nanoclusters Encapsulating Different Two-Electron Superatom Oligomers. NANO LETTERS 2024; 24:458-465. [PMID: 38148139 DOI: 10.1021/acs.nanolett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The subvalent silver kernel represents the nascent state of silver cluster formation, yet the growth mechanism has long been elusive. Herein, two silver nanoclusters (Ag30 and Ag34) coprotected by TC4A4- (H4TC4A = p-tert-butylthiacalix[4]arene) and TBPMT- (TBPMTH = 4-tert-butylbenzenemethanethiol) containing 6e and 4e silver kernels are synthesized and characterized. The trimer of the 2e superatom Ag14 kernel in Ag30 is built from a central Ag6 octahedron sandwiched by two orthogonally oriented Ag5 trigonal bipyramids through sharing vertexes, whereas a double-octahedral Ag10 kernel in Ag34 is a dimer of 2e superatoms. They manifest disparate polyhedron fusion growth patterns at the beginning of the silver cluster formation. Their excellent solution stabilities are contributed by the multisite and multidentate coordination fashion of TC4A4- and the special valence electron structures. This work demonstrates the precise control of silver kernel growth by the solvent strategy and lays a foundation for silver nanocluster application in photothermal conversion.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Hui Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, People's Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
12
|
Tang L, Han Q, Wang B, Yang Z, Song C, Feng G, Wang S. Constructing perfect cubic Ag-Cu alloyed nanoclusters through selective elimination of phosphine ligands. Phys Chem Chem Phys 2023; 26:62-66. [PMID: 38086629 DOI: 10.1039/d3cp04224c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Qikai Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhonghua Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Chunyuan Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Guanyu Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
13
|
Li LJ, Luo YT, Tian YQ, Wang P, Yi XY, Yan J, Pei Y, Liu C. Unveiling the Remarkable Stability and Catalytic Activity of a 6-Electron Superatomic Ag 30 Nanocluster for CO 2 Electroreduction. Inorg Chem 2023; 62:14377-14384. [PMID: 37620296 DOI: 10.1021/acs.inorgchem.3c02083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanocluster catalysts face a significant challenge in striking the right balance between stability and catalytic activity. Here, we present a thiacalix[4]arene-protected 6-electron [Ag30(TC4A)4(iPrS)8] nanocluster that demonstrates both high stability and catalytic activity. The Ag30 nanocluster features a metallic core, Ag104+, consisting of two Ag3 triangles and one Ag4 square, shielded by four {Ag5@(TC4A)4} staple motifs. Based on DFT calculations, the Ag104+ metallic kernel can be viewed as a trimer comprising 2-electron superatomic units, exhibiting a valence electron structure similar to that of the Be3 molecule. Notably, this is the first crystallographic evidence of the trimerization of 2-electron superatomic units. Ag30 can reduce CO2 into CO with a Faraday efficiency of 93.4% at -0.9 V versus RHE along with excellent long-term stability. Its catalytic activity is far superior to that of the chain-like AgI polymer ∞1{[H2Ag5(TC4A)(iPrS)3]} (∞1Agn), with the composition similar to Ag30. DFT calculations elucidated the catalytic mechanism to clarify the contrasting catalytic performances of the Ag30 and ∞1Agn polymers and disclosed that the intrinsically higher activity of Ag30 may be due to the greater stability of the dual adsorption mode of the *COOH intermediate on the metallic core.
Collapse
Affiliation(s)
- Liang-Jun Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-Ting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
14
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
15
|
Chiu TH, Liao JH, Wu YY, Chen JY, Chen YJ, Wang X, Kahlal S, Saillard JY, Liu CW. Hydride Doping Effects on the Structure and Properties of Eight-Electron Rh/Ag Superatoms: The [RhH x@Ag 21-x{S 2P(O nPr) 2} 12] ( x = 0-2) Series. J Am Chem Soc 2023. [PMID: 37473452 DOI: 10.1021/jacs.3c04482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Three hitherto unknown eight-electron rhodium/silver alloy nanoclusters, [RhAg21{S2P(OnPr)2}12] (1), [RhHAg20{S2P(OnPr)2}12] (2), and [RhH2Ag19{S2P(OnPr)2}12] (3), have been isolated and fully characterized. Cluster 1 contains a regular Rh@Ag12 icosahedral core, whereas 2 and 3 exhibit distorted RhH@Ag12 and RhH2@Ag12 icosahedral cores. The single-crystal neutron structure of 2 located the encapsulated hydride at the center of an enlarged RhAg3 tetrahedron. A similar position was found by neutron diffraction for one of the hydrides in 3, whereas the other hydride is trigonally coordinated to Rh and an elongated Ag-Ag edge. The solid-state structures of 1-3 possess C1 symmetry due to the asymmetric arrangement of the surrounding capping Ag atoms. Our investigation shows that the insertion of one hydride dopant provokes the elimination of one capping silver atom on the cluster surface, resulting in the general formula [RhHx@Ag21-x{S2P(OnPr)2}12] (x = 0-2), which maintains the same number of cluster electrons as well as neutral charge. Clusters 1-3 exhibit an intense emission band in the NIR region. Contrarily to their PdAg21 and PdHAg20 relatives, the 4d orbitals of the encapsulated heterometal are somewhat involved in the optical processes.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| | - Jie-Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan (Republic of China)
