1
|
Greis K, Kirschbaum C, Ober K, Taccone MI, Torres-Boy A, Meijer G, Pagel K, von Helden G. Infrared Spectroscopy of Fluorenyl Cations at Cryogenic Temperatures. J Phys Chem Lett 2023; 14:11313-11317. [PMID: 38064287 PMCID: PMC10749476 DOI: 10.1021/acs.jpclett.3c02928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
The notion of (anti)aromaticity is a successful concept in chemistry to explain the structure and stability of polycyclic hydrocarbons. Cyclopentadienyl and fluorenyl cations are among the most studied classical antiaromatic systems. In this work, fluorenyl cations are investigated by high-resolution gas-phase infrared spectroscopy in helium droplets. Bare fluorenyl cations are generated in the gas phase by electrospray ionization. After mass-to-charge selection, ions are captured in ultracold helium nanodroplets and probed by infrared spectroscopy using a widely tunable free-electron laser in the 600-1700 cm-1 range. The highly resolved cryogenic infrared spectra confirm, in combination with DFT computations, that all cations are present in their singlet states.
Collapse
Affiliation(s)
- Kim Greis
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Katja Ober
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martín I. Taccone
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - América
Y. Torres-Boy
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz
Haber Institute of the Max Planck Society, Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
2
|
Cao Y, Mieres-Perez J, Lucht K, Ulrich I, Schweer P, Sanchez-Garcia E, Morgenstern K, Sander W. C-C Coupling of Carbene Molecules on a Metal Surface in the Presence of Water. J Am Chem Soc 2023; 145:11544-11552. [PMID: 37207364 DOI: 10.1021/jacs.2c12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel surface-confined C-C coupling reaction involving two carbene molecules and a water molecule was studied by scanning tunneling microscopy in real space. Carbene fluorenylidene was generated from diazofluorene in the presence of water on a silver surface. While in the absence of water, fluorenylidene covalently binds to the surface to form a surface metal carbene, and water can effectively compete with the silver surface in reacting with the carbene. Water molecules in direct contact with fluorenylidene protonate the carbene to form the fluorenyl cation before the carbene can bind to the surface. In contrast, the surface metal carbene does not react with water. The fluorenyl cation is highly electrophilic and draws electrons from the metal surface to generate the fluorenyl radical which is mobile on the surface at cryogenic temperatures. The final step in this reaction sequence is the reaction of the radical with a remaining fluorenylidene molecule or with diazofluorene to produce the C-C coupling product. Both a water molecule and the metal surface are essential for the consecutive proton and electron transfer followed by C-C coupling. This C-C coupling reaction is unprecedented in solution chemistry.
Collapse
Affiliation(s)
- Yunjun Cao
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, Bochum D-44801, Germany
| | - Joel Mieres-Perez
- Technische Universität Dortmund, Lehrstuhl für Computational Bioengineering, Dortmund 44227, Germany
| | - Karsten Lucht
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, Bochum D-44801, Germany
| | - Iris Ulrich
- Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstr. 150, Bochum D-44801, Germany
| | - Paul Schweer
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, Bochum D-44801, Germany
| | - Elsa Sanchez-Garcia
- Technische Universität Dortmund, Lehrstuhl für Computational Bioengineering, Dortmund 44227, Germany
| | - Karina Morgenstern
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr. 150, Bochum D-44801, Germany
| | - Wolfram Sander
- Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstr. 150, Bochum D-44801, Germany
| |
Collapse
|
3
|
Abdellaoui C, Hermanns V, Reinfelds M, Scheurer M, Dreuw A, Heckel A, Wachtveitl J. A long-lived fluorenyl cation: efficiency booster for uncaging and photobase properties. Phys Chem Chem Phys 2022; 24:5294-5300. [PMID: 35174833 DOI: 10.1039/d1cp05292f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemistry of fluorenols has been of special interest for many years. This is because both the fluorenol and the fluorenyl cation are antiaromatic in the ground state due to their 4n π-electrons according to the Hückel rule. The photolysis reaction of various fluorene derivatives takes place via a cation intermediate and is preferred due to its excited state aromaticity. Here we present an extremely long-lived fluorenyl cation and its effects on the uncaging of various leaving groups. We analyze the relationship between uncaging quantum yields of fluorene-based cages and the longevity of their fluorenyl cations with different spectroscopic methods in the steady state and on an ultrafast time scale and find that the uncaging quantum yield rises with the stability of the cation. In contrast to previous reports, the cation can be observed on a time scale of minutes, even in moderately protic solvents as methanol and ethanol. The stability of this cation depends on the dimethylamino-substituents on the fluorene scaffold and the properties of the solvent. In addition, with bis-dimethylamino fluorenol, a photobase is introduced that expands the small group of known photoinduced hydroxide emitters.
