1
|
Kolarski D, Szymanski W, Feringa BL. Spatiotemporal Control Over Circadian Rhythms With Light. Med Res Rev 2025. [PMID: 39757143 DOI: 10.1002/med.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Circadian rhythms are endogenous biological oscillators that synchronize internal physiological processes and behaviors with external environmental changes, sustaining homeostasis and health. Disruption of circadian rhythms leads to numerous diseases, including cardiovascular and metabolic diseases, cancer, diabetes, and neurological disorders. Despite the potential to restore healthy rhythms in the organism, pharmacological chronotherapy lacks spatial and temporal resolution. Addressing this challenge, chrono-photopharmacology, the approach that employs small molecules with light-controlled activity, enables the modulation of circadian rhythms when and where needed. Two approaches-relying on irreversible and reversible drug activation-have been proposed for this purpose. These methodologies are based on photoremovable protecting groups and photoswitches, respectively. Designing photoresponsive bioactive molecules requires meticulous structural optimization to obtain the desired chemical and photophysical properties, and the design principles, detailed guidelines and challenges are summarized here. In this review, we also analyze all the known circadian modulators responsive to light and dissect the rationale following their construction and application to control circadian biology from the protein level to living organisms. Finally, we present the strength of a reversible approach in allowing the modulation of the circadian period and the phase.
Collapse
Affiliation(s)
- Dušan Kolarski
- Max Planck Institute for Multidisciplinary Sciences, NanoBioPhotonics, Göttingen, Germany
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Ozcan O, Gul S, Kavakli IH. Dynamic regulation of the serine loop by distant mutations reveals allostery in cryptochrome1. J Biomol Struct Dyn 2023; 42:10417-10428. [PMID: 37705288 DOI: 10.1080/07391102.2023.2256882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cryptochromes (CRYs) are essential components of the molecular clock that generates circadian rhythm. They inhibit BMAL1/CLOCK-driven transcription at the molecular level. There are two CRYs that have differential functions in the circadian clock in mammals. It is not precisely known how they achieve such differential functions. In this study, we performed molecular dynamic simulations on eight CRY mutants that have been experimentally shown to exhibit reduced repressor activities. Our results revealed that mutations in CRY1 affect the dynamic behavior of the serine loop and the availability of the secondary pocket, but not in CRY2. Further analysis of these CRY1 mutants indicated that the differential flexibility of the serine loop leads to changes in the volume of the secondary pocket. We also investigated the weak interactions between the amino acids in the serine loop and those in close proximity. Our findings highlighted the crucial roles of S44 and S45 in the dynamic behavior of the serine loop, specifically through their interactions with E382 in CRY1. Considering the clinical implications of altered CRY1 function, our study opens up new possibilities for the development of drugs that target the allosteric regulation of CRY1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
5
|
Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Late-stage Functionalization for Improving Drug-like Molecular Properties. Chem Rev 2023. [PMID: 37285604 DOI: 10.1021/acs.chemrev.2c00797] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Abusamak M, Al-Tamimi M, Al-Waeli H, Tahboub K, Cai W, Morris M, Tamimi F, Nicolau B. Chronotherapy in dentistry: A scoping review. Chronobiol Int 2023:1-14. [PMID: 37052061 DOI: 10.1080/07420528.2023.2200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The circadian clock modulates almost all vital aspects of our physiology and metabolism, including processes relevant to dentistry, such as healing, inflammation and nociception. Chronotherapy is an emerging field aiming to improve therapeutic efficacy and decrease adverse effects on health outcomes. This scoping review aimed to systematically map the evidence underpinning chronotherapy in dentistry and to identify gaps in knowledge. We conducted a systematic scoping search using four databases (Medline, Scopus, CINAHL and Embase). We identified 3908 target articles screened by two blinded reviewers, and only original animal and human studies investigating the chronotherapeutic use of drugs or interventions in dentistry were included. Of the 24 studies included, 19 were human studies and five were animal studies. Chrono-radiotherapy and chrono-chemotherapy reduced treatment side effects and improved therapeutic response, leading to higher survival rates in cancer patients. Animal studies reported that tooth movement and periodontal tissue response to orthodontic forces follow a diurnal rhythm that might influence bone metabolism. Profound and prolonged local anesthesia could be achieved when injected in the evening. Although the overall quality of the included studies was low, chronotherapy applications in dentistry seem to have favourable outcomes, especially in head and neck cancer treatments.