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan (Republic of China)
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (Republic of China)
| |
Collapse
|
16
|
Yonesato K, Yanai D, Yamazoe S, Yokogawa D, Kikuchi T, Yamaguchi K, Suzuki K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat Chem 2023; 15:940-947. [PMID: 37291453 DOI: 10.1038/s41557-023-01234-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The surfaces of metal nanoclusters, including their interface with metal oxides, exhibit a high reactivity that is attractive for practical purposes. This high reactivity, however, has also hindered the synthesis of structurally well-defined hybrids of metal nanoclusters and metal oxides with exposed surfaces and/or interfaces. Here we report the sequential synthesis of structurally well-defined {Ag30} nanoclusters in the cavity of ring-shaped molecular metal oxides known as polyoxometalates. The {Ag30} nanoclusters possess exposed silver surfaces yet are stabilized both in solution and the solid state by the surrounding ring-shaped polyoxometalate species. The clusters underwent a redox-induced structural transformation without undesirable agglomeration or decomposition. Furthermore, {Ag30} nanoclusters showed high catalytic activity for the selective reduction of several organic functional groups using H2 under mild reaction conditions. We believe that these findings will serve for the discrete synthesis of surface-exposed metal nanoclusters stabilized by molecular metal oxides, which may in turn find applications in, for example, the fields of catalysis and energy conversion.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| |
Collapse
|
17
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
18
|
Artem'ev AV, Liu CW. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem Commun (Camb) 2023. [PMID: 37184074 DOI: 10.1039/d3cc01215h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atomically precise clusters of group 11 metals (Cu, Ag, and Au) attract considerable attention owing to their remarkable structure and fascinating properties. One of the unique subclasses of these clusters is based on dichalcophosphate ligands of [(RO)2PE2]- type (E = S or Se, and R = alkyl). These ligands successfully stabilise the most diverse Cu, Ag, and Au clusters and superatoms, spanning from simple ones to amazing assemblies featuring unusual structural and bonding patterns. It is noteworthy that such complicated clusters are assembled directly from cheap and simple reagents, metal(I) salts and dichalcophosphate anions. This reaction, when performed in the presence of a hydride or other anion sources, or foreign metal ions, results in hydrido- or anion-templated homo- or heteronuclear structures. In this feature article, we survey the recent advances in this exciting field, highlighting the powerful synthetic capabilities of the system "a metal(I) salt - [(RO)2PX2]- ligands - a templating anion or borohydride" as an inexhaustible platform for the creation of new atomically precise clusters, superatoms, and nanoalloys.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - C W Liu
- National Dong Hwa University, Department of Chemistry, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
19
|
Jia T, Guan ZJ, Zhang C, Zhu XZ, Chen YX, Zhang Q, Yang Y, Sun D. Eight-Electron Superatomic Cu 31 Nanocluster with Chiral Kernel and NIR-II Emission. J Am Chem Soc 2023; 145:10355-10363. [PMID: 37104621 DOI: 10.1021/jacs.3c02215] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.
Collapse
Affiliation(s)
- Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yun-Xin Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
20
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Xia XY, Xia YH, Fang JJ, Liu Z, Xie YP, Lu X. Silver alkynyl coordination chains and clusters assembled with sulfonates. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Surface modifications of eight-electron palladium silver superatomic alloys. Commun Chem 2022; 5:151. [PMID: 36697889 PMCID: PMC9814913 DOI: 10.1038/s42004-022-00769-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Atomically precise thiolate-protected coinage metal nanoclusters and their alloys are far more numerous than their selenium congeners, the synthesis of which remains extremely challenging. Herein, we report the synthesis of a series of atomically defined dithiophosph(in)ate protected eight-electron superatomic palladium silver nanoalloys [PdAg20{S2PR2}12], 2a-c (where R = OiPr, a; OiBu, b; Ph, c) via ligand exchange and/or co-reduction methods. The ligand exchange reaction on [PdAg20{S2P(OnPr)2}12], 1, with [NH4{Se2PR2}12] (where R = OiPr, or OnPr) leads to the formation of [PdAg20{Se2P(OiPr)2}12] (3) and [PdAg20{Se2P(OnPr)2}12] (4), respectively. Solid state structures of 2a, 2b, 3 and 4 unravel different PdAg20 metal frameworks from their parent cluster, originating from the different distributions of the eight-capping silver(I) atoms around a Pd@Ag12 centered icosahedron with C2, D3, Th and Th symmetries, respectively. Surprisingly ambient temperature crystallization of the reaction product 3 obtained by the ligand exchange reaction on 1 has resulted in the co-crystallization of two isomers in the unit cell with overall T (3a) and C3 (3b) symmetries, respectively. To our knowledge, this is the first ever characterized isomeric pair among the selenolate-protected NCs. Density functional theory (DFT) studies further rationalize the preferred geometrical isomerism of the PdAg20 core.
