1
|
Li G, Bai J, Liu C, Jin Z, Xiao M, Xing W. Ultra-High Activity and Durability of Low-Platinum Fuel Cells Enabled by Encapsulation of L1 0-PtCo and L1 2-Pt 3Co Intermetallic Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407163. [PMID: 39523724 DOI: 10.1002/smll.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Developing high-performance, durable, and ultralow-loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt-Co intermetallic compounds with a Pt-skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy-induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm-2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm-2 in fuel cell tests. It demonstrates a state-of-the-art mass activity of 2.15 A mgPt -1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt -1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm-2 and a mass activity retention of 85% (1.83 A mgPt -1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt -1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen-air conditions shows only a slight decline after more than 230 h.
Collapse
Affiliation(s)
- Gong Li
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingsen Bai
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Changpeng Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, 130022, China
| | - Zhao Jin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, 130022, China
| | - Meiling Xiao
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, 130022, China
| | - Wei Xing
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, 130022, China
| |
Collapse
|
2
|
Xiao X, Ni W, Yang Y, Chen Q, Zhang Y, Sun Y, Liu Q, Zhang GJ, Yao Q, Chen S. Platinum nanowires/MXene nanosheets/porous carbon ternary nanocomposites for in situ monitoring of dopamine released from neuronal cells. Talanta 2024; 278:126496. [PMID: 38996563 DOI: 10.1016/j.talanta.2024.126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Wei Ni
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
3
|
Xu A, Liu T, Liu D, Li W, Huang H, Wang S, Xu L, Liu X, Jiang S, Chen Y, Sun M, Luo Q, Ding T, Yao T. Edge-Rich Pt-O-Ce Sites in CeO 2 Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202410545. [PMID: 38940407 DOI: 10.1002/anie.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electronic metal-support interaction for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.
Collapse
Affiliation(s)
- Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Wenzhi Li
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Sicong Wang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Li Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Yudan Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Mei Sun
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
4
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
5
|
Zhao X, Chen WJ, Liang QM, Chen SK, Xun J, Geng BJ, Su HF, Yang Y. Ag +-Induced Assembly of Pt Clusters for Photocatalytic Hydrogen Production. Inorg Chem 2024. [PMID: 39259024 DOI: 10.1021/acs.inorgchem.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cluster-assembled nanowires provide a unique strategy for the preparation of high-performance nanostructures. However, existing preparations are limited by complex processes and harsh reaction conditions. Here, Ag+ ions were utilized as a novel structure-directing agent to generate the self-assembly of Pt clusters to form ultrafine nanowires with a diameter of less than 5 nm. Electrospray ionization mass spectrometry (ESI-MS) and extended X-ray absorption fine structure (EXAFS) characterizations demonstrated that every Ag+ bridged two [Pt3(CO)3(μ2-CO)3]n2- clusters through coordination and formed a sandwich-like structure of [Pt3(CO)3(μ2-CO)3]nAg[Pt3(CO)3(μ2-CO)3]m3-. As a result, multiple sandwich-like structures of [Pt3(CO)3(μ2-CO)3]nAg[Pt3(CO)3(μ2-CO)3]m3- were established by Ag+ to form Pt nanowire superstructures {[Pt3(CO)6]nAg[Pt3(CO)6]mAg[Pt3(CO)6]x}∞ (abbreviated as Ag-Pt NWS). Our results demonstrate that the Pt nanowire superstructures showed promising cocatalytic performance for photocatalytic H2 production with the involvement of Ag+, which promises a desirable way to develop advanced functional nanomaterials.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Wen-Jie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Su-Kang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jiao Xun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bi-Jun Geng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Duan L, Xu J, Cao L, Lu L, Zang L, Hu S, Fu R, Wang K. Enhanced Electrocatalytic Performance of the FePt/PPy-C Composite toward Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44718-44727. [PMID: 39139126 DOI: 10.1021/acsami.4c07065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A novel FePt/PPy-C composite nanomaterial has been designed and investigated as a methanol oxidation reaction (MOR) electrocatalyst. The FePt nanoparticles with an average diameter of about 3 nm have been prepared by the co-reduction method and then loaded onto the PPy-C composite support. The electrocatalytic performance is affected by the composition of the FePt nanoparticles. The experimental results indicated that the Fe1.5Pt1/PPy-C catalyst exhibited excellent catalytic activity and stability for MOR, with mass activity and specific activity of 1.76 A mgPt-1 and 2.71 mA cm-2, respectively, which are 5.18 and 4.60 times higher than that of the commercial Pt/C catalyst. Density functional theory (DFT) has been employed to simulate the electrical structures of catalyst supports, and the mechanism of the methanol oxidation process has been further analyzed. The heterojunctions of the PPy-C interface could accelerate the electron migration from the electrocatalytic center to the electrodes. The possibility of methanol oxidation has been improved effectively, which can be confirmed by the d-band center and CO adsorption energy on FePt nanoparticles in the DFT calculation results.
Collapse
Affiliation(s)
- Lijun Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhao Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingzhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Likun Zang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongpeng Fu
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan 056005, China
| |
Collapse
|
7
|
Deng Y, Liu H, Lai L, She F, Liu F, Li M, Yu Z, Li J, Zhu D, Li H, Wei L, Chen Y. Platinum-Ruthenium Bimetallic Nanoparticle Catalysts Synthesized Via Direct Joule Heating for Methanol Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403967. [PMID: 39106223 DOI: 10.1002/smll.202403967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Indexed: 08/09/2024]
Abstract
Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.