Collapse
Affiliation(s)
- Mohammad Abusamak
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Mohammad Al-Tamimi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Haider Al-Waeli
- Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kawkab Tahboub
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Wenji Cai
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Martin Morris
- Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Ge YX, Zhuang HJ, Zhang TW, Liang HF, Ding W, Zhou L, Dong ZR, Hu ZC, Chen Q, Dong J, Jiang LB, Yin XF. Precise manipulation of circadian clock using MnO 2 nanocapsules to amplify photodynamic therapy for osteosarcoma. Mater Today Bio 2023; 19:100547. [PMID: 36896415 PMCID: PMC9988696 DOI: 10.1016/j.mtbio.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythm (CR) disruption contributes to tumor initiation and progression, however the pharmacological targeting of circadian regulators reversely inhibits tumor growth. Precisely controlling CR in tumor cells is urgently required to investigate the exact role of CR interruption in tumor therapy. Herein, based on KL001, a small molecule that specifically interacts with the clock gene cryptochrome (CRY) functioning at disruption of CR, we fabricated a hollow MnO2 nanocapsule carrying KL001 and photosensitizer BODIPY with the modification of alendronate (ALD) on the surface (H-MnSiO/K&B-ALD) for osteosarcoma (OS) targeting. The H-MnSiO/K&B-ALD nanoparticles reduced the CR amplitude in OS cells without affecting cell proliferation. Furthermore, nanoparticles-controlled oxygen consumption by inhibiting mitochondrial respiration via CR disruption, thus partially overcoming the hypoxia limitation for photodynamic therapy (PDT) and significantly promoting PDT efficacy. An orthotopic OS model demonstrated that KL001 significantly enhanced the inhibitory effect of H-MnSiO/K&B-ALD nanoparticles on tumor growth after laser irradiation. CR disruption and oxygen level enhancement induced by H-MnSiO/K&B-ALD nanoparticles under laser irradiation were also confirmed in vivo. This discovery first demonstrated the potential of CR controlling for tumor PDT ablation and provided a promising strategy for overcoming tumor hypoxia.
Collapse
Affiliation(s)
- Yu-Xiang Ge
- Department of Orthopedics Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong-Jun Zhuang
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Tai-Wei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wang Ding
- Department of Orthopedics Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-rui Dong
- Department of Orthopedics Surgery, Jinshan Hospital, Fudan University, Shanghai 201512, China
| | - Zhi-Chao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao-Fan Yin
- Department of Orthopedics Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| |
Collapse
|
8
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
9
|
Level of constitutively expressed BMAL1 affects the robustness of circadian oscillations. Sci Rep 2022; 12:19519. [PMID: 36376366 PMCID: PMC9663716 DOI: 10.1038/s41598-022-24188-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
The circadian rhythm is a biological oscillation of physiological activities with a period of approximately 24 h, that is driven by a cell-autonomous oscillator called the circadian clock. The current model of the mammalian circadian clock is based on a transcriptional-translational negative feedback loop in which the protein products of clock genes accumulate in a circadian manner and repress their own transcription. However, several studies have revealed that constitutively expressed clock genes can maintain circadian oscillations. To understand the underlying mechanism, we expressed Bmal1 in Bmal1-disrupted cells using a doxycycline-inducible promoter and monitored Bmal1 and Per2 promoter activity using luciferase reporters. Although the levels of BMAL1 and other clock proteins, REV-ERBα and CLOCK, showed no obvious rhythmicity, robust circadian oscillation in Bmal1 and Per2 promoter activities with the correct phase relationship was observed, which proceeded in a doxycycline-concentration-dependent manner. We applied transient response analysis to the Bmal1 promoter activity in the presence of various doxycycline concentrations. Based on the obtained transfer functions, we suggest that, at least in our experimental system, BMAL1 is not directly involved in the oscillatory process, but modulates the oscillation robustness by regulating basal clock gene promoter activity.
Collapse
|
10
|
Gul S, Akyel YK, Gul ZM, Isin S, Ozcan O, Korkmaz T, Selvi S, Danis I, Ipek OS, Aygenli F, Taskin AC, Akarlar BA, Ozlu N, Ozturk N, Ozturk N, Ünal DÖ, Guzel M, Turkay M, Okyar A, Kavakli IH. Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat Commun 2022; 13:6742. [PMID: 36347873 PMCID: PMC9643396 DOI: 10.1038/s41467-022-34582-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53-/- mice by ~25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.
Collapse
Affiliation(s)
- Seref Gul
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619Present Address: Department of Biology, Biotechnology Division, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Yasemin Kubra Akyel
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.411781.a0000 0004 0471 9346Present Address: School of Medicine, Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Melis Gul
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Safak Isin
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Onur Ozcan
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Tuba Korkmaz
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Saba Selvi
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ibrahim Danis
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Ozgecan Savlug Ipek
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.38575.3c0000 0001 2337 3561Department of Chemistry, Graduate School of Natural and Applied Sciences, Yildiz Technical University, Besiktas/Istanbul, 34349 Turkey
| | - Fatih Aygenli
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Ali Cihan Taskin
- grid.15876.3d0000000106887552Animal Research Facility, Research Center for Translational Medicine, Koc University, Rumelifeneri yolu, 34450 Sariyer-Istanbul, Turkey
| | - Büşra Aytül Akarlar
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nurhan Ozlu
- grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| | - Nuri Ozturk
- grid.448834.70000 0004 0595 7127Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Narin Ozturk