Collapse
|
23
|
Jana A, Unnikrishnan PM, Poonia AK, Roy J, Jash M, Paramasivam G, Machacek J, Adarsh KNVD, Base T, Pradeep T. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorg Chem 2022; 61:8593-8603. [PMID: 35621298 DOI: 10.1021/acs.inorgchem.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, structural characterization, and photophysical properties of a propeller-shaped Ag21 nanomolecule with six rotary arms, protected with m-carborane-9-thiol (MCT) and triphenylphosphine (TPP) ligands. Structural analysis reveals that the nanomolecule has an Ag13 central icosahedral core with six directly connected silver atoms and two more silver atoms connected through three Ag-S-Ag bridging motifs. While 12 MCT ligands protect the core through metal-thiolate bonds in a 3-6-3-layered fashion, two TPP ligands solely protect the two bridging silver atoms. Interestingly, the rotational orientation of a silver sulfide staple motif is opposite to the orientation of carborane ligands, resembling the existence of a bidirectional rotational orientation in the nanomolecule. Careful analysis reveals that the orientation of carborane ligands on the cluster's surface resembles an assembly of double rotors. The zero circular dichroism signal indicates its achiral nature in solution. There are multiple absorption peaks in its UV-vis absorption spectrum, characteristic of a quantized electronic structure. The spectrum appears as a fingerprint for the cluster. High-resolution electrospray ionization mass spectrometry proves the structure and composition of the nanocluster in solution, and systematic fragmentation of the molecular ion starts with the loss of surface-bound ligands with increasing collision energy. Its multiple optical absorption features are in good agreement with the theoretically calculated spectrum. The cluster shows a narrow near-IR emission at 814 nm. The Ag21 nanomolecule is thermally stable at ambient conditions up to 100 °C. However, white-light illumination (lamp power = 120-160 W) shows photosensitivity, and this induces structural distortion, as confirmed by changes in the Raman and electronic absorption spectra. Femtosecond and nanosecond transient absorption studies reveal an exceptionally stable excited state having a lifetime of 3.26 ± 0.02 μs for the carriers, spread over a broad wavelength region of 520-650 nm. The formation of core-centered long-lived carriers in the excited state is responsible for the observed light-activated structural distortion.
Collapse
Affiliation(s)
- Arijit Jana
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Parvathy M Unnikrishnan
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ajay K Poonia
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Jayoti Roy
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Madhuri Jash
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ganesan Paramasivam
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | - Thalappil Pradeep
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| |
Collapse
|
24
|
Yonesato K, Yamazoe S, Kikkawa S, Yokogawa D, Yamaguchi K, Suzuki K. Variable control of the electronic states of a silver nanocluster via protonation/deprotonation of polyoxometalate ligands. Chem Sci 2022; 13:5557-5561. [PMID: 35694364 PMCID: PMC9116452 DOI: 10.1039/d2sc01156e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The properties of metal nanoclusters depend on both their structures and electronic states. However, in contrast to the significant advances achieved in the synthesis of structurally well-defined metal nanoclusters, systematic control of their electronic states is still challenging. In particular, stimuli-responsive and reversible control of the electronic states of metal nanoclusters is attractive from the viewpoint of their practical applications. Recently, we developed a synthesis method for atomically precise Ag nanoclusters using polyoxometalates (POMs) as inorganic ligands. Herein, we exploited the acid/base nature of POMs to reversibly change the electronic states of an atomically precise {Ag27} nanocluster via protonation/deprotonation of the surrounding POM ligands. We succeeded in systematically controlling the electronic states of the {Ag27} nanocluster by adding an acid or a base (0-6 equivalents), which was accompanied by drastic changes in the ultraviolet-visible absorption spectra of the nanocluster solutions. These results demonstrate the great potential of Ag nanoclusters for unprecedented applications in various fields such as sensing, biolabeling, electronics, and catalysis.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
25
|
Yen WJ, Liao JH, Chiu TH, Wen YS, Liu CW. Homoleptic Silver-Rich Trimetallic M 20 Nanocluster. Inorg Chem 2022; 61:6695-6700. [PMID: 35467348 DOI: 10.1021/acs.inorgchem.1c04013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two silver-rich M20 alloy nanoclusters (NCs), [Cu3.5Ag16.5{S2P(OnPr)2}12] (1) and [Cu2.5AuAg16.5{S2P(OnPr)2}12] (2), were synthesized and fully characterized by electrospray ionization mass spectrometry, NMR spectroscopy, and X-ray crystallography. Cluster 2, the first structurally characterized trimetallic M20 NC, was produced by doping one Au atom into a bimetallic M20 NC. Structural analyses showed the preferred positions of Group 11 metals in the yielded M20 NCs. Their antioxidation ability has been investigated, and the time-dependent UV-vis spectrum shows that the presence of CuI atoms in structures 1 and 2 can improve the antioxidant ability.
Collapse
Affiliation(s)
- Wei-Jung Yen
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China
| | - Yuh-Sheng Wen
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan, Republic of China
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China
| |
Collapse
|
26
|
Wang Z, Zhu YJ, Li YZ, Zhuang GL, Song KP, Gao ZY, Dou JM, Kurmoo M, Tung CH, Sun D. Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nat Commun 2022; 13:1802. [PMID: 35379821 PMCID: PMC8979969 DOI: 10.1038/s41467-022-29370-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe structural transformations of metal nanoclusters are typically quite complex processes involving the formation and breakage of several bonds, and thus are challenging to study. Herein, we report a case where two lacunary Keggin polyoxometallate templated silver single-pods [PW9O34@Ag51] (SD/Ag51b) fuse to a double-pod [(PW9O34)2@Ag72] by reacting with 4,4’-bipyridine (bipy) or 1,4-bis(4-pyridinylmethyl)piperazine (pi-bipy). Their crystal structures reveal the formation of a 2D 44-sql layer (SD/Ag72a) with bipy and a 3D pcu framework (SD/Ag72c) with pi-bipy. The PW9O349− retains its structure during the cluster fusion and cluster-based network formation. Although the two processes, stripping of an Ag-ligands interface followed by fusion, and polymerization, are difficult to envisage, electrospray ionization mass spectrometry provides enough evidences for such a proposal to be made. Through this example, we expect the structural transformation to become a powerful method for synthesizing silver nanoclusters and their infinite networks, and to evolve from trial-and-error to rational.