Collapse
Affiliation(s)
- Yeyu Deng
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Leo Lai
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Mohan Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Di Zhu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| |
Collapse
|
8
|
Ling X, Ao Y, Zheng J, Han M, Xu D. Facile Synthesis of High-Entropy Alloy Nanowires for Electrocatalytic Alcohol Oxidation. Chempluschem 2024; 89:e202400010. [PMID: 38238259 DOI: 10.1002/cplu.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Considering the structural and compositional advantages of high-entropy alloy (HEA) as high-efficient electrocatalysts, we here present a facile method to prepare high-entropy alloy nanowires with seven elements in an aqueous solution. The as-synthesized PdPtCuAgAuPbCo nanowires possess dispersed one-dimensional morphology and exhibit enhanced electrocatalytic performance with the mass activity of 9.9 A mgPd+Pt -1 toward ethanol electrooxidation. The HEA nanowires also perform superior stability, resistance to CO poisoning, and good electrocatalytic activities toward other alcohols (e. g., ethylene glycol and methanol) oxidation. The synthesis strategy is easy to operate with low cost and has wide application prospects for preparing desired electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Xinyi Ling
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yunyun Ao
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jinyu Zheng
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Wang H, Zeng C, Wang C, Fu J, Li Y, Yang Y, Du Z, Tao G, Sun Q, Zhai T, Li H. Fibration of powdery materials. NATURE MATERIALS 2024; 23:596-603. [PMID: 38418925 DOI: 10.1038/s41563-024-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.
Collapse
Affiliation(s)
- Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Cheng Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Jinzhou Fu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Zhichen Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangming Tao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
10
|
Zhu S, Liu Y, Gong Y, Sun Y, Chen K, Liu Y, Liu W, Xia T, Zheng Q, Gao H, Guo H, Wang R. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305062. [PMID: 37803476 DOI: 10.1002/smll.202305062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Indexed: 10/08/2023]
Abstract
PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.
Collapse
Affiliation(s)
- Shiyu Zhu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kang Chen
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Weidi Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, ST Lucia, QLD, 4072, Australia
| | - Tianyu Xia
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Han Gao
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Guo N, Xue H, Ren R, Sun J, Song T, Dong H, Zhao Z, Zhang J, Wang Q, Wu L. S-Block Potassium Single-atom Electrocatalyst with K-N 4 Configuration Derived from K + /Polydopamine for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202312409. [PMID: 37681482 DOI: 10.1002/anie.202312409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Currently, single-atom catalysts (SACs) research mainly focuses on transition metal atoms as active centers. Due to their delocalized s/p-bands, the s-block main group metal elements are typically regarded as catalytically inert. Herein, an s-block potassium SAC (K-N-C) with K-N4 configuration is reported for the first time, which exhibits excellent oxygen reduction reaction (ORR) activity and stability under alkaline conditions. Specifically, the half-wave potential (E1/2 ) is up to 0.908 V, and negligible changes in E1/2 are observed after 10,000 cycles. In addition, the K-N-C offers an exceptional power density of 158.1 mW cm-2 and remarkable durability up to 420 h in a Zn-air battery. Density functional theory (DFT) simulations show that K-N-C has bifunctional active K and C sites, can optimize the free energy of ORR reaction intermediates, and adjust the rate-determining steps. The crystal orbital Hamilton population (COHP) results showed that the s orbitals of K played a major role in the adsorption of intermediates, which was different from the d orbitals in transition metals. This work significantly guides the rational design and catalytic mechanism research of s-block SACs with high ORR activity.
Collapse
Affiliation(s)
- Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Rui Ren
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Limin Wu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Wang Y, Li L, Shen M, Tang R, Zhou J, Han L, Zhang X, Zhang L, Kim G, Wang J. Simple One-Step Molten Salt Method for Synthesizing Highly Efficient MXene-Supported Pt Nanoalloy Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303693. [PMID: 37863664 PMCID: PMC10667796 DOI: 10.1002/advs.202303693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Indexed: 10/22/2023]
Abstract
MXene-supported noble metal alloy catalysts exhibit remarkable electrocatalytic activity in various applications. However, there is no facile one-step method for synthesizing these catalysts, because the synthesis of MXenes requires a strongly oxidizing environment and the preparation of platinum nanoalloys requires a strongly reducing environment and high temperatures. Hence, achieving coupling in one step is extremely challenging. In this paper, a straightforward one-step molten salt method for preparing MXene-supported platinum nanoalloy catalysts is proposed. The molten salt acts as the reaction medium to dissolve the transition metals and platinum ions at high temperatures. Transition metal ions oxidize the A-site element from its MAX precursor at high temperatures, and the resulting transition metals further reduce platinum ions to form alloys. By coupling Al oxidation and platinum ion reduction using a molten salt solvent, this method directly converts Ti3 AlC2 to a Pt-M@Ti3 C2 Tx catalyst (where M denotes the transition metal). It further offers the possibility of extending the Pt-M phase to binary, ternary, or quaternary platinum-containing nanoalloys and converting the Al-containing MAX phase to Ti2 AlC and Ti3 AlCN. Due to the strong interfacial interaction, the as-prepared Pt-Co@Ti3 C2 Tx is superior to commercial Pt/C (20 wt.%) in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Ya Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lili Li
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Miao Shen
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rui Tang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jing Zhou
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ling Han
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiuqing Zhang
- School of Mechanical and Power EngineeringEast China University of Science and Technology200237ShanghaiChina
| | - Linjuan Zhang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guntae Kim
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Wang H, Gao J, Chen C, Zhao W, Zhang Z, Li D, Chen Y, Wang C, Zhu C, Ke X, Pei J, Dong J, Chen Q, Jin H, Chai M, Li Y. PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices. NANO-MICRO LETTERS 2023; 15:143. [PMID: 37266746 PMCID: PMC10236083 DOI: 10.1007/s40820-023-01102-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings. This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method. Single-atomic W can be found on the carbon surface, which can form protonic acid sites and establish an extended proton transport network at the catalyst surface. When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm-2, the peak power density of the cell is enhanced by 64.4% compared to that with the commercial Pt/C catalyst. The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of *OOH whereby the intermediates can be efficiently converted and further reduced to water, revealing a interfacial cascade catalysis facilitated by the single-atomic W. This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.