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Durişehvar Özer Ünal
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey ,grid.9601.e0000 0001 2166 6619İstanbul University Drug Research and Application Center (ILAM), TR-34116 Beyazıt-Istanbul, Turkey
| | - Mustafa Guzel
- grid.411781.a0000 0004 0471 9346Regenerative and Restorative Medicine Research Center (REMER), İstanbul Medipol University, Kavacik Campus, Kavacik-Beykoz/Istanbul, 34810 Turkey ,grid.411781.a0000 0004 0471 9346International School of Medicine, Department of Medical Pharmacology, Kavacik Campus, İstanbul Medipol University, Kavacik-Beykoz/Istanbul, 34810 Turkey
| | - Metin Turkay
- grid.15876.3d0000000106887552Department of Industrial Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- grid.9601.e0000 0001 2166 6619Faculty of Pharmacy, Department of Pharmacology, İstanbul University, TR-34116 Beyazit-Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- grid.15876.3d0000000106887552Department of Chemical and Biological Engineering, Koc University, 34450 Sariyer-Istanbul, Turkey ,grid.15876.3d0000000106887552Department of Molecular Biology and Genetics, Koc University, İstanbul, Turkey
| |
Collapse
|
11
|
Yagi M, Miller S, Nagai Y, Inuki S, Sato A, Hirota T. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. F1000Res 2022; 11:1016. [PMID: 36226040 PMCID: PMC9523283 DOI: 10.12688/f1000research.124658.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Impairment of the circadian clock has been associated with numerous diseases, including sleep disorders and metabolic disease. Although small molecules that modulate clock function may form the basis of drug discovery of clock-related diseases, only a few compounds that selectively target core clock proteins have been identified. Three scaffolds were previously discovered as small-molecule activators of the clock protein Cryptochrome (CRY), and they have been providing powerful tools to understand and control the circadian clock system. Identifying new scaffolds will expand the possibilities of drug discovery. Methods: A methylbenzimidazole derivative TH401 identified from cell-based circadian screens was characterized. Effects of TH401 on circadian rhythms were evaluated in cellular assays. Functional assays and X-ray crystallography were used to elucidate the effects of the compound on CRY1 and CRY2 isoforms. Results: TH401 lengthened the period of circadian rhythms and stabilized both CRY1 and CRY2. The compound repressed Per2 reporter activity, which was reduced by Cry1 or Cry2 knockout and abolished by Cry1/Cry2 double knockout, indicating the dependence on CRY isoforms. Thermal shift assays showed slightly higher interaction of TH401 with CRY2 over CRY1. The crystal structure of CRY1 in complex with TH401 revealed a conformational change of the gatekeeper W399, which is involved in isoform-selectivity determination. Conclusions: The present study identified a new small molecule TH401 that targets both CRY isoforms. This compound has expanded the chemical diversity of CRY activators, and will ultimately aid in the development of therapeutics against circadian clock-related disorders.
Collapse
Affiliation(s)
- Moeri Yagi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan,Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan,
| |
Collapse
|
12
|
Takada F, Kasahara T, Otake K, Maru T, Miwa M, Muto K, Sasaki M, Hirozane Y, Yoshikawa M, Yamaguchi J. Identification of α-Synuclein Proaggregator: Rapid Synthesis and Streamlining RT-QuIC Assays in Parkinson's Disease. ACS Med Chem Lett 2022; 13:1421-1426. [PMID: 36105342 PMCID: PMC9465709 DOI: 10.1021/acsmedchemlett.2c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
We report the discovery of two compounds, TKD150 and TKD152, that promote the aggregation of α-synuclein (aSN) using a real-time quaking-induced conversion (RT-QuIC) assay to detect abnormal aSN. By utilizing a Pd-catalyzed C-H arylation of benzoxazole with iodoarenes and implementing a planar conformation to the design, we successfully identified TKD150 and TKD152 as proaggregators for aSN. In comparison to a previously reported proaggregator, PA86, the two identified compounds were able to promote aggregation of aSN at twice the rate. Application of TKD150 and TKD152 to the RT-QuIC assay will shorten the inherent lag time and may allow wider use of this assay in clinical settings for the diagnosis of α-synucleinopathy-related diseases.
Collapse
Affiliation(s)
- Fumito Takada
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Takahito Kasahara
- Takeda
Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Otake
- Takeda
Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Takamitsu Maru
- Axcelead
Drug Discovery Partners Inc., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Miwa
- Axcelead
Drug Discovery Partners Inc., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kei Muto
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Minoru Sasaki
- Takeda
Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiko Hirozane
- Takeda
Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yoshikawa
- Takeda
Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
13
|
Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Miller S, Hirota T. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Front Physiol 2022; 13:837280. [PMID: 35153842 PMCID: PMC8831909 DOI: 10.3389/fphys.2022.837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptochromes (CRYs) are core components of the circadian feedback loop in mammals, which regulates circadian rhythmicity in a variety of physiological processes including sleep–wake cycles and metabolism. Dysfunction of CRY1 and CRY2 isoforms has been associated with a host of diseases, such as sleep phase disorder and metabolic diseases. Accumulating evidence for distinct roles of CRY1 and CRY2 has highlighted the need for CRY isoform-selective regulation; however, highly conserved sequences in CRY ligand-binding sites have hindered the design of isoform-selective compounds. Chemical biology approaches have been identifying small-molecule modulators of CRY proteins, which act in isoform-non-selective and also isoform-selective manners. In this review, we describe advances in our understanding of CRY isoform selectivity by comparing X-ray crystal structures of mammalian CRY isoforms in apo form and in complexes with compounds. We discuss how intrinsic conformational differences in identical residues of CRY1 and CRY2 contribute to unique interactions with different compound moieties for isoform selectivity.