Collapse
|
27
|
Wang Z, Su HF, Zhang LP, Dou JM, Tung CH, Sun D, Zheng L. Stepwise Assembly of Ag 42 Nanocalices Based on a Mo VI-Anchored Thiacalix[4]arene Metalloligand. ACS NANO 2022; 16:4500-4507. [PMID: 35230817 DOI: 10.1021/acsnano.1c10905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metalloligand strategy has been well recognized in the syntheses of heterometallic coordination polymers; however, such a strategy used in the assembly of silver nanoclusters is not broadly available. Herein, we report the stepwise syntheses of a family of halogen-templated Ag42 nanoclusters (Ag42c-Ag42f) based on MoVI-anchored p-tert-butylthiacalix[4]arene (H4TC4A) as a metalloligand (hereafter named MoO3-TC4A). X-ray crystallography demonstrates that they are similar C3-symmetric silver-organic nanocalices capped by six MoO3-TC4A metalloligands, which are evenly distributed up and down the base of 42 silver atoms. These nanoclusters can be disassembled to six bowl-shaped [Ag11(MoO3-TC4A)(RS)3] secondary building units (SBUs, R = Et or nPr), which are fused together in a face-sharing fashion surrounding Cl- or Br- as a central anion template. The electrospray mass spectrometry (ESI-MS) indicates their high stabilities in solution and verifies the formation of the MoO3-TC4A metalloligand, thereby rationalizing the overall stepwise assembly process for them. Moreover, Ag42c shows lower cytotoxicity and better activity against the HepG-2 cell line than MCF-7 and BGC-823. These results not only exemplify the effectiveness of a thiacalix[4]arene-based metalloligand in the assembly of silver nanoclusters but also give us profound insight about the step-by-step assembly process in silver nanoclusters.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Lansun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
28
|
Guan ZJ, He RL, Yuan SF, Li JJ, Hu F, Liu CY, Wang QM. Ligand Engineering toward the Trade-Off between Stability and Activity in Cluster Catalysis. Angew Chem Int Ed Engl 2022; 61:e202116965. [PMID: 35014157 DOI: 10.1002/anie.202116965] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 01/08/2023]
Abstract
We report the structures, stability and catalysis properties of two Ag21 nanoclusters, namely [Ag21 (H2 BTCA)3 (O2 PPh2 )6 ]SbF6 (1) and [Ag21 (C≡CC6 H3 -3,5-R2 )6 (O2 PPh2 )10 ]SbF6 (2) (H4 BTCA=p-tert-butylthiacalix[4]arene, R=OMe). Both Ag21 structures possess an identical icosahedral kernel that is surrounded by eight peripheral Ag atoms. Single-crystal structural analysis and ESI-MS revealed that 1 is an 8-electron cluster and 2 has four free electrons. Theoretical results show that the P-symmetry orbitals are found as HOMO-1 and HOMO states in 1, and the frontier unoccupied molecular orbitals (LUMO, LUMO+1 and LUMO+2) show D-character, indicating 1 is a superatomic cluster with an electronically closed shell 1S2 1P6 , while 2 has an incomplete shell configuration 1S2 1P2 . These two Ag21 clusters show superior stability under ambient conditions, and 1 is robust even at 90 °C in toluene and under oxidative conditions (30 % H2 O2 ). Significantly, 2 exhibits much higher activity than 1 as catalyst in the reduction of 4-nitrophenol. This work demonstrates that ligands can influence the electronic structures of silver clusters, and further affect their stability and catalytic performance.
Collapse
Affiliation(s)
- Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Rui-Lin He
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Chun-Yu Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
29
|
Xu C, Yuan Q, Wei X, Li H, Shen H, Kang X, Zhu M. Surface environment complication makes Ag 29 nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chem Sci 2022; 13:1382-1389. [PMID: 35222922 PMCID: PMC8809389 DOI: 10.1039/d1sc06002c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Silver nanoclusters have received unprecedented attention in cluster science owing to their promising functionalities and intriguing physical/chemical properties. However, essential instability significantly impedes their extensive applications. We herein propose a strategy termed “surface environment complication” to endow Ag29 nanoclusters with high robustness. The Ag29(S-Adm)18(PPh3)4 nanocluster with monodentate PPh3 ligands was extremely unstable and uncrystallizable. By substituting PPh3 with bidentate PPh2py with dual coordination sites (i.e., P and N), the Ag29 cluster framework was twisted because of the generation of N–Ag interactions, and three NO3 ligands were further anchored onto the nanocluster surface, yielding a new Ag29(S-Adm)15(NO3)3(PPh2py)4 nanocluster with high stability. The metal-control or ligand-control effects on stabilizing the Ag29 nanocluster were further evaluated. Besides, Ag29(S-Adm)15(NO3)3(PPh2py)4 followed a unique packing mode in the supracrystal lattice with several intercluster channels, which has yet been observed in other M29 cluster crystals. Overall, this work presents a new approach (i.e., surface environment complication) for tailoring the surface environment and improving the stability of metal nanoclusters. A strategy of “surface environment complication” has been exploited to endow Ag29 nanoclusters with high robustness and a unique packing mode in the supracrystal lattice.![]()
Collapse
Affiliation(s)
- Chao Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Qianqin Yuan
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xiao Wei
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Hao Li
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Honglei Shen
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
30
|
Su YM, Cao ZZ, Feng L, Xue QW, Tung CH, Gao ZY, Sun D. Thermally Hypsochromic or Bathochromic Emissions? The Silver Nuclei Does Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104524. [PMID: 34816615 DOI: 10.1002/smll.202104524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Structural modulation of core-shell silver nanoclusters from the inside is a huge challenge but of great importance in their syntheses. Herein, two silver nanoclusters [Ag3 S9 @Ag42 ] (SD/Ag45b) and [Ag9 S9 @Ag42 ] (SD/Ag51a) are isolated in the presence of different kinds of sulfonic acids. Uniquely, SD/Ag45b and SD/Ag51a show typical core-shell structures with the similar Ag42 shell but different cores. The outer shell of 42 silver atoms comprises two Ag3 trigons at two poles encircled by three equatorial distorted square cupolas (J4 , Ag12 ). The core in SD/Ag45b is a silver trigon ligated by nine S2- ions (Ag3 S9 ), while a tricapped triangular prismatic Ag9 also ligated by the same amount of S2- ions (Ag9 S9 ) is observed in the inner core of SD/Ag51a. The electrospray ionization mass spectrometry (ESI-MS) indicates that the introduction of p-toluenesulfonic acid can realize the transformation from SD/Ag45b to Ag51 . SD/Ag45b and SD/Ag51a show inverse luminescence thermochromic behaviors in the near-infrared (NIR) region, mainly dictated by the inner silver cores. This work not only realizes the synthesis of new silver nanoclusters by core modulation but also provides a prototype to get molecular-level insight into the correlation between structure and luminescence thermochromism.