Collapse
Affiliation(s)
- Huawei Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jialong Gao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102209, People's Republic of China
| | - Zihou Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Dong Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenyue Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoxing Ke
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Jiajing Pei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102209, People's Republic of China
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
14
|
Engineering the highly efficient heterogeneous catalyst based on PdCu nanoalloy and nitrogen-doped Ti 3C 2T x MXene for ethanol electrooxidation. J Colloid Interface Sci 2023; 639:314-323. [PMID: 36805756 DOI: 10.1016/j.jcis.2023.02.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Improving the electrocatalytic performance by modulating the surface and interface electronic structure of noble metals is still a research hotspot in electrocatalysis. Herein, we prepared the heterogeneous catalyst based on the well-dispersed PdCu nanoalloy and the N-doped Ti3C2Tx MXene support (PdCu/N-Ti3C2Tx) via in situ growth of PdCu nanoparticles on the fantastic N-Ti3C2Tx sheets. By exploring the electrocatalytic properties of ethanol oxidation reaction (EOR), the composition optimized Pd1Cu1/N-Ti3C2Tx delivers higher mass activity/specific activity/intrinsic activity (2200.7 mA mgPd-1/13.1 mA cm-2/2.2 s-1), anti-poisoning ability and stability than those of Pd/N-Ti3C2Tx, Pd1Cu1/Ti3C2Tx and commercial Pd/C, which can be attributed to the modified surface electronic features of Pd by the participation of Cu atoms and N-Ti3C2Tx MXene, as well as the "metal-carrier" effect between the PdCu nanoalloy and N-Ti3C2Tx heterogeneous interface. Furthermore, the conductivity of N-Ti3C2Tx MXene can be improved by N-doping, and the abundant terminal groups (-O, -OH, -F and N) on the N-Ti3C2Tx surface can promote the electron exchange between PdCu and N-Ti3C2Tx. This work provides an effective strategy for engineering heterogeneous electrocatalysts for enhanced electrocatalytic EOR by adjusting the interfacial electronic structure of noble metals.
Collapse
|
15
|
Xu X, Li M, Yang L, Hu B. Remarkably and stable catalytic activity in reduction of 4-nitrophenol by sodium sesquicarbonate-supporting Fe 2O 3@Pt. RSC Adv 2023; 13:13556-13563. [PMID: 37152584 PMCID: PMC10155080 DOI: 10.1039/d3ra01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
Reasonable design of bimetallic nanomaterials with support is beneficial to improve catalytic performance. This work reports a new kind of sodium sesquicarbonate-supporting Fe2O3@Pt via etching Fe3O4@Pt@SiO2, which exhibits highly efficient and stable catalytic reduction performance towards 4-NP. Sodium sesquicarbonate-supporting Fe2O3@Pt has an interconnected one-dimensional network structure that provides sufficient channels for mass transfer. At the same time, a large amount of Fe2O3@Pt is exposed on its surface, which hinders the aggregation of pt clusters and Fe2O3 nanoparticles, and facilitates the direct contact of Fe2O3@Pt reaction sites with reactant molecules, thus improving the catalytic rate of 4-NP reduction reaction. Moreover, the introduction of non-metallic Fe can not only reduce the consumption of precious metal Pt, but also improve the catalytic efficiency due to the synergistic effect. This study opens up a new avenue to develop robust catalysts for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Mingqiang Li
- College of Chemistry, Xinjiang University Urumqi Xinjiang 830046 P. R. China
| | - Liming Yang
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Bing Hu
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| |
Collapse
|
16
|
Zhang P, Hui X, Nie Y, Wang R, Wang C, Zhang Z, Yin L. New Conceptual Catalyst on Spatial High-Entropy Alloy Heterostructures for High-Performance Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206742. [PMID: 36617521 DOI: 10.1002/smll.202206742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High-entropy alloys (HEAs) are attracting increased attention as an alternative to noble metals for various catalytic reactions. However, it is of great challenge and fundamental importance to develop spatial HEA heterostructures to manipulate d-band center of interfacial metal atoms and modulate electron-distribution to enhance electrocatalytic activity of HEA catalysts. Herein, an efficient strategy is demonstrated to construct unique well-designed HEAs spatial heterostructure electrocatalyst (HEA@Pt) as bifunctional cathode to accelerate oxygen reduction and evolution reaction (ORR/OER) kinetics for Li-O2 batteries, where uniform Pt dendrites grow on PtRuFeCoNi HEA at a low angle boundary. Such atomically connected HEA spatial interfaces engender efficient electrons from HEA to Pt due to discrepancy of work functions, modulating electron distribution for fast interfacial electron transfer, and abundant active sites. Theoretical calculations reveal that electron redistribution manipulates d-band center of interfacial metal atoms, allowing appropriate adsorption energy of oxygen species to lower ORR/OER reaction barriers. Hence, Li-O2 battery based on HEA@Pt electrocatalyst delivers a minimal polarization potential (0.37 V) and long-term cyclability (210 cycles) under a cut-off capacity of 1000 mAh g-1 , surpassing most previously reported noble metal-based catalysts. This work provides significant insights on electron-modulation and d-band center optimization for advanced electrocatalysts.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Xiaobin Hui
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Yingjian Nie
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, 250061, Jinan, P. R. China
| |
Collapse
|
17
|
Ning J, Truhlar DG. Chemical Bonding in Isoelectronic NdO 2 and SmO 22. J Phys Chem A 2023; 127:2295-2305. [PMID: 36880996 DOI: 10.1021/acs.jpca.2c08461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Neodymium dioxide (NdO2) and samarium dioxide cation (SmO22+) are isoelectronic molecules. Here we used calculations of the spin-orbit-free wave functions to study and compare their geometries, spin states, and bonding. We used Kohn-Sham density functional theory with the B97-1 exchange-correlation functional to optimize the geometries and found that the two molecules have different ground spin states and structures. NdO2 favors a linear ONdO triplet structure, and SmO22+ favors a linear SmOO2+ quintet structure. We then used state-averaged complete-active-space self-consistent-field (SA-CASSCF) calculations to investigate the bonding characteristics of NdO2 and SmO22+ in various geometries. We found that in NdOO, one electron is transferred from Nd to O, while in SmO22+, there is no electron transfer between Sm and O. The SA-CASSCF calculation also shows that ONdO has a stronger bonding orbital between a 4f orbital of Nd and a pz orbital of oxygen atoms. We compared three multireference methods, namely, extended multistate complete active space second-order perturbation theory (XMS-CASPT2), extended multistate pair-density functional theory (XMS-PDFT), and compressed multistate pair-density functional theory (CMS-PDFT), for calculating the spin-orbit-free energies of various isomers of both molecules. We found that although XMS-PDFT and CMS-PDFT are at the same cost level as SA-CASSCF, they give results with the same accuracy as given for the much more demanding XMS-CASPT2 calculation. Between the two multistate PDFT methods, CMS-PDFT is better at giving good degeneracies for states that should be degenerate.