Collapse
|
15
|
Gul S, Rahim F, Isin S, Yilmaz F, Ozturk N, Turkay M, Kavakli IH. Structure-based design and classifications of small molecules regulating the circadian rhythm period. Sci Rep 2021; 11:18510. [PMID: 34531414 PMCID: PMC8445970 DOI: 10.1038/s41598-021-97962-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythm is an important mechanism that controls behavior and biochemical events based on 24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug discovery studies have been initiated using high throughput screening. Recently the crystal structures of core clock proteins (CLOCK/BMAL1, Cryptochromes (CRY), Periods), responsible for generating circadian rhythm, have been solved. Availability of structures makes amenable core clock proteins to design molecules regulating their activity by using in silico approaches. In addition to that, the implementation of classification features of molecules based on their toxicity and activity will improve the accuracy of the drug discovery process. Here, we identified 171 molecules that target functional domains of a core clock protein, CRY1, using structure-based drug design methods. We experimentally determined that 115 molecules were nontoxic, and 21 molecules significantly lengthened the period of circadian rhythm in U2OS cells. We then performed a machine learning study to classify these molecules for identifying features that make them toxic and lengthen the circadian period. Decision tree classifiers (DTC) identified 13 molecular descriptors, which predict the toxicity of molecules with a mean accuracy of 79.53% using tenfold cross-validation. Gradient boosting classifiers (XGBC) identified 10 molecular descriptors that predict and increase in the circadian period length with a mean accuracy of 86.56% with tenfold cross-validation. Our results suggested that these features can be used in QSAR studies to design novel nontoxic molecules that exhibit period lengthening activity.
Collapse
Affiliation(s)
- Seref Gul
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatih Rahim
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Safak Isin
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey
| | - Fatma Yilmaz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Metin Turkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| | - Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
- Department of Molecular Biology and Genetics, Rumelifeneri Yolu, Sariyer, Istabul, Turkey.
| |
Collapse
|
16
|
Tsuzuki K, Shimizu Y, Suzuki J, Pu Z, Yamaguchi S, Fujikawa Y, Kato K, Ohashi K, Takefuji M, Bando YK, Ouchi N, Calvert JW, Shibata R, Murohara T. Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia. J Am Heart Assoc 2021; 10:e020896. [PMID: 34348468 PMCID: PMC8475022 DOI: 10.1161/jaha.121.020896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.
Collapse
Affiliation(s)
- Kazuhito Tsuzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuuki Shimizu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Junya Suzuki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Zhongyue Pu
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shukuro Yamaguchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Fujikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuko K. Bando
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rei Shibata
- Department of Advanced Cardiovascular TherapeuticsNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
17
|
Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation. Proc Natl Acad Sci U S A 2021; 118:2026191118. [PMID: 34172584 PMCID: PMC8255803 DOI: 10.1073/pnas.2026191118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The circadian clock is a biological timekeeper that operates through transcription-translation feedback loops in mammals. Cryptochrome 1 (CRY1) and Cryptochrome 2 (CRY2) are highly conserved core clock components having redundant and distinct functions. We recently identified the CRY1- and CRY2-selective compounds KL101 and TH301, respectively, which provide useful tools for the exploration of isoform-selective CRY regulation. However, intrinsic differences in the compound-binding FAD (flavin adenine dinucleotide) pockets between CRY1 and CRY2 are not well understood, partly because of nonoptimal properties of previously reported apo form structures in this particular region constituted by almost identical sequences. Here, we show unliganded CRY1 and CRY2 crystal structures with well-defined electron densities that are largely free of crystal contacts at the FAD pocket and nearby lid loop. We revealed conformational isomerism in key residues. In particular, CRY1 W399 and corresponding CRY2 W417 in the FAD pocket had distinct conformations ("out" for CRY1 and "in" for CRY2) by interacting with the lid loop residues CRY1 Q407 and CRY2 F424, respectively, resulting in different overall lid loop structures. Molecular dynamics simulations supported that these conformations were energetically favorable to each isoform. Isoform-selective compounds KL101 and TH301 preferred intrinsic "out" and "in" conformations of the tryptophan residue in CRY1 and CRY2, respectively, while the nonselective compound KL001 fit to both conformations. Mutations of lid loop residues designed to perturb their isoform-specific interaction with the tryptophan resulted in reversed responses of CRY1 and CRY2 to KL101 and TH301. We propose that these intrinsic structural differences of CRY1 and CRY2 can be targeted for isoform-selective regulation.
Collapse
|
18
|
Abstract
Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA-repair enzymes. While CRYs lack DNA-repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SKP1 cullin 1-F-box (SCF)FBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady-state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3 Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target-gene expression, suggesting that this may be a primary mechanism by which they influence cell growth.
Collapse
|
19
|
Reversible modulation of circadian time with chronophotopharmacology. Nat Commun 2021; 12:3164. [PMID: 34039965 PMCID: PMC8155176 DOI: 10.1038/s41467-021-23301-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The circadian clock controls daily rhythms of physiological processes. The presence of the clock mechanism throughout the body is hampering its local regulation by small molecules. A photoresponsive clock modulator would enable precise and reversible regulation of circadian rhythms using light as a bio-orthogonal external stimulus. Here we show, through judicious molecular design and state-of-the-art photopharmacological tools, the development of a visible light-responsive inhibitor of casein kinase I (CKI) that controls the period and phase of cellular and tissue circadian rhythms in a reversible manner. The dark isomer of photoswitchable inhibitor 9 exhibits almost identical affinity towards the CKIα and CKIδ isoforms, while upon irradiation it becomes more selective towards CKIδ, revealing the higher importance of CKIδ in the period regulation. Our studies enable long-term regulation of CKI activity in cells for multiple days and show the reversible modulation of circadian rhythms with a several hour period and phase change through chronophotopharmacology.