Collapse
Affiliation(s)
- Chahinez Abdellaoui
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany.
| | - Volker Hermanns
- Institute of Organic Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany.
| | - Matiss Reinfelds
- Institute of Organic Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany. .,Institute of Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Graz 8010, Austria.
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg 69120, Germany.
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg 69120, Germany.
| | - Alexander Heckel
- Institute of Organic Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany.
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main 60438, Germany.
| |
Collapse
|
4
|
Henkel S, Merini MP, Mendez-Vega E, Sander W. Lewis acid catalyzed heavy atom tunneling - the case of 1 H-bicyclo[3.1.0]-hexa-3,5-dien-2-one. Chem Sci 2021; 12:11013-11019. [PMID: 34522298 PMCID: PMC8386641 DOI: 10.1039/d1sc02853g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
For many thermal reactions, the effects of catalysis or the influence of solvents on reaction rates can be rationalized by simple transition state models. This is not the case for reactions controlled by quantum tunneling, which do not proceed via transition states, and therefore lack the simple concept of transition state stabilization. 1H-Bicyclo[3.1.0]-hexa-3,5-dien-2-one is a highly strained cyclopropene that rearranges to 4-oxocyclohexa-2,5-dienylidene via heavy-atom tunneling. H2O, CF3I, or BF3 form Lewis acid–base complexes with both reactant and product, and the influence of these intermolecular complexes on the tunneling rates for this rearrangement was studied. The tunneling rate increases by a factor of 11 for the H2O complex, by 23 for the CF3I complex, and is too fast to be measured for the BF3 complex. These observations agree with quantum chemical calculations predicting a decrease in both barrier height and barrier width upon complexation with Lewis acids, resulting in the observed Lewis acid catalysis of the tunneling rearrangement. The ring-opening of a highly strained cyclopropene to a carbene proceeds via heavy-atom tunneling. This rearrangement is accelerated in the presence of H2O, ICF3 or BF3, resulting in a novel Lewis-acid catalyzed tunneling reaction.![]()
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| |
Collapse
|
5
|
Duvinage D, Mebs S, Beckmann J. Isolation of an Antiaromatic 9-Hydroxy Fluorenyl Cation. Chemistry 2021; 27:8105-8109. [PMID: 33835609 PMCID: PMC8252458 DOI: 10.1002/chem.202100786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/12/2022]
Abstract
Fluorenyl cations are textbook examples of 4π electron antiaromatic five-membered ring systems. So far, they were reported only as short-lived intermediates generated under superacidic conditions or by flash photolysis. Attempts to prepare a m-terphenyl acylium cation by fluoride abstraction from a benzoyl fluoride gave rise to an isolable 9-hydroxy fluorenyl cation that formed by an intramolecular electrophilic attack at a flanking mesityl group prior to a 1,2-methyl shift and proton transfer to oxygen.
Collapse
Affiliation(s)
- Daniel Duvinage
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| | - Stefan Mebs
- Institut für ExperimentalphysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Jens Beckmann
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße 728359BremenGermany
| |
Collapse
|
6
|
Mieres-Perez J, Lucht K, Trosien I, Sander W, Sanchez-Garcia E, Morgenstern K. Controlling Reactivity-Real-Space Imaging of a Surface Metal Carbene. J Am Chem Soc 2021; 143:4653-4660. [PMID: 33599124 DOI: 10.1021/jacs.0c12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal carbenes are key intermediates in a plethora of homogeneous and heterogeneous catalytic processes. However, despite their importance to heterogeneous catalysis, the influence of surface attachment on carbene reactivity has not yet been explored. Here, we reveal the interactions of fluorenylidene (FY), an archetypical aromatic carbene of extreme reactivity, with a Ag(111) surface. For the first time, the interaction of a highly reactive carbene with a metal surface could be studied by scanning tunneling microscopy (STM). FY chemisorbs on Ag(111) with an estimated desorption energy of 3 eV, forming a surface bound silver-carbene complex. The surface interaction leads to a switching of the electronic ground state of FY from triplet to singlet, and to controlled chemical reactivity. This atomistic understanding of the interplay between carbenes and metal surfaces opens the way for the development of novel classes of catalytic systems based on surface metal carbenes.