Collapse
Affiliation(s)
- Jiaxin Ning
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Bu L, Liang J, Ning F, Huang J, Huang B, Sun M, Zhan C, Ma Y, Zhou X, Li Q, Huang X. Low-Coordination Trimetallic PtFeCo Nanosaws for Practical Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208672. [PMID: 36574979 DOI: 10.1002/adma.202208672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance catalysts for fuel cell catalysis is the most critical and challenging step for the commercialization of fuel cell technology. Here 1D trimetallic platinum-iron-cobalt nanosaws (Pt3 FeCo NSs) with low-coordination features are designed as efficient bifunctional electrocatalysts for practical fuel cell catalysis. The oxygen reduction reaction (ORR) activity of Pt3 FeCo NSs (10.62 mA cm-2 and 4.66 A mg-1 Pt at 0.90 V) is more than 25-folds higher than that of the commercial Pt/C, even after 30 000 voltage cycles. Density functional theory calculations reveal that the strong inter-d-orbital electron transfer minimizes the ORR barrier with higher selectivity at robust valence states. The volcano correlation between the intrinsic structure featured with low-coordination Pt-sites and corresponding electronic activities is discovered, which guarantees high ORR activities. The Pt3 FeCo NSs located in the membrane electrode assembly (MEA) also achieve very high peak power density (1800.6 mW cm-2 ) and competitive specific/mass activities (1.79 mA cm-2 and 0.79 A mg-1 Pt at 0.90 ViR-free cell voltage) as well as a long-term lifetime in specific H2 O2 medium for proton-exchange-membrane fuel cells, ranking top electrocatalysts reported to date for MEA. This work represents a class of multimetallic Pt-based nanocatalysts for practical fuel cells and beyond.
Collapse
Affiliation(s)
- Lingzheng Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, 361005, P. R. China
- College of Energy, Xiamen University, Fujian, 361102, P. R. China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Hubei, 430074, P. R. China
| | - Fandi Ning
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Jiangsu, 215123, P. R. China
| | - Ju Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Research Centre for Carbon-Strategic Catalysis, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, 361005, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiaochun Zhou
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Jiangsu, 215123, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Hubei, 430074, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, 361005, P. R. China
| |
Collapse
|
19
|
Zhang W, Li F, Shi F, Hu H, Liang J, Yang H, Ye Y, Mao Z, Shang W, Deng T, Ke X, Wu J. Tensile-Strained Platinum-Cobalt Alloy Surface on Palladium Octahedra as a Highly Durable Oxygen Reduction Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3993-4000. [PMID: 36642872 DOI: 10.1021/acsami.2c18600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing shape-controlled Pt-based core-shell nanocrystals is a prospective strategy to maximize the utilization of Pt while maintaining high activity for oxygen reduction reaction (ORR). However, the core-shell structures with ultrathin Pt shell exhibit limited electrochemical durability. Therefore, a thicker shell is proposed to successfully improve the durability of the core-shell structures by preventing the core from dissolution. Nevertheless, the deposition of Pt tends to switch to the Stranski-Krastanov (S-K) growth mode with the increase of the number of layer, resulting in the absence of a conformal morphology. Herein, we realize the deposition of three-to-five-layer epitaxial Pt-Co layers on Pd octahedral seeds by introducing tensile strain in the epitaxial layer to impede the S-K growth. The as-obtained Pd@Pt-Co octahedra with four layers exhibit enhanced mass activity (0.69 A/mgPt) and specific activity (1.00 mA/cm2) for ORR, which are 4.93 and 5 times that of the commercial Pt/C, respectively. Furthermore, it shows only 17% decay for specific activity after a 30,000-cycle durability test. This work is expected to enlighten the design and synthesis of related core-shell nanocrystals with facetted multicomponent shells, offering a promising strategy for designing cost-effective and efficient catalysts.
Collapse
Affiliation(s)
- Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Hao Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jing Liang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaoli Ye
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Zhengsong Mao
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaoxing Ke
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
20
|
Xia T, Zhao K, Zhu Y, Bai X, Gao H, Wang Z, Gong Y, Feng M, Li S, Zheng Q, Wang S, Wang R, Guo H. Mixed-Dimensional Pt-Ni Alloy Polyhedral Nanochains as Bifunctional Electrocatalysts for Direct Methanol Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206508. [PMID: 36281798 DOI: 10.1002/adma.202206508] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pt nanocatalysts play a critical role in direct methanol fuel cells (DMFCs) due to their appropriate adsorption/desorption energy, yet suffer from an unbalanced relationship between size-dependent activity and stability. Herein, mixed-dimensional Pt-Ni alloy polyhedral nanochains (Pt-Ni PNCs) with an ordered assembly of a nanopolyhedra-nanowire-nanopolyhedra architecture are fabricated as bifunctional electrocatalysts for DMFCs, effectively alleviating the size effect. The Pt-Ni PNCs exhibit 7.23 times higher mass activity for the anodic methanol oxidation reaction (MOR) than that of commercial Pt/C. In situ Fourier transform infrared spectroscopy and CO stripping measurements demonstrate the prominent stability of the Pt-Ni PNCs to resist CO poisoning. For the cathodic oxygen reduction reaction (ORR), a positive half-wave potential exceeding Pt/C is achieved by the Pt-Ni PNCs, and it can be well maintained for 10 000 cycles with negligible activity decay. The designed nanostructure can alleviate the agglomeration and dissolution problems of 0D small-sized Pt-Ni alloy nanocrystals and enrich surface atom steps and active facets of 1D chain-like nanostructures. This work provides a proposed strategy to improve the catalytic performance of Pt-based nanocatalysts by constructing novel interfacial relationships in mixed dimensions to alleviate the imbalance between catalytic activity and catalytic stability caused by size effects.