Collapse
|
20
|
Lozhkin B, Ward TR. A Close‐to‐Aromatize Approach for the Late‐Stage Functionalization through Ring Closing Metathesis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Boris Lozhkin
- Department of Chemistry University of Basel Building 1096 Mattenstrasse 24a Biopark Rosental CH-4058 Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Building 1096 Mattenstrasse 24a Biopark Rosental CH-4058 Basel Switzerland
| |
Collapse
|
21
|
Battaglin F, Chan P, Pan Y, Soni S, Qu M, Spiller ER, Castanon S, Roussos Torres ET, Mumenthaler SM, Kay SA, Lenz HJ. Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene 2021; 40:3187-3200. [PMID: 33846572 PMCID: PMC8549632 DOI: 10.1038/s41388-021-01778-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Disruption of the cellular pathway modulating endogenous 24-h rhythms, referred to as "the circadian clock", has been recently proven to be associated with cancer risk, development, and progression. This pathway operates through a complex network of transcription-translation feedback loops generated by a set of interplaying proteins. The expression of core circadian clock genes is frequently dysregulated in human tumors; however, the specific effects and underlying mechanisms seem to vary depending on the cancer types and are not fully understood. In addition, specific oncogenes may differentially induce the dysregulation of the circadian clock in tumors. Pharmacological modulation of clock components has been shown to result in specific lethality in certain types of cancer cells, and thus holds great promise as a novel anti-cancer therapeutic approach. Here we present an overview of the rationale and current evidence for targeting the clock in cancer treatment.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Erin R Spiller
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sofi Castanon
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov Today 2021; 26:1620-1641. [PMID: 33781946 DOI: 10.1016/j.drudis.2021.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022]
Abstract
Disruption of circadian oscillations has a wide-ranging impact on health, with the potential to induce the development of clock-related diseases. Small-molecule modulators of the circadian clock (SMMCC) target core or noncore clock proteins, modulating physiological effects as a consequence of agonist, inverse agonist, or antagonist interference. These pharmacological modulators are usually identified using chemical screening of large libraries of active compounds. However, target-based screens, chemical optimization, and circadian crystallography have recently assisted in the identification of these compounds. In this review, we focus on established and novel SMMCCs targeting both core and noncore clock proteins, identifying their circadian targets, detailed circadian effects, and specific physiological effects. In addition, we discuss their therapeutic potential for the treatment of diverse clock-related disorders (such as metabolic-associated disorders, autoimmune diseases, mood disorders, and cancer) and as chronotherapeutics. Future perspectives are also considered, such as clinical trials, and potential safety hazards, including those in the absence of clinical trials.
Collapse
Affiliation(s)
- Rodrigo F N Ribeiro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Maria Manuel C Silva
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Li CX, Ning Q, Zhao W, Cao HJ, Wang YP, Yan H, Lu CS, Liang Y. Rh-Catalyzed Decarbonylative Cross-Coupling between o-Carboranes and Twisted Amides: A Regioselective, Additive-Free, and Concise Late-Stage Carboranylation. Chemistry 2021; 27:2699-2706. [PMID: 32969106 DOI: 10.1002/chem.202003634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Indexed: 12/17/2022]
Abstract
The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.
Collapse
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Ning
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Ping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
24
|
Suzuki C, Fukumitsu S, Oike H. Modulation of cellular circadian clocks by triterpenoids. PHYTOCHEMISTRY 2021; 181:112539. [PMID: 33099224 DOI: 10.1016/j.phytochem.2020.112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Many living organisms on earth have clock systems in their body. It has increasingly become clear that a disturbance in the internal clocks has negative effects on our body. Terpenes are organic compounds found in various plants that are reported to have several pharmacological actions. In this study, we focused on commercially available 27 triterpenoids and evaluated their influence on the circadian rhythm of human U2OS cells and mouse NIH3T3 cells. The expression level of Per2, one of the core clock genes, was measured using luminescent reporters over the time period of a few days. We found that 8 triterpenoids reset the phase of the circadian clocks. Representative compounds were corosolic acid, cucurbitacin B, and celastrol; similar effects were also confirmed with some structural analogues of cucurbitacin B and celastrol. These compounds shifted the phase bilaterally depending on the stimulus timing and also acted as synchronizers in desynchronized cells. The effective concentrations of cucurbitacin B and celastrol were less than 0.5 μM. In addition, cucurbitacin B and celastrol were also found to be effective in tissue explants in mice. Furthermore, celastrol dose-dependently shortened the period length of NIH3T3 cells. Some of these compounds are found in edible and medicinal plants and may help regulate our circadian clocks in everyday life.