Collapse
Affiliation(s)
- Yan-Min Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Zhao-Zhen Cao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Qing-Wang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
31
|
Guan Z, He R, Yuan S, Li J, Hu F, Liu C, Wang Q. Ligand Engineering toward the Trade‐Off between Stability and Activity in Cluster Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zong‐Jie Guan
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Rui‐Lin He
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Shang‐Fu Yuan
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Jiao‐Jiao Li
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Feng Hu
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Chun‐Yu Liu
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| | - Quan‐Ming Wang
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P.R. China
| |
Collapse
|
32
|
Xu D, Yang Y, Fan W, He Z, Zou J, Feng L, Li MB, Wu Z. Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Gam F, Chantrenne I, Kahlal S, Chiu TH, Liao JH, Liu CW, Saillard JY. Alloying dichalcogenolate-protected Ag 21 eight-electron nanoclusters: a DFT investigation. NANOSCALE 2021; 14:196-203. [PMID: 34908067 DOI: 10.1039/d1nr06019h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The isoelectronic doping of dichalcogenolato nanoclusters of the type [Ag21{E2P(OR)2}12]+ (E = S, Se) by any heteroatom belonging to groups 9-12 was systematically investigated using DFT calculations. Although they can differ in their global structure, all of these species have the same M@M12-centered icosahedral core. In any case, the different structure types are all very close in energy. In all of them, three different alloying sites can be identified (central, icosahedral, peripheral) and calculations allowed the trends in heteroatom site occupation preference across the group 9-12 family to be revealed. These trends are supported by complementary experimental results. They were rationalized on the basis of electronegativity, potential involvement in the bonding of valence d-orbitals and atom size. TD-DFT calculations showed that the effect of doping on optical properties is sizable and this should stimulate research on the modulation of luminescence properties in the dithiolato and diseleno families of complexes.
Collapse
Affiliation(s)
- Franck Gam
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Isaac Chantrenne
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | | |
Collapse
|
34
|
van Zyl WE, Liu CW. Interstitial hydrides in nanoclusters can reduce M(I) (M = Cu, Ag, Au) to M(0) and form stable superatoms. Chemistry 2021; 28:e202104241. [PMID: 34936722 DOI: 10.1002/chem.202104241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/11/2022]
Abstract
High-nuclearity clusters resemble the closest model between the determination of atomically precise chemical species and the bulk metallic version thereof, and both impacts on a variety of applications, including catalysis, optics, sensors, and new energy sources. Our interest lies with the nanoclusters of the Group 11 (Cu, Ag, Au) metals stabilized by dichalcogenido and hydrido ligands. Herein, we describe superatoms formed by the clusters and their relationship with precursor hydrido clusters. Specifically, our concept seeks to demonstrate a possible correlation that exist between hydrido clusters (and nanoalloys) and the formation of superatoms, with the loss of hydrides and typically with release of H 2 gas. These reactions appear to be internal self-redox reactions and require no additional reducing agent, but does seem to require a similar core structure. Knowledge of such processes could provide insight into how clusters grow and an understanding in bridging the atomically precise cluster - metal nanoparticle mechanism.
Collapse
Affiliation(s)
- Werner E van Zyl
- University of Kwazulu-Natal, School of Chemistry and Physics, SOUTH AFRICA
| | - Chen-Wei Liu
- National Dong Hwa University, Department of Chemistry, 1, section 2, University drive, 974, Hualien, TAIWAN
| |
Collapse
|
35
|
Chen T, Yang S, Li Q, Song Y, Li G, Chai J, Zhu M. A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag 70 nanocluster crystal. NANOSCALE HORIZONS 2021; 6:913-917. [PMID: 34486633 DOI: 10.1039/d1nh00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hierarchical assemblies of well-defined structural nanoclusters can help to better understand those of biologically important molecules such as DNA and proteins. Herein, we disclose the synthesis and characterization of a new silver nanocluster, that is Ag70(SR)42(PPh3)5 (Ag70-TPP). Directed by the ligands, Ag70-TPP nanoclusters undergo self-hierarchical assembly into a highly space-efficient complex secondary structure of a double helical 4H (DH4H) close packing pattern. The chirality of Ag70-TPP, and the van der Waals forces interactions between the ligands are believed to drive its DH4H arrangement, and the observed interlocking of the phosphine ligands of adjacent Ag70-TPP nanoclusters also contributed. Overall, this work has yielded important and unprecedented insights into the internal structure and crystallographic arrangement of nanoclusters.