Collapse
Affiliation(s)
- Joel Mieres-Perez
- Universität Duisburg-Essen, Computational Biochemistry, Universitätsstr.2, D-45141 Essen, Germany
| | - Karsten Lucht
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr.150, D-44801 Bochum, Germany
| | - Iris Trosien
- Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstr.150, D-44801 Bochum, Germany
| | - Wolfram Sander
- Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstr.150, D-44801 Bochum, Germany
| | - Elsa Sanchez-Garcia
- Universität Duisburg-Essen, Computational Biochemistry, Universitätsstr.2, D-45141 Essen, Germany
| | - Karina Morgenstern
- Ruhr-Universität Bochum, Lehrstuhl für Physikalische Chemie I, Universitätsstr.150, D-44801 Bochum, Germany
| |
Collapse
|
7
|
Trosien I, Mendez-Vega E, Thomanek T, Sander W. Conformational Spin Switching and Spin-Selective Hydrogenation of a Magnetically Bistable Carbene. Angew Chem Int Ed Engl 2019; 58:14855-14859. [PMID: 31412153 DOI: 10.1002/anie.201906579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 11/09/2022]
Abstract
The control of the spin states of molecules opens the path to tuning selectivity in chemical reactions and to developing novel magnetically switchable materials. 3-Methoxy-9-fluorenylidene is a carbene that is generated in cryogenic matrices both in its lowest energy singlet and triplet states, and the ratio of these states can be shifted by selective irradiation. The interconversion of the nearly degenerate spin states is induced by a conformational change of the methoxy group: switching the methoxy group into the "up" position results in the singlet state and switching into the "down" position in the triplet state. The spin control via a remote functional group makes this carbene unique for the study of spin-specific reactions, which is demonstrated for the hydrogenation reaction. Spin switching by switching the conformation of a remote functional group is a novel phenomenon with potential applications in the design of functional materials.
Collapse
Affiliation(s)
- Iris Trosien
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Tobias Thomanek
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
8
|
|
9
|
Mendez-Vega E, Mieres-Perez J, Chapyshev SV, Sander W. Persistent Organic High-Spin Trinitrenes. Angew Chem Int Ed Engl 2019; 58:12994-12998. [PMID: 31265166 PMCID: PMC7687127 DOI: 10.1002/anie.201904556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/15/2022]
Abstract
The septet ground state trinitrenes 1,3,5‐trichloro‐2,4,6‐trinitrenobenzene and 1,3,5‐tribromo‐2,4,6‐trinitrenobenzene were isolated in inert (Ar, Ne, and Xe) as well as reactive matrices (H2, O2, and H2O) at cryogenic temperatures. These trinitrenes were obtained in high yields by UV photolysis of the corresponding triazides and characterized by IR and UV/Vis spectroscopy. The trinitrenes, despite bearing six unpaired electrons, are remarkably unreactive towards molecular oxygen and hydrogen and are persistent in water ice up to 160 K where the water matrix starts to sublime off.