Collapse
Affiliation(s)
- Chihiro Suzuki
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Satoshi Fukumitsu
- Food Innovation Course, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan; Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan.
| |
Collapse
|
25
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
26
|
The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2020; 265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are responsible for regulating a number of physiological processes. The central oscillator is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and the SCN synchronises the circadian clocks that are found in our peripheral organs through neural and humoral signalling. At the molecular level, biological clocks consist of transcription-translation feedback loops (TTFLs) and these pathways are influenced by transcription factors, post-translational modifications, signalling pathways and epigenetic modifiers. When disruptions occur in the circadian machinery, the activities of the proteins implicated in this network and the expression of core clock or clock-controlled genes (CCGs) can be altered. Circadian misalignment can also arise when there is desychronisation between our internal clocks and environmental stimuli. There is evidence in the literature demonstrating that disturbances in the circadian rhythm contribute to the pathophysiology of several diseases and disorders. This includes the metabolic syndrome and recently, it has been suggested that the 'circadian syndrome' may be a more appropriate term to use to not only describe the cardio-metabolic risk factors but also the associated comorbidities. Here we overview the molecular architecture of circadian clocks in mammals and provide insight into the effects of shift work, exposure to artificial light, food intake and stress on the circadian rhythm. The relationship between circadian rhythms, metabolic disorders and depression is reviewed and this is a topic that requires further investigation. We also describe how particular proteins involved in the TTFLs can be potentially modulated by small molecules, including pharmacological interventions and dietary compounds.
Collapse
|
27
|
Miller S, Aikawa Y, Sugiyama A, Nagai Y, Hara A, Oshima T, Amaike K, Kay SA, Itami K, Hirota T. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Cell Chem Biol 2020; 27:1192-1198.e5. [PMID: 32502390 DOI: 10.1016/j.chembiol.2020.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Cryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian circadian clock that selectively controls CRY1. Cell-based circadian chemical screening identified a thienopyrimidine derivative KL201 that lengthened the period of circadian rhythms in cells and tissues. Functional assays revealed stabilization of CRY1 but not CRY2 by KL201. A structure-activity relationship study of KL201 derivatives in combination with X-ray crystallography of the CRY1-KL201 complex uncovered critical sites and interactions required for CRY1 regulation. KL201 bound to CRY1 in overlap with FBXL3, a subunit of ubiquitin ligase complex, and the effect of KL201 was blunted by knockdown of FBXL3. KL201 will facilitate isoform-selective regulation of CRY1 to accelerate chronobiology research and therapeutics against clock-related diseases.
Collapse
Affiliation(s)
- Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiki Aikawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Aya Hara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuma Amaike
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
28
|
Amaike K, Oshima T, Skoulding NS, Toyama Y, Hirota T, Itami K. Small Molecules Modulating Mammalian Biological Clocks: Exciting New Opportunities for Synthetic Chemistry. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Abstract
Circadian clocks are cell-autonomous self-sustaining oscillators that allow organisms to anticipate environmental changes throughout the solar day and persist in nearly every cell examined. Environmental or genetic disruption of circadian rhythms increases the risk of several types of cancer, but the underlying mechanisms are not well understood. Here, we discuss evidence connecting circadian rhythms-with emphasis on the cryptochrome proteins (CRY1/2)-to cancer through in vivo models, mechanisms involving known tumor suppressors and oncogenes, chemotherapeutic efficacy, and human cancer risk.
Collapse
Affiliation(s)
- Alanna B Chan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
30
|
Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol 2020; 432:3498-3514. [DOI: 10.1016/j.jmb.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
31
|
Miller S, Son YL, Aikawa Y, Makino E, Nagai Y, Srivastava A, Oshima T, Sugiyama A, Hara A, Abe K, Hirata K, Oishi S, Hagihara S, Sato A, Tama F, Itami K, Kay SA, Hatori M, Hirota T. Isoform-selective regulation of mammalian cryptochromes. Nat Chem Biol 2020; 16:676-685. [PMID: 32231341 DOI: 10.1038/s41589-020-0505-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY-compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.
Collapse
Affiliation(s)
- Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - You Lee Son
- Laboratory of Chronobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiki Aikawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Eri Makino
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | | | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Aya Hara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | | | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Computational Structural Biology Unit, RIKEN-Center for Computational Science, Hyogo, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megumi Hatori
- Laboratory of Chronobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.
| |
Collapse
|
32
|
Yamada S, Flesch KN, Murakami K, Itami K. Rapid Access to Kinase Inhibitor Pharmacophores by Regioselective C–H Arylation of Thieno[2,3-d]pyrimidine. Org Lett 2020; 22:1547-1551. [DOI: 10.1021/acs.orglett.0c00143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shuya Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kaylin Nicole Flesch
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Ishikawa M, Kawai K, Kaneko M, Tanaka K, Nakanishi S, Hori K. Extracellular electron transfer mediated by a cytocompatible redox polymer to study the crosstalk among the mammalian circadian clock, cellular metabolism, and cellular redox state. RSC Adv 2020; 10:1648-1657. [PMID: 35494713 PMCID: PMC9047959 DOI: 10.1039/c9ra10023g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023] Open
Abstract