Collapse
Affiliation(s)
- Tao Chen
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Sha Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| | - Qinzhen Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Guang Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
36
|
|
37
|
Su YM, Wang Z, Tung CH, Sun D, Schein S. Keplerate Ag 192 Cluster with 6 Silver and 14 Chalcogenide Octahedral and Tetrahedral Shells. J Am Chem Soc 2021; 143:13235-13244. [PMID: 34379406 DOI: 10.1021/jacs.1c05664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Silver clusters with more than 2 concentric silver shells are scarce. Here, we enable self-assembly and crystallize SD/Ag192a, a highly symmetric silver chalcogenide cluster (SCC) with 192 silver cations in 6 shells and 136 anionic groups in 14 shells. All but 1 of these 20 concentric shells are Platonic or Archimedean solids. All have octahedral or tetrahedral symmetry and align the maximum number of their 2-, 3-, and 4-fold axes of rotational symmetry, thus identifying the cluster as a Keplerate. A rhombic dodecahedron supershell, formed from the first 3 anionic shells, is the keystone for the entire structure. But, nearly all of the edges in these polyhedral shells are too long to represent bonds. What mechanism of coordination chemistry holds the shells together? Like Na+ ions held electrostatically inside adjacent cube-shaped anionic compartments in a crystal of NaCl, individual Ag+ ions sit inside adjacent octahedron-shaped anionic compartments that fill space. Similarly, like Cl- ions in NaCl, individual anionic groups sit inside adjacent cationic (Ag+) compartments, mostly uniform polyhedra, that also fill space.
Collapse
Affiliation(s)
- Yan-Min Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Stan Schein
- California NanoSystems Institute and Department of Psychology, University of California, Los Angeles, California 90095-1563, United States
| |
Collapse
|
38
|
Su YM, Ji BQ, Wang Z, Zhang SS, Feng L, Gao ZY, Li YW, Tung CH, Sun D, Zheng LS. Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1025-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Yuan SF, Xu CQ, Liu WD, Zhang JX, Li J, Wang QM. Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units. J Am Chem Soc 2021; 143:12261-12267. [PMID: 34324334 DOI: 10.1021/jacs.1c05283] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first linear silver supercluster based on icosahedral Ag13 units has been constructed via bridging of dpa ligands: Ag61(dpa)27(SbF6)4 (Hdpa = dipyridylamine) (Ag61). Single-crystal X-ray diffraction reveals that this rod-shaped cluster consists of four vertex-sharing Ag13 icosahedra in a linear arrangement. This Ag61 cluster represents the longest one-dimensional metal nanocluster with a resolved structure. Unprecedented electron coupling develops between their constituent Ag13 units. Theoretical studies disclose that the stabilities of the two superclusters are dictated by a strong interaction between the Ag13 units as well as the ligand effect of the dpa-Ag motifs. The quantum size effect accounts for the significant enhancement of the metal-related absorptions and the red shift at the near-infrared region as the length of the cluster increases. This work sheds light on the evolution of one-dimensional materials and an understanding of the electronic communication between the constituent clusters.
Collapse
Affiliation(s)
- Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Wen-Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing-Xuan Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jun Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
40
|
Yonesato K, Yamazoe S, Yokogawa D, Yamaguchi K, Suzuki K. A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H
2
Cleavage into Protons and Electrons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa, Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
41
|
Yonesato K, Yamazoe S, Yokogawa D, Yamaguchi K, Suzuki K. A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angew Chem Int Ed Engl 2021; 60:16994-16998. [PMID: 34051034 DOI: 10.1002/anie.202106786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Atomically precise silver (Ag) nanoclusters are promising materials as catalysts, photocatalysts, and sensors because of their unique structures and mixed-valence states (Ag+ /Ag0 ). However, their low stability hinders the in-depth study of their intrinsic reactivity and catalytic property accompanying their redox processes. Herein, we demonstrate that a molecular hybrid of an atomically precise {Ag27 }17+ nanocluster and polyoxometalates (POMs) can efficiently cleave H2 into protons and electrons. The Ag nanocluster accommodates electrons through the redox reaction from {Ag27 }17+ to {Ag27 }13+ , and the POM ligands play the following important roles: (i) a significant stabilization of the typically unstable Ag nanocluster to preserve its structure during the redox reaction with H2 , (ii) formation of a unique interface between the Ag nanocluster and metal oxides for efficient H2 cleavage, and (iii) storage of the generated protons on the negatively charged basic surface.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
42
|
Zhong YJ, Liao JH, Chiu TH, Gam F, Kahlal S, Saillard JY, Liu CW. Doping effect on the structure and properties of eight-electron silver nanoclusters. J Chem Phys 2021; 155:034304. [PMID: 34293901 DOI: 10.1063/5.0059305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bimetallic M20 and M21 compounds, {[Cu3Ag17{S2P(OiPr)2}12]0.5 [Cu4Ag16{S2P(OiPr)2}12]0.5} ({[1a]0.5[1b]0.5}) and [Cu4Ag17{S2P(OiPr)2}12](PF6) (2), have been structurally characterized, in which the Cu(I) ions are randomly distributed on the eight outer positions capping the eight-electron [Ag13]5+ core. DFT calculations show that the statistical disorder results from the nearly neutral preference of copper to occupy any of the eight outer positions. Surprisingly, the UV-Vis absorption spectra of the M20 and M21 bimetallic nanoclusters display an almost identical absorption profile as that of their homometallic [Ag20{S2P(OiPr)2}12] and [Ag21{S2P(OiPr)2}12]+ relatives. This is rationalized by TD-DFT calculations, which show that the frontier orbitals of such eight-electron alloys are largely independent from the nature of the capping metal ions. A blue-shifted absorption is observed upon replacing by Au the central Ag atom in 2, forming the trimetallic compound [Cu4AuAg16{S2P(OiPr)2}12](PF6) (3).