Collapse
Affiliation(s)
- Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Sergei V Chapyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
10
|
Trosien I, Mendez‐Vega E, Thomanek T, Sander W. Conformational Spin Switching and Spin‐Selective Hydrogenation of a Magnetically Bistable Carbene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Iris Trosien
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum 44780 Bochum Germany
| | - Enrique Mendez‐Vega
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum 44780 Bochum Germany
| | - Tobias Thomanek
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum 44780 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
11
|
Altun A, Saitow M, Neese F, Bistoni G. Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. J Chem Theory Comput 2019; 15:1616-1632. [PMID: 30702888 PMCID: PMC6728066 DOI: 10.1021/acs.jctc.8b01145] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Local
energy decomposition (LED) analysis decomposes the interaction
energy between two fragments calculated at the domain-based local
pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into
a series of chemically meaningful contributions and has found widespread
applications in the study of noncovalent interactions. Herein, an
extension of this scheme that allows for the analysis of interaction
energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T)
level is presented. The new scheme is illustrated through applications
to the CH2···X (X = He, Ne, Ar, Kr, and
water) and heme···CO interactions in the low-lying
singlet and triplet spin states. The results are used to discuss the
mechanism that governs the change in the singlet–triplet energy
gap of methylene and heme upon adduct formation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Masaaki Saitow
- Department of Chemistry, Graduate School of Science , Nagoya University , 1-5 Chikusa-ku , 464-8602 Nagoya , Japan
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
12
|
Lu Y, Farrow MR, Fayon P, Logsdail AJ, Sokol AA, Catlow CRA, Sherwood P, Keal TW. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. J Chem Theory Comput 2019; 15:1317-1328. [PMID: 30511845 DOI: 10.1021/acs.jctc.8b01036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChemShell is a scriptable computational chemistry environment with an emphasis on multiscale simulation of complex systems using combined quantum mechanical and molecular mechanical (QM/MM) methods. Motivated by a scientific need to efficiently and accurately model chemical reactions on surfaces and within microporous solids on massively parallel computing systems, we present a major redevelopment of the ChemShell code, which provides a modern platform for advanced QM/MM embedding models. The new version of ChemShell has been re-engineered from the ground up with a new QM/MM driver module, an improved parallelization framework, new interfaces to high performance QM and MM programs, and a user interface written in the Python programming language. The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.
Collapse
Affiliation(s)
- You Lu
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Matthew R Farrow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - Pierre Fayon
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Andrew J Logsdail
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom.,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxon OX11 0QX , United Kingdom
| | - Paul Sherwood
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Thomas W Keal
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| |
Collapse
|
13
|
Raut AH, Costa P, Sander W. Reactions of Arylcarbenes with Lewis Acids. Chemistry 2018; 24:18043-18051. [PMID: 30230615 DOI: 10.1002/chem.201803695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/10/2022]
Abstract
The reactions of the three triplet ground state arylcarbenes diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 with the Lewis acids H2 O, ICF3 , and BF3 were studied under the conditions of matrix isolation. H2 O was selected as typical hydrogen bond donor, ICF3 as halogen bond donor, and BF3 as strong Lewis acid. H2 O forms hydrogen-bonded complexes of the singlet carbenes with 1 and 2, but not with 3. This is rationalized by the larger singlet-triplet gap of 3, which does not allow to stabilize the singlet state below the triplet state by hydrogen bonding. With ICF3 , both 1 and 3 form halogen-bonded complexes of the singlet states of the carbenes. This indicates that halogen bonding stabilizes singlet carbenes more than hydrogen bonding. Carbene 2 reacts differently from 1 and 3 by forming an iodonium ylide, thus avoiding antiaromatic destabilization of the fluorenyl unit. With BF3 , all three carbenes form zwitterionic Lewis acid/base complexes.
Collapse
Affiliation(s)
- Akshay Hemant Raut
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| |
Collapse
|
14
|
Mendez‐Vega E, Maehara M, Raut AH, Mieres‐Perez J, Tsuge M, Lee Y, Sander W. Activation of Molecular Hydrogen by Arylcarbenes. Chemistry 2018; 24:18801-18808. [DOI: 10.1002/chem.201804657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Enrique Mendez‐Vega
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Mika Maehara
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Akshay Hemant Raut
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Joel Mieres‐Perez
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University, Hsinchu 30010 (Taiwan)Institute of Atomic and Molecular SciencesAcademia Sinica Taipei 10617 Taiwan
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
15
|
Mieres-Perez J, Costa P, Mendez-Vega E, Crespo-Otero R, Sander W. Switching the Spin State of Pentafluorophenylnitrene: Isolation of a Singlet Arylnitrene Complex. J Am Chem Soc 2018; 140:17271-17277. [DOI: 10.1021/jacs.8b10792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS, U.K
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
16
|