The circadian clock is an endogenous biological timekeeping system that controls various physiological and cellular processes with a 24 h rhythm. The crosstalk among the circadian clock, cellular metabolism, and cellular redox state has attracted much attention. To elucidate this crosstalk, chemical compounds have been used to perturb cellular metabolism and the redox state. However, an electron mediator that facilitates extracellular electron transfer (EET) has not been used to study the mammalian circadian clock due to potential cytotoxic effects of the mediator. Here, we report evidence that a cytocompatible redox polymer pMFc (2-methacryloyloxyethyl phosphorylcholine-co-vinyl ferrocene) can be used as the mediator to study the mammalian circadian clock. EET mediated by oxidized pMFc (ox-pMFc) extracted intracellular electrons from human U2OS cells, resulting in a longer circadian period. Analyses of the metabolome and intracellular redox species imply that ox-pMFc receives an electron from glutathione, thereby inducing pentose phosphate pathway activation. These results suggest novel crosstalk among the circadian clock, metabolism, and redox state. We anticipate that EET mediated by a redox cytocompatible polymer will provide new insights into the mammalian circadian clock system, which may lead to the development of new treatments for circadian clock disorders. Cytocompatible redox polymer pMFc altered the cellular redox state and metabolism, resulting in a longer circadian period.![]()
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kazuki Kawai
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masahiro Kaneko
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kenya Tanaka
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science
- Osaka University
- Osaka 560-8531
- Japan
- Research Center for Solar Energy Chemistry
| | - Katsutoshi Hori
- Department of Biomolecular Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
34
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2019; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
35
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 645] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
36
|
Kolarski D, Sugiyama A, Breton G, Rakers C, Ono D, Schulte A, Tama F, Itami K, Szymanski W, Hirota T, Feringa BL. Controlling the Circadian Clock with High Temporal Resolution through Photodosing. J Am Chem Soc 2019; 141:15784-15791. [PMID: 31509406 PMCID: PMC6787957 DOI: 10.1021/jacs.9b05445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Circadian clocks,
biological timekeepers that are present in almost
every cell of our body, are complex systems whose disruption is connected
to various diseases. Controlling cellular clock function with high
temporal resolution in an inducible manner would yield an innovative
approach for the circadian rhythm regulation. In the present study,
we present structure-guided incorporation of photoremovable protecting
groups into a circadian clock modifier, longdaysin, which inhibits
casein kinase I (CKI). Using photodeprotection by UV or visible light
(400 nm) as the external stimulus, we have achieved quantitative and
light-inducible control over the CKI activity accompanied by an accurate
regulation of circadian period in cultured human cells and mouse tissues,
as well as in living zebrafish. This research paves the way for the
application of photodosing in achieving precise temporal control over
the biological timing and opens the door for chronophotopharmacology
to deeper understand the circadian clock system.
Collapse
Affiliation(s)
- Dušan Kolarski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School , University of Texas Health Science Center at Houston , 6431 Fannin St, MSB 4.216 , 77030 Houston , United States
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida-shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Albert Schulte
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan.,Department of Physics, Graduate School of Science , Nagoya University , Nagoya 464-8601 , Japan.,Computational Structural Biology Unit , RIKEN-Center for Computational Science , Kobe , Hyogo 650-0047 , Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Wiktor Szymanski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,University Medical Center Groningen, Department of Radiology, Medical Imaging Center , University of Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ben L Feringa
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
37
|
Dimova EY, Jakupovic M, Kubaichuk K, Mennerich D, Chi TF, Tamanini F, Oklejewicz M, Hänig J, Byts N, Mäkelä KA, Herzig KH, Koivunen P, Chaves I, van der Horst G, Kietzmann T. The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1α. iScience 2019; 13:284-304. [PMID: 30875610 PMCID: PMC6416729 DOI: 10.1016/j.isci.2019.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Mirza Jakupovic
- Department of Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Filippo Tamanini
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Małgorzata Oklejewicz
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Jens Hänig
- Novartis Pharma GmbH, 97082 Würzburg, Germany
| | - Nadiya Byts
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Ines Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Gijsbertus van der Horst
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
38
|
Tamai TK, Nakane Y, Ota W, Kobayashi A, Ishiguro M, Kadofusa N, Ikegami K, Yagita K, Shigeyoshi Y, Sudo M, Nishiwaki-Ohkawa T, Sato A, Yoshimura T. Identification of circadian clock modulators from existing drugs. EMBO Mol Med 2019; 10:emmm.201708724. [PMID: 29666146 PMCID: PMC5938619 DOI: 10.15252/emmm.201708724] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet‐lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time‐consuming. We therefore performed a high‐throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period‐shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA. Dietary administration of DHEA to mice shortened free‐running circadian period and accelerated re‐entrainment to advanced light–dark (LD) cycles, thereby reducing jet‐lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.
Collapse
Affiliation(s)
- T Katherine Tamai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Wataru Ota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akane Kobayashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masateru Ishiguro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Kadofusa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Sudo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Taeko Nishiwaki-Ohkawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan .,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
39
|
Abstract
Organisms use changes in photoperiod for seasonal reproduction to maximize the survival of their offspring. Birds have sophisticated seasonal mechanisms and are therefore excellent models for studying these phenomena. Birds perceive light via deep-brain photoreceptors and long day–induced thyroid-stimulating hormone (TSH, thyrotropin) in the pars tuberalis of the pituitary gland (PT), which cause local thyroid hormone activation within the mediobasal hypothalamus. The local bioactive thyroid hormone controls seasonal gonadotropin-releasing hormone secretion and subsequent gonadotropin secretion. In mammals, the eyes are believed to be the only photoreceptor organ, and nocturnal melatonin secretion triggers an endocrine signal that communicates information about the photoperiod to the PT to regulate TSH. In contrast, in Salmonidae fish the input pathway to the neuroendocrine output pathway appears to be localized in the saccus vasculosus. Thus, comparative analysis is an effective way to uncover the universality and diversity of fundamental traits in various organisms.