Collapse
Affiliation(s)
- Tianyu Xia
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Zhao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Bai
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Han Gao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Menglin Feng
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shunfang Li
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shouguo Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230039, China
| | - Rongming Wang
- Institute for Multidisciplinary Innovation, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
21
|
Khalid M, Fonseca HA, Verga LG, Rafe Hatshan M, Da Silva JL, Varela H, Shahgaldi S. Facile synthesis of Ru nanoclusters embedded in carbonaceous shells for hydrogen evolution reaction in alkaline and acidic media. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Li FM, Huang L, Zaman S, Guo W, Liu H, Guo X, Xia BY. Corrosion Chemistry of Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200840. [PMID: 35334145 DOI: 10.1002/adma.202200840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Collapse
Affiliation(s)
- Fu-Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Hongfang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
23
|
Li L, Sun H, Xu X, Humayun M, Ao X, Yuen MF, Xue X, Wu Y, Yang Y, Wang C. Engineering Amorphous/Crystalline Rod-like Core-Shell Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50783-50793. [PMID: 36331553 DOI: 10.1021/acsami.2c13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of bifunctional electrocatalysts for hydrogen and oxygen evolution reactions delivering excellent catalytic activity and stability is highly desirable, yet challenged. Herein, we report an amorphous RuO2-encapsulated crystalline Ni0.85Se nanorod structure (termed as a/c-RuO2/Ni0.85Se) for enhanced HER and OER activities. The as-prepared a/c-RuO2/Ni0.85Se nanorods not only demonstrate splendid HER activity (58 mV@10 mA cm-2 vs RHE), OER activity (233 mV@10 mA cm-2 vs RHE), and electrolyzer activity (1.488 V@10 mA cm-2 vs RHE for overall water splitting) but also exhibit long-term stability with negligible performance decay after 50 h continuous test for overall water splitting. In addition, the variation of the d-band center (from the perspective of bonding and antibonding states) is unveiled theoretically by density functional theory calculations upon amorphous RuO2 layers coupling to clarify the increased hydrogen species adsorption for HER activity enhancement. This work represents a new pathway for the fabrication of bifunctional electrocatalysts toward green hydrogen generation.
Collapse
Affiliation(s)
- Linfeng Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huachuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuefei Xu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Ao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Ying Wu
- College of Chemistry and Chemical Engineering, Tarim University, Alaer 843300, P. R. China
| | - Yang Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
24
|
Liu J, Zhang J, Xu M, Tian C, Dong Y, Wang CA. Pt 3Co/Co Composite Catalysts on Porous N-Doped Carbon Support Derived from ZIF-67 with Enhanced HER and ORR Activities. Inorg Chem 2022; 61:19309-19318. [DOI: 10.1021/acs.inorgchem.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jiewen Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen333001, PR China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Jian Zhang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Mingjie Xu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chuanjin Tian
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen333001, PR China
| | - Yanhao Dong
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Chang-An Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| |
Collapse
|
25
|
Ruan J, Chen Y, Zhao G, Li P, Zhang B, Jiang Y, Ma T, Pan H, Dou SX, Sun W. Cobalt Single Atoms Enabling Efficient Methanol Oxidation Reaction on Platinum Anchored on Nitrogen-Doped Carbon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107067. [PMID: 35491508 DOI: 10.1002/smll.202107067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient platinum (Pt)-based electrocatalysts with high tolerance to CO poisoning for the methanol oxidation reaction is critical for the development of direct methanol fuel cells. In this work, cobalt single atoms are introduced to enhance the electrocatalytic performance of N-doped carbon supported Pt (N-C/Pt) for the methanol oxidation reaction. The cobalt single atoms are believed to play a critical role in accelerating the prompt oxidation of CO to CO2 and minimizing the CO blocking of the adjacent Pt active sites. Benefitting from the synergistic effects among the Co single atoms, the Pt nanoparticles, and the N-doped carbon support, the Co-modified N-C/Pt (Co-N-C/Pt) electrocatalyst simultaneously delivers impressive electrocatalytic activity and durability with lower onset potential and superb CO poisoning resistance as compared to the N-C/Pt and the commercial Pt/C electrocatalysts.
Collapse
Affiliation(s)
- Jiufeng Ruan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yaping Chen
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peng Li
- Centre for Translational Atomaterials, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
26
|
Chen H, Liu J, Wu X, Ye C, Zhang J, Luo JL, Fu XZ. Pt-Co Electrocatalysts: Syntheses, Morphologies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204100. [PMID: 35996763 DOI: 10.1002/smll.202204100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pt-Co electrocatalysts have attracted significant attention because of their excellent performance in many electrochemical reactions. This review focuses on Pt-Co electrocatalysts designed and prepared for electrocatalytic applications. First, the various synthetic methods and synthesis mechanisms are systematically summarized; typical examples and core synthesis parameters are discussed for regulating the morphology and structure. Then, starting with the design and structure-activity relationship of catalysts, the research progress of the morphologies and structures of Pt-Co electrocatalysts obtained based on various strategies, the structure-activity relationship between them, and their properties are summarized. In addition, the important electrocatalytic applications and mechanisms of Pt-Co catalysts, including electrocatalytic oxidation/reduction and bifunctional catalytic reactions, are described and summarized, and their high catalytic activities are discussed on the basis of their mechanism and active sites. Moreover, the advanced electrochemical in situ characterization techniques are summarized, and the challenges and direction concerning the development of high-performance Pt-Co catalysts in electrocatalysis are discussed.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuexian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunyi Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
27
|
Gahtori J, Tucker CL, Khan TS, de Sá Codeço C, Rocha T, Bordoloi A. Highly Efficient ZIF-67-Derived PtCo Alloy-CN Interface for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38905-38920. [PMID: 35973160 DOI: 10.1021/acsami.2c11296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing new materials for selective Fischer-Tropsch synthesis (FTS) is an elegant way to enhance local feedstock utilization like biomass and waste. In this approach, we have designed a thermally and chemically stable bimetallic PtCo/NC hybrid nanocomposite catalyst derived from a zeolitic imidazolate framework (ZIF-67, which contains cobalt as a metal center) through carbonization for low-temperature (413-473 K) aqueous-phase Fischer-Tropsch synthesis (AFTS). The selectivity of the desired range of hydrocarbons is adjusted using a highly dispersed PtCo bimetallic alloy, which facilitates extraordinary reduction of a metal oxide to active species by the synergic effect under the AFTS reaction conditions. The ZIF-derived catalyst tested in this study exhibited the highest activity to date for very low temperatures (433 K) in aqueous-phase Fischer-Tropsch synthesis with CO conversion rates between 0.61 and 1.20 molCO·molCo-1·h-1. Insights of the remarkable catalyst activity were examined by in situ X-ray photoelectron spectroscopy (XPS) studies corroborated by density functional theory (DFT) calculation. The bimetallic Co3Pt (111) surface was found to be highly active for the C-C coupling reaction between surface-adsorbed C and CO, forming a CCO intermediate with a very low activation barrier (Ea = 0.37 eV), in comparison to the C-C coupling activation barrier obtained over the Co (111) surface (Ea = 0.87 eV). This unique approach and observations create a new path for developing next-generation advanced catalyst systems and processes for selective low-temperature FTS.