Ghafarian Shirazi R, Neese F, Pantazis DA. Accurate Spin-State Energetics for Aryl Carbenes. J Chem Theory Comput 2018; 14:4733-4746. [DOI: 10.1021/acs.jctc.8b00587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Costa P, Trosien I, Mieres-Perez J, Sander W. Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion. J Am Chem Soc 2017; 139:13024-13030. [DOI: 10.1021/jacs.7b05807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Iris Trosien
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
18
|
Radhakrishnan S, Mieres-Perez J, Gudipati MS, Sander W. Photoinduced Reversible Electron Transfer Between the Benzhydryl Radical and Benzhydryl Cation in Amorphous Water–Ice. J Phys Chem A 2017; 121:6405-6412. [DOI: 10.1021/acs.jpca.7b05466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumya Radhakrishnan
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Murthy S. Gudipati
- Science
Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
19
|
Tsegaw YA, Kadam PE, Tötsch N, Sanchez-Garcia E, Sander W. Is Magnetic Bistability of Carbenes a General Phenomenon? Isolation of Simple Aryl(trifluoromethyl)carbenes in Both Their Singlet and Triplet States. J Am Chem Soc 2017; 139:12310-12316. [DOI: 10.1021/jacs.7b06868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yetsedaw A. Tsegaw
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Pritam E. Kadam
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Niklas Tötsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Universität Duisburg-Essen, Universitätsstrasse
2, 45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
- Universität Duisburg-Essen, Universitätsstrasse
2, 45141 Essen, Germany
| | - Wolfram Sander
- Lehrstuhl
für Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
20
|
Sumita A, Gasonoo M, Boblak KJ, Ohwada T, Klumpp DA. Use of Charge-Charge Repulsion to Enhance π-Electron Delocalization into Anti-Aromatic and Aromatic Systems. Chemistry 2017; 23:2566-2570. [PMID: 28072909 DOI: 10.1002/chem.201606036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/08/2022]
Abstract
A series of 9-fluorenyl cations has been studied and it is shown that increasing charge on a heterocyclic substituent group enhances the anti-aromatic character of the carbocation system. Similarly, a series of dibenzosuberenyl cations has been studied and increasing charge on a substituent group is shown to enhance aromatic character in the carbocation system. These studies include the direct observations of dicationic and tricationic species using stable-ion conditions and low temperature NMR. The structures of these ions were further characterized using DFT calculations, confirming that highly charged organic ions may exhibit unusual distributions of π-electrons and delocalization of electrons in 4n or 4n+2 π-systems.
Collapse
Affiliation(s)
- Akinari Sumita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Makafui Gasonoo
- Department of Chemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Kenneth J Boblak
- Department of Chemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Douglas A Klumpp
- Department of Chemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
21
|
Follet E, Mayer P, Berionni G. Structures, Lewis Acidities, Electrophilicities, and Protecting Group Abilities of Phenylfluorenylium and Tritylium Ions. Chemistry 2017; 23:623-630. [PMID: 27723164 DOI: 10.1002/chem.201603963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Indexed: 11/06/2022]
Abstract
The isolation, characterization, and the first X-ray structures of a fluorenylium ion and its Lewis adducts with nitrogen- and phosphorus-centered Lewis bases are reported. Kinetics of the reactions of a series of fluorenylium ions with reference π-, σ-, and n-nucleophiles of various sizes and nucleophilicities allowed the interplay between electronic and structural parameters on the electrophilicities of these planarized tertiary carbenium ions to be elucidated. Structure-reactivity correlations and extensive comparisons of their reactivities with those of di- and triarylcarbenium ions are described. Quantitative determination of the electrofugalities of fluorenylium ions revealed to which extent they are complementing tritylium ions as protecting groups and how their tuning is possible. Determination of the equilibrium constants of the Lewis adducts formation between pyridines of calibrated Lewis basicities and phenylfluorenylium and tritylium ions allowed the determination of their Lewis acidities and to showcase the potential of these carbon-centered Lewis acids in catalysis.
Collapse
Affiliation(s)
- Elsa Follet
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Peter Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Guillaume Berionni
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| |
Collapse
|
22
|
Standard JM. Effects of Solvation and Hydrogen Bond Formation on Singlet and Triplet Alkyl or Aryl Carbenes. J Phys Chem A 2016; 121:381-393. [DOI: 10.1021/acs.jpca.6b11202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean M. Standard
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
23
|
Oded YN, Pogodin S, Agranat I. Regioselectivity in the Controversial Scholl Reaction of 1-Benzoylpyrene: Formation of a Five-Member Ring Is Not Unexpected. J Org Chem 2016; 81:11389-11393. [PMID: 27782400 DOI: 10.1021/acs.joc.6b01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular Scholl reaction of 1-benzoylpyrene (1) gave 8H-dibenzo[def,qr]chrysen-8-one (2) and 11H-indeno[2,1-a]pyren-11-one (3) in a 1:2 ratio. The structures of 2 and 3 were determined, using 1H NMR, 13C NMR, and IR spectroscopies. A DFT B3LYP/6-311G(d,p) study of the reaction's arenium-cation mechanism of (E)-1 and (Z)-1 giving 2 and 3, respectively, indicated the reaction's regioselectivity and kinetic control. The analogous reaction of 1-(1'-naphthoyl)pyrene gave exclusively 13H-benz[4,5]indeno[2,1-a]pyren-13-one. Contrary to previous claims, the preferred formation of five-member rings in Scholl reactions is not unexpected.