Collapse
Affiliation(s)
- Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
40
|
Kitano H, Choi JH, Ueda A, Ito H, Hagihara S, Kan T, Kawagishi H, Itami K. Discovery of Plant Growth Stimulants by C–H Arylation of 2-Azahypoxanthine. Org Lett 2018; 20:5684-5687. [DOI: 10.1021/acs.orglett.8b02407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Kitano
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jae-Hoon Choi
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ayaka Ueda
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hideto Ito
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
41
|
Ode KL, Ueda HR. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028357. [PMID: 29038116 DOI: 10.1101/cshperspect.a028357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Sultan A. Identification and development of clock-modulating small molecules – an emerging approach to fine-tune the disrupted circadian clocks. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1498197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Armiya Sultan
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
43
|
Stephan Irle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Stephan Irle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201712472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Abstract
BACKGROUND Seasonal changes in various physiological events have been reported in humans, including metabolism, immune function, and mood. However, the molecular and endocrine basis of these seasonal changes remains unclear. SUMMARY Animals that breed seasonally, such as Japanese quail and the Siberian hamster, have sophisticated seasonal mechanisms, and hence they provide excellent opportunities to understand the underlying processes. Functional genomic analysis in quail uncovered the photoperiodic signal transduction pathway, which regulates avian seasonal reproduction: a long-day stimulus induces secretion of thyrotropin (TSH) from the pars tuberalis (PT) of the anterior pituitary gland. This PT-derived TSH locally activates thyroid hormone within the hypothalamus, which in turn induces gonadotropin-releasing hormone and then gonadotropin secretion, leading to gonadal growth. CONCLUSIONS Studies using TSH receptor-null mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. The pars distalis of the anterior pituitary gland is the major source of circulating TSH. Although the pars distalis and PT are in close proximity, tissue-specific glycosylation of circulating TSH alters its function to avoid cross talk.
Collapse
Affiliation(s)
- Tomoya Nakayama
- 1 Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan
- 2 Division of Seasonal Biology, National Institute for Basic Biology , Okazaki, Japan
| | - Takashi Yoshimura
- 1 Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan
- 2 Division of Seasonal Biology, National Institute for Basic Biology , Okazaki, Japan
- 3 Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University , Nagoya, Japan
| |
Collapse
|
46
|
Chen Z, Yoo SH, Takahashi JS. Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. Annu Rev Pharmacol Toxicol 2017; 58:231-252. [PMID: 28968186 DOI: 10.1146/annurev-pharmtox-010617-052645] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping systems drive oscillatory gene expression to regulate essential cellular and physiological processes. When the systems are perturbed, pathological consequences ensue and disease risks rise. A growing number of small-molecule modulators have been reported to target circadian systems. Such small molecules, identified via high-throughput screening or derivatized from known scaffolds, have shown promise as drug candidates to improve biological timing and physiological outputs in disease models. In this review, we first briefly describe the circadian system, including the core oscillator and the cellular networks. Research progress on clock-modulating small molecules is presented, focusing on development strategies and biological efficacies. We highlight the therapeutic potential of small molecules in clock-related pathologies, including jet lag and shiftwork; various chronic diseases, particularly metabolic disease; and aging. Emerging opportunities to identify and exploit clock modulators as novel therapeutic agents are discussed.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
| | - Joseph S Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
47
|
Li CX, Zhang HY, Wong TY, Cao HJ, Yan H, Lu CS. Pyridyl-Directed Cp*Rh(III)-Catalyzed B(3)–H Acyloxylation of o-Carborane. Org Lett 2017; 19:5178-5181. [DOI: 10.1021/acs.orglett.7b02450] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hao-Yun Zhang
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Tsz-Yung Wong
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hong Yan
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
48
|
Patke A, Murphy PJ, Onat OE, Krieger AC, Özçelik T, Campbell SS, Young MW. Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 2017; 169:203-215.e13. [PMID: 28388406 DOI: 10.1016/j.cell.2017.03.027] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/18/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Patterns of daily human activity are controlled by an intrinsic circadian clock that promotes ∼24 hr rhythms in many behavioral and physiological processes. This system is altered in delayed sleep phase disorder (DSPD), a common form of insomnia in which sleep episodes are shifted to later times misaligned with the societal norm. Here, we report a hereditary form of DSPD associated with a dominant coding variation in the core circadian clock gene CRY1, which creates a transcriptional inhibitor with enhanced affinity for circadian activator proteins Clock and Bmal1. This gain-of-function CRY1 variant causes reduced expression of key transcriptional targets and lengthens the period of circadian molecular rhythms, providing a mechanistic link to DSPD symptoms. The allele has a frequency of up to 0.6%, and reverse phenotyping of unrelated families corroborates late and/or fragmented sleep patterns in carriers, suggesting that it affects sleep behavior in a sizeable portion of the human population.
Collapse
Affiliation(s)
- Alina Patke
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Patricia J Murphy
- Laboratory of Human Chronobiology, Weill Cornell Medical College, White Plains, NY 10605, USA
| | - Onur Emre Onat
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Ana C Krieger
- Department of Medicine, Center for Sleep Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tayfun Özçelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Scott S Campbell
- Laboratory of Human Chronobiology, Weill Cornell Medical College, White Plains, NY 10605, USA
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
49
|
Yamaguchi J, Itami K. Toward an Ideal Synthesis of (Bio)molecules through Direct Arene Assembling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
| |
Collapse
|
50
|
Abstract
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.
Collapse
Affiliation(s)
- Hideaki Oike
- a Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Japan
| |
Collapse
|