Collapse
Affiliation(s)
- Jyoti Gahtori
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chelsea L Tucker
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Tuhin S Khan
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Tulio Rocha
- Brazilian Synchrotron Light Laboratory, Sao Paulo 13083-100, Brazil
| | - Ankur Bordoloi
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Acquaye FY, Roberts A, Street S. Effect of Crystal Growth on the Thermodynamic Stability and Oxygen Reduction Reaction Activity of Cu-Pt Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10621-10631. [PMID: 35969848 DOI: 10.1021/acs.langmuir.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermodynamically stable (ordered) platinum-based bimetallic nanoparticle (NP) catalysts are auspicious candidates for catalyzing the oxygen reduction reaction (ORR) in fuel cells. Although the cubic (L12) and tetragonal (L10) ordered phases have been extensively studied, very little is known about the cubic (D7) thermally stable/ordered CuPt7 with regard to its synthesis at room temperature and ORR activity. The typical synthetic approach to the ordered phase (L12 and L10) has been by thermal annealing of the disordered phase in an inert atmosphere. We demonstrate that by coordinating Cu2+ and Pt4+ ions to amino groups in aqueous polyethyleneimine (PEI) (precursor solution), slow crystal growth by a UV-light assisted photoreduction can be used to achieve ordered CuPt7 NPs at room temperature. Slow crystal growth produces a relatively expanded lattice (7.766 Å) of CuPt7 and a lesser ORR activity via a four-electron transfer pathway. Conversely, fast crystal growth through a NaBH4 assisted chemical reduction produces a disordered CuPt phase at room temperature and a contracted lattice (3.809 Å) that enhances the ORR activity of CuPt via a two-electron transfer pathway. Our comparative observations of CuPt and CuPt7 support the observation that lattice contraction is critical in the ORR activity of Cu-Pt nanoalloys.
Collapse
Affiliation(s)
- Francis Y Acquaye
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Anne Roberts
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Shane Street
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
29
|
He N, Wei S, Hu T, Ye Y, Cai Y, Liu J, Li P, Liang C. Surface-Plasmon-Mediated Alloying for Monodisperse Au-Ag Alloy Nanoparticles in Liquid. Inorg Chem 2022; 61:12449-12457. [PMID: 35904272 DOI: 10.1021/acs.inorgchem.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmonic noble-metal nanoparticles with broadly tunable optical properties and catalytically active surfaces offer a unique opportunity for photochemistry. Resonant optical excitation of surface-plasmon generates high-energy hot carriers, which can participate in photochemical reactions. Although the surface-plasmon-driven catalysis on molecules has been extensively studied, surface-plasmon-mediated synthesis of bimetallic nanomaterials is less reported. Herein, we perform a detailed investigation on the formation mechanism and colloidal stability of monodisperse Au-Ag alloy nanoparticles synthesized through irradiating the intermixture of Au nanochains and AgNO3 solution with a nanosecond pulsed laser. It is revealed that the Ag atoms can be extracted from AgNO3 solution by surface-plasmon-generated hot electrons and alloy with Au atoms. Particularly, the obtained Au-Ag alloy nanoparticles without any surfactants or ligands exhibit superior stability that is confirmed by experiments as well as DLVO-based theoretical simulation. Our work would provide novel insights into the synthesis of potentially useful bimetallic nanoparticles via surface-plasmon-medicated alloying.
Collapse
Affiliation(s)
- Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taiping Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Zhao Z, Duan L, Zhao Y, Wang L, Zhang J, Bu F, Sun Z, Zhang T, Liu M, Chen H, Yang Y, Lan K, Lv Z, Zu L, Zhang P, Che R, Tang Y, Chao D, Li W, Zhao D. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. J Am Chem Soc 2022; 144:11767-11777. [PMID: 35731994 DOI: 10.1021/jacs.2c03814] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yujuan Zhao
- Centre for High-Resolution Electron Microscopy (ChEM), School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P. R. China
| | - Lipeng Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Junye Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhihao Sun
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanxing Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yi Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lianhai Zu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Renchao Che
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yun Tang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
31
|
Hu J, Fang C, Jiang X, Zhang D, Cui Z. Ultrathin and Porous 2D PtPdCu Nanoalloys as High-Performance Multifunctional Electrocatalysts for Various Alcohol Oxidation Reactions. Inorg Chem 2022; 61:9352-9363. [PMID: 35674700 DOI: 10.1021/acs.inorgchem.2c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of metal precursors. The PtPdCu trimetallic nanoalloys exhibit superior electrocatalytic performances to alcohol oxidation reactions due to their unique structural features and the synergistic effect. Impressively, PtPdCu TNBs exhibit a high mass activity of 3.42 mgPt+Pd-1 and 1.06 A·mgPt-1 for ethanol and methanol oxidation compared to PtPd, PtCu, and pure Pt, which is 3.93 and 4.07 times that of commercial Pt/C catalysts, respectively. Moreover, 2D PtPdCu TNPs and PtPdCu CNDs also show a highly improved electrocatalytic activity. Furthermore, as all-in-one electrocatalysts, PtPdCu nanoalloys display excellent electrocatalytic activity and stability toward the oxidation of other alcohol molecules, such as isopropyl alcohol, glycerol, and ethylene glycol. The enhanced mechanism was well proposed to be the abundant active sites and upshifted d-band center based on density functional theory calculations.