Collapse
Affiliation(s)
- Yaacov Netanel Oded
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem , Philadelphia Building #212, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Sergey Pogodin
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem , Philadelphia Building #212, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Israel Agranat
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem , Philadelphia Building #212, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
24
|
Richter G, Mendez-Vega E, Sander W. Singlet Halophenylcarbenes as Strong Hydrogen-Bond Acceptors. J Phys Chem A 2016; 120:3524-32. [DOI: 10.1021/acs.jpca.6b02550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Geneviève Richter
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
25
|
Fulara J, Chakraborty A, Maier JP. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f]indenylium Cations and Their Radicals. Angew Chem Int Ed Engl 2016; 55:3424-7. [PMID: 26845059 DOI: 10.1002/anie.201511230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/09/2022]
Abstract
Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods.
Collapse
Affiliation(s)
- Jan Fulara
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668, Warsaw, Poland
| | - Arghya Chakraborty
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - John P Maier
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|
26
|
Fulara J, Chakraborty A, Maier JP. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f
]indenylium Cations and Their Radicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fulara
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Institute of Physics; Polish Academy of Sciences; Al. Lotników, 32/46 02-668 Warsaw Poland
| | - Arghya Chakraborty
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - John P. Maier
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| |
Collapse
|
27
|
Henkel S, Costa P, Klute L, Sokkar P, Fernandez-Oliva M, Thiel W, Sanchez-Garcia E, Sander W. Switching the Spin State of Diphenylcarbene via Halogen Bonding. J Am Chem Soc 2016; 138:1689-97. [PMID: 26762326 DOI: 10.1021/jacs.5b12726] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interactions between diphenylcarbene DPC and the halogen bond donors CF3I and CF3Br were investigated using matrix isolation spectroscopy (IR, UV-vis, and EPR) in combination with QM and QM/MM calculations. Both halogen bond donors CF3X form very strong complexes with the singlet state of DPC, but only weakly interact with triplet DPC. This results in a switching of the spin state of DPC, the singlet complexes becoming more stable than the triplet complexes. CF3I forms a second complex (type II) with DPC that is thermodynamically slightly more stable. Calculations predict that in this second complex the DPC···I distance is shorter than the F3C···I distance, whereas in the first (type I) complex the DPC···I distance is, as expected, longer. CF3Br only forms the type I complex. Upon irradiation I or Br, respectively, are transferred to the DPC carbene center and radical pairs are formed. Finally, on annealing, the formal C-X insertion product of DPC is observed. Thus, halogen bonding is a powerful new principle to control the spin state of reactive carbenes.
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Linda Klute
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pandian Sokkar
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | | | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44801 Bochum, Germany
| |
Collapse
|
28
|
|
29
|
Field-Theodore TE, Wilson DJD, Dutton JL. Computational Predictions of the Beryllium Analogue of Borole, Cp(+), and the Fluorenyl Cation: Highly Stabilized, non-Lewis Acidic Antiaromatic Ring Systems. Inorg Chem 2015; 54:8035-41. [PMID: 26241788 DOI: 10.1021/acs.inorgchem.5b01255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational study of a set of synthetically unknown beryllium-containing rings, anionic analogues of antiaromatic boroles, has been carried out to investigate their structure, stability, and potential reactivity. The results indicate that these compounds should be electronically viable (as assessed from HOMO-LUMO and singlet-triplet gaps) and therefore potential targets for synthesis. In strong contrast with boroles, these beryllium species are predicted to be not Lewis acidic but rather Lewis basic, with reactivity centered on the endocyclic Be-C bond.
Collapse
Affiliation(s)
- Terri E Field-Theodore
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|