Collapse
Affiliation(s)
- Yu-Jie Zhong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan
| | - Franck Gam
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
43
|
Brocha Silalahi RP, Chiu TH, Kao JH, Wu CY, Yin CW, Liu YC, Chen YJ, Saillard JY, Chiang MH, Liu CW. Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu-Ag and Cu-Au Nanoclusters via Copper Hydride Precursors. Inorg Chem 2021; 60:10799-10807. [PMID: 34236845 DOI: 10.1021/acs.inorgchem.1c01489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structural characteristics, and photophysical properties of luminescent Cu-rich bimetallic superatomic clusters [Au@Cu12(S2CNnPr2)6(C≡CPh)4]+ (1a+), [Au@Cu12{S2P(OR)2}6(C≡CPh)4]+ (2+), (2a+ = iPr; 2b+ = nPr), [Au@Cu12{S2P(C2H4Ph)2}6(C≡CPh)4]+ (2c+), and [Ag@Cu12{S2P(OnPr)2}6(C≡CPh)4]+ (3+) were studied. Compositionally uniform clusters 1+-3+ were isolated from the reaction of dithiolato-stabilized, polyhydrido copper clusters with phenylacetylene in the presence of heterometal salts. By using X-ray diffraction, the structures of 1a+, 2a+, 2b+, and 3+ were able to be determined. ESI-mass spectrometry and elemental analysis confirmed their compositions and purity. The structural characteristics of these clusters are similar with respect to displaying gold (or silver)-centered Cu12 cuboctahedra surrounded by six dithiocarbamate/dithiophosph(in)ate and four alkynyl ligands. The doping of Au and Ag atoms into the polyhydrido copper nanoclusters significantly enhances their PL quantum yields from Ag@Cu12 (0.58%) to Au@Cu12 (55%) at ambient temperature in solution. In addition, the electrochemical properties of the new alloys were investigated by cyclic voltammetry.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Jhen-Heng Kao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chun-Yen Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| | - Chi-Wei Yin
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | - Yu-Chiao Liu
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University 510 Zhongzheng Road, Xinzhung District, New Taipei City, Taiwan 24205, R.O.C
| | | | - Ming-Hsi Chiang
- Institute of Chemistry, Academica Sinica, Taipei, Taiwan 11528, R.O.C
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien, Taiwan 974301, R.O.C
| |
Collapse
|
44
|
Omoda T, Takano S, Tsukuda T. Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001439. [PMID: 32696588 DOI: 10.1002/smll.202001439] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Atomically precise gold/silver clusters protected by organic ligands L, [(Au/Ag)x Ly ]z , have gained increasing interest as building units of functional materials because of their novel photophysical and physicochemical properties. The properties of [(Au/Ag)x Ly ]z are intimately associated with the quantized electronic structures of the metallic cores, which can be viewed as superatoms from the analogy of naked Au/Ag clusters. Thus, establishment of the correlation between the geometric and electronic structures of the superatomic cores is crucial for rational design and improvement of the properties of [(Au/Ag)x Ly ]z . This review article aims to provide a qualitative understanding on how the electronic structures of [(Au/Ag)x Ly ]z are affected by geometric structures of the superatomic cores with a focus on three factors: size, shape, and composition, on the basis of single-crystal X-ray diffraction data. The knowledge accumulated here will constitute a basis for the development of ligand-protected Au/Ag clusters as new artificial elements on a nanometer scale.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
45
|
Sun F, Tang Q. The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. NANOTECHNOLOGY 2021; 32:352001. [PMID: 34101616 DOI: 10.1088/1361-6528/ac027c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters, also known as ultra-small metal nanoparticles, occupy the gap between discrete atoms and plasmonic nanomaterials, and are an emerging class of atomically precise nanomaterials. Metal nanoclusters protected by different types of ligands, such as thiolates, alkynyls, hydrides, and N-heterocyclic carbenes, have been synthesized in recent years. Moreover, recent experiment and theoretical studies also indicated that the metal nanoclusters show great promise in many electrocatalytic reactions, such as hydrogen evolution, oxygen reduction, and CO2reduction. The atomically precise nature of their structures enables the elucidation of structure-property relationships and the reaction mechanisms, which is essential if nanoclusters with enhanced performances are to be rationally designed. Particularly, the ligands play an important role in affecting the interface bonding, stability and electrocatalytic activity/selectivity. In this review, we mainly focus on the ligand effect on the interface structure of metal nanoclusters and then discuss the recent advances in electrocatalytic applications. Furthermore, we point out our perspectives on future efforts in this field.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
46
|
Pandeya P, Senanayake RD, Aikens CM. Nonradiative relaxation dynamics in the [Au 25-nAg n(SH) 18] -1 (n = 1, 12, 25) thiolate-protected nanoclusters. J Chem Phys 2021; 154:184303. [PMID: 34241036 DOI: 10.1063/5.0045590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evaluation of the electron-nuclear dynamics and relaxation mechanisms of gold and silver nanoclusters and their alloys is important for future photocatalytic, light harvesting, and photoluminescence applications of these systems. In this work, the effect of silver doping on the nonradiative excited state relaxation dynamics of the atomically precise thiolate-protected gold nanocluster [Au25-nAgn(SH)18]-1 (n = 1, 12, 25) is studied theoretically. Time-dependent density functional theory is used to study excited states lying in the energy range 0.0-2.5 eV. The fewest switches surface hopping method with decoherence correction was used to investigate the dynamics of these states. The HOMO-LUMO gap increases significantly upon doping of 12 silver atoms but decreases for the pure silver nanocluster. Doped clusters show a different response for ground state population increase lifetimes and excited state population decay times in comparison to the undoped system. The ground state recovery times of the S1-S6 states in the first excited peak were found to be longer for [Au13Ag12(SH)18]-1 than the corresponding recovery times of other studied nanoclusters, suggesting that this partially doped nanocluster is best for preserving electrons in an excited state. The decay time constants were in the range of 2.0-20 ps for the six lowest energy excited states. Among the higher excited states, S7 has the slowest decay time constant although it occurs more quickly than S1 decay. Overall, these clusters follow common decay time constant trends and relaxation mechanisms due to the similarities in their electronic structures.