Collapse
Affiliation(s)
- Jinwu Hu
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Caihong Fang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Xiaomin Jiang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Deliang Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Zhiqing Cui
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
32
|
Zhao W, Chi B, Liang L, Yang P, Zhang W, Ge X, Wang L, Cui Z, Liao S. Optimizing the Electronic Structure of Ordered Pt–Co–Ti Ternary Intermetallic Catalyst to Boost Acidic Oxygen Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiyue Zhao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Lecheng Liang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pengfei Yang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, PR China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, Changchun 130012, PR China
| | - Liming Wang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| |
Collapse
|
33
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
34
|
Zhao L, Jiang J, Xiao S, Li Z, Wang J, Wei X, Kong Q, Chen JS, Wu R. PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Xiao D, Jiang Q, Xu C, Yang C, Yang L, He H, Huang H. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. J Colloid Interface Sci 2022; 616:781-790. [PMID: 35247815 DOI: 10.1016/j.jcis.2022.02.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g-1, a high mass activity of 1526.5 mA mg-1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.
Collapse
Affiliation(s)
- Di Xiao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Chenyu Xu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Cuizhen Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|
36
|
Zhou Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. Pt-Co nanoparticles supported on hollow multi-shelled CeO 2 as a catalyst for highly efficient toluene oxidation: Morphology control and the role of bimetal synergism. J Colloid Interface Sci 2022; 608:48-59. [PMID: 34624765 DOI: 10.1016/j.jcis.2021.09.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022]
Abstract
A series of hollow multi-shelled CeO2 (HoMS-CeO2) support materials with tunable shell numbers were fabricated and applied to the catalytic oxidation of toluene. HoMS-CeO2 possess much higher catalytic activity (T90 = 236 ℃) than hollow CeO2 with only a single shell (h-CeO2) (T90 = 275℃). The porous multiple-shelled structure has a higher SBET, which strongly promotes gas distribution and provides more active sites. The superiority of this kind of structure was also verified by comparing h-Co3O4 and HoMS-Co3O4. Furthermore, Pt-Co bimetallic nanoparticles were loaded onto HoMS-CeO2. The synergistic effect between Pt and Co was verified by XPS and O2-TPD, which was observed to allow electron transfer between Pt and Co and thus regulate the electronic state of the Pt. Compared with Pt alone, Pt-Co bimetallic nanoparticles could stronglypromotethe activation of O2and oxygen mobility, as revealed by a much higher Oads content and a lower oxygen desorption temperature. Of the catalysts prepared in this study, the 1 wt% PtCo3/CeO2 catalyst was found to be the most suitable for toluene oxidation owing to its excellent activity (T90 = 158 ℃), long-term stability, and water resistance. Finally, in situ DRIFTS was employed to investigate mechanism during toluene oxidation and the possible reaction pathway was proposed.
Collapse
Affiliation(s)
- Yuanbo Zhou
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
37
|
Wang S, Zhu T, Jiang N, Zhang C, Wang H, Chen Y, Li F, Song H. Hydrogenation of phenol to cyclohexanol using carbon encapsulated Ni–Co alloy nanoparticles. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active NiCo alloy nanoparticles for phenol hydrogenation to cyclohexanol were developed.
Collapse
Affiliation(s)
- Shuai Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Tianhan Zhu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Nan Jiang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Chunlei Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Huan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yanguang Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
38
|
Li D, Liu F, Dou J, Zhao Q. Pt Decorated Ni−Ni(OH)
2
Nanotube Arrays for Efficient Hydrogen Evolution Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dandan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 Shandong P.R. China
| | - Fengyu Liu
- Shanxi Provincial Institute of Chemical Industry (Co. Ltd.) Jinzhong 030600 Shanxi P.R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 Shandong P.R. China
| | - Qiang Zhao
- College of Chemistry and Chemical Engineering Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P.R. China
| |
Collapse
|
39
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
40
|
Qu Y, Zheng Z, Yu Z, Song M, Zhang Y, Zhao Y, Yu J. Chain-like PtPd nanoparticles with a long-time stability as an efficient electrocatalyst for alcohols oxidation reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Li X, He Y, Cheng S, Li B, Zeng Y, Xie Z, Meng Q, Ma L, Kisslinger K, Tong X, Hwang S, Yao S, Li C, Qiao Z, Shan C, Zhu Y, Xie J, Wang G, Wu G, Su D. Atomic Structure Evolution of Pt-Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106371. [PMID: 34605065 DOI: 10.1002/adma.202106371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt-Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre-doping of CoN4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt3 Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L12 -ordered Pt3 Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt3 Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading (<6 wt%), the formation of single Pt sites in the form of PtC3 N is thermodynamically favorable, in which a synergy between the PtC3 N and the CoN4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability.
Collapse
Affiliation(s)
- Xing Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shaobo Cheng
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qingping Meng
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Siyu Yao
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chenzhao Li
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jian Xie
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Dong Su
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
42
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
43
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
44
|
Jin C, Lou Y, Liu J, Wang F. Crystal Orientation in Pt-Based Alloys Induced by W(CO) 6: Driving Oxygen Electroreduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45406-45415. [PMID: 34542999 DOI: 10.1021/acsami.1c10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integrating crystal orientation as well as structural and compositional advantages into one catalyst might be a promising strategy for high-performance Pt-based catalysts for proton-exchange membrane fuel cells. Herein, by introducing W(CO)6 as a structure-oriented template, Pt-based alloys with a well-defined crystal orientation along the (111) facet were obtained. The oxygen reduction reaction mass and specific activities of the crystal-facet-tuned alloys reach a new level. Moreover, the outstanding durability stems from the combination of their exposed crystal facets and incorporated W. The density functional theory calculation results reveal that the formation of the preferred (111) alloys can be attributed to the lower free energy of (111) facets and the weaker adsorption of CO released by W(CO)6. This proposed synthesis strategy of using transition-metal carbonyl compounds as additives to synthesize alloys with strong crystal orientation may open a door to the design of various alloy catalysts with ultrahigh activity.
Collapse
Affiliation(s)
- Chun Jin
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Yiwei Lou
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| |
Collapse
|
45
|
Yuan M, Xu H, Wang C, Wang Y, Wang Y, Wang X, Du Y. PtM/M x B y (M=Ni, Co, Fe) Heterostructured Nanobundles as Advanced Electrocatalyst for Hydrogen Evolution Reaction. Chemistry 2021; 27:12851-12856. [PMID: 34115412 DOI: 10.1002/chem.202101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 01/24/2023]
Abstract
Optimizing the electronic and synergistic effect of hybrid electrocatalysts based on Pt and Pt-based nanocatalysts is of tremendous importance towards a superior hydrogen evolution performance under both acidic and alkaline conditions. However, developing an ideal Pt-based hydrogen evolution reaction (HER) electrocatalyst with moderated electronic structure as well as strong synergistic effect is still a challenge. Herein, we fabricated boron (B)-doped PtNi nanobundles by a two-step method using NaBH4 as the boron source to obtain PtNi/Ni4 B3 heterostructures with well-defined nanointerfaces between PtNi and Ni4 B3 , achieving an enhanced catalytic HER performance. Especially, the PtNi/Ni4 B3 nanobundles (PtNi/Ni4 B3 NBs) can deliver a current density of 10 mA cm-2 at the overpotential of 14.6 and 26.5 mV under alkaline and acidic media, respectively, as well as outstanding electrochemical stability over 40 h at the current density of 10 mA cm-2 . Remarkably, this approach is also universal for the syntheses of PtCo/Co3 B and PtFe/Fe49 B with outstanding electrocatalytic HER performance.
Collapse
Affiliation(s)
- Mengyu Yuan
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yong Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University Science and Technology, Suzhou, 215009, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
46
|
Wang Z, Mai Y, Yang Y, Shen L, Yan C. Highly Ordered Pt-Based Nanoparticles Directed by the Self-Assembly of Block Copolymers for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38138-38146. [PMID: 34355891 DOI: 10.1021/acsami.1c04259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing Pt-based nanoparticle (NP) catalysts is of great interest for the lowering of Pt usage and the enhancement of catalytic activity on the proton-exchange membrane fuel cells (PEMFCs). However, it is still challenging to develop well-arrayed catalyst NPs on supports over multiple-length scales. Herein, we presented a facile strategy of producing well-ordered Pt-based NPs toward oxygen reduction reaction (ORR) catalysts assisted by the self-assembly of block copolymers. In contrast to the conventional Pt/C ORR catalysts with a random dispersion on carbon, the as-prepared Pt, PtCo, and PtCo@Pt NPs in our work were hexagonally arranged with a uniform quasi-spherical shape and ordered distribution. The systematic study related to their ORR activities revealed that the PtCo@Pt core-shell NP arrays were more active and more durable than PtCo, Pt, and the commercial Pt/C catalyst. In the rotating-disk electrode test, a half-wave potential (E1/2) of 0.86 V versus RHE and a 4-e ORR mechanism were found for PtCo@Pt. Single-cell performance showed that the current density and the peak power density of PtCo@Pt achieved 0.86 A/cm2@0.7 V and 1.05 W/cm2, respectively, with a Pt loading of ∼0.15 mg/cm2 on the cathode. Also, they held 81.4 and 82.9% retention, respectively, after the durability test in the single-cell test. Density functional theory calculation results revealed that PtCo@Pt NPs had a lower d-band center and a weaker oxygen binding energy compared to Pt and PtCo, which contributed to the enhancement of the ORR activity.
Collapse
Affiliation(s)
- Zhida Wang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yilang Mai
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Yang
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lisha Shen
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Changfeng Yan
- Hydrogen Production and Utilization Lab, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
47
|
Milica Spasojević, Ribić-Zelenović L, Spasojević M, Marković D. Methanol Electrooxidation on Pt/RuO2 Catalyst. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
49
|
Aziz T, Ullah A, Fan H, Ullah R, Haq F, Khan FU, Iqbal M, Wei J. Cellulose Nanocrystals Applications in Health, Medicine and Catalysis. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2062-2071. [DOI: 10.1007/s10924-021-02045-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 07/25/2024]
|
50
|
Zhang M, Cai S, Li J, Elimian EA, Chen J, Jia H. Ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide to enhance light-driven photothermal catalytic degradation of VOCs. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125266. [PMID: 33548787 DOI: 10.1016/j.jhazmat.2021.125266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Light driven photothermal catalysis has been carried out by converting the light energy into heat to reach the light-off temperature of the reaction. Herein we have synthesized the ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide (Pt-Cox/CN), for the catalytic degradation of toluene. Under the condition of space velocity of 30,000 mL/(gh) and concentration of 210 ppm, toluene conversion and CO2 mineralization can reach 90% and 83% over Pt-Co20/CN, respectively. The introduction of an appropriate proportion of CoO enhances the light absorption of nanocomposites and improves the adsorption for toluene. Meanwhile, CoO promotes the proportion and mobility of adsorbed oxygen on the surface, which are conducive to the catalytic oxidation reaction according to the Mars-van Krevelen mechanism. The results also suggest that light irradiation serves as a source of heat to initiate photo-induced chemical reactions and promote photothermal catalytic oxidation by promoting the activation of lattice oxygen.
Collapse
Affiliation(s)
- Meng Zhang
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songcai Cai
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Li
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ehiaghe Agbovhimen Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, Zhejiang, China
| | - Jing Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|