Collapse
Affiliation(s)
- Pratima Pandeya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
47
|
Yang J, Pang R, Song D, Li MB. Tailoring silver nanoclusters via doping: advances and opportunities. NANOSCALE ADVANCES 2021; 3:2411-2422. [PMID: 36134170 PMCID: PMC9419084 DOI: 10.1039/d1na00077b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
Atomically precise noble metal nanoclusters (especially Au and Ag) have been pursued due to their fascinating molecule-like properties. In spite of the significant progress on Au nanoclusters (NCs), the structure and property evolution of Ag NCs is still in high demand. Doping is a useful strategy for improving the physicochemical performances of Ag NCs. Herein we summarize the recent advances in tailoring silver NC structures and properties via doping. First, we reviewed the recent studies on the synthesis of hetero metal atom doped silver bimetallic nanoclusters, which are classified by the dopants, including Au, Pt, Pd, Cu, Ni and Cd. Second, the doping effects on their properties were reviewed, including the locations of hetero metal atoms, the influence on their stability, and the charge state evolution. Moreover, we highlighted the doping-dependent improvement of the photo-luminescence (PL) performance and catalytic activity of Ag NCs.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Runqiang Pang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Dongpo Song
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale Hefei Anhui 230026 P. R. China
| |
Collapse
|
48
|
Zhong Y, Liao J, Chiu T, Kahlal S, Lin C, Saillard J, Liu CW. A Two‐Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A Silver(I) Hydride. Angew Chem Int Ed Engl 2021; 60:12712-12716. [DOI: 10.1002/anie.202100965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yu‐Jie Zhong
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Jian‐Hong Liao
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Tzu‐Hao Chiu
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Che‐Jen Lin
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | | | - C. W. Liu
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| |
Collapse
|
49
|
Zhong Y, Liao J, Chiu T, Kahlal S, Lin C, Saillard J, Liu CW. A Two‐Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A Silver(I) Hydride. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yu‐Jie Zhong
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Jian‐Hong Liao
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Tzu‐Hao Chiu
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Che‐Jen Lin
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| | | | - C. W. Liu
- Department of Chemistry National Dong Hua University No. 1, Sec. 2, Da Hsueh Rd. Hualien 974301 Taiwan R.O.C
| |
Collapse
|
50
|
Alamer B, Bootharaju MS, Kozlov SM, Cao Z, Shkurenko A, Nematulloev S, Maity P, Mohammed OF, Eddaoudi M, Cavallo L, Basset JM, Bakr OM. [Ag 9(1,2-BDT) 6] 3-: How Square-Pyramidal Building Blocks Self-Assemble into the Smallest Silver Nanocluster. Inorg Chem 2021; 60:4306-4312. [PMID: 33726492 PMCID: PMC8041283 DOI: 10.1021/acs.inorgchem.1c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/29/2022]
Abstract
The emerging promise of few-atom metal catalysts has driven the need for developing metal nanoclusters (NCs) with ultrasmall core size. However, the preparation of metal NCs with single-digit metallic atoms and atomic precision is a major challenge for materials chemists, particularly for Ag, where the structure of such NCs remains unknown. In this study, we developed a shape-controlled synthesis strategy based on an isomeric dithiol ligand to yield the smallest crystallized Ag NC to date: [Ag9(1,2-BDT)6]3- (1,2-BDT = 1,2-benzenedithiolate). The NC's crystal structure reveals the self-assembly of two Ag square pyramids through preferential pyramidal vertex sharing of a single metallic Ag atom, while all other Ag atoms are incorporated in a motif with thiolate ligands, resulting in an elongated body-centered Ag9 skeleton. Steric hindrance and arrangement of the dithiolated ligands on the surface favor the formation of an anisotropic shape. Time-dependent density functional theory based calculations reproduce the experimental optical absorption features and identify the molecular orbitals responsible for the electronic transitions. Our findings will open new avenues for the design of novel single-digit metal NCs with directional self-assembled building blocks.
Collapse
Affiliation(s)
- Badriah
J. Alamer
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Chemistry, College of Sciences, Taif University, Taif 11099, Saudi Arabia
| | - Megalamane S. Bootharaju
- Center
for Nanoparticle Research, Institute for
Basic Science, Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering and Institute of Chemical ProcessesSeoul National University, Seoul 08826, Republic
of Korea
| | - Sergey M. Kozlov
- Department
of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Zhen Cao
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Saidkhodzha Nematulloev
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Partha Maity
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced
Membranes and Porous Materials Center, Division of Physical Sciences
and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Omar F. Mohammed
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced
Membranes and Porous Materials Center, Division of Physical Sciences
and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jean-Marie Basset
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M. Bakr
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|