1
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
2
|
Benk LT, Benk AS, Lira RB, Cavalcanti-Adam EA, Dimova R, Lipowsky R, Geiger B, Spatz JP. Integrin α
IIb
β
3
Activation and Clustering in Minimal Synthetic Cells. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lucia T. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Amelie S. Benk
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Rafael B. Lira
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Faculty of Science and Engineering Molecular Biophysics Zernike Institute for Advanced Materials 9747 AG Groningen The Netherlands
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Rumiana Dimova
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology Weizmann Institute of Science Rehovot 76100 Israel
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstr. 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
3
|
Souissi M, Pernier J, Rossier O, Giannone G, Le Clainche C, Helfer E, Sengupta K. Integrin-Functionalised Giant Unilamellar Vesicles via Gel-Assisted Formation: Good Practices and Pitfalls. Int J Mol Sci 2021; 22:6335. [PMID: 34199292 PMCID: PMC8231826 DOI: 10.3390/ijms22126335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Giant unilamellar vesicles (GUV) are powerful tools to explore physics and biochemistry of the cell membrane in controlled conditions. For example, GUVs were extensively used to probe cell adhesion, but often using non-physiological linkers, due to the difficulty of incorporating transmembrane adhesion proteins into model membranes. Here we describe a new protocol for making GUVs incorporating the transmembrane protein integrin using gel-assisted swelling. We report an optimised protocol, enumerating the pitfalls encountered and precautions to be taken to maintain the robustness of the protocol. We characterise intermediate steps of small proteoliposome formation and the final formed GUVs. We show that the integrin molecules are successfully incorporated and are functional.
Collapse
Affiliation(s)
- Mariem Souissi
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (J.P.); (C.L.C.)
| | - Olivier Rossier
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; (O.R.); (G.G.)
| | - Gregory Giannone
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; (O.R.); (G.G.)
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (J.P.); (C.L.C.)
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| | - Kheya Sengupta
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| |
Collapse
|
4
|
Abstract
Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein-membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| |
Collapse
|
5
|
Wei Y, Xie Y, Cai Z, Guo Y, Wu M, Wang P, Li R, Zhang H. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 2020; 580:480-492. [DOI: 10.1016/j.jcis.2020.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023]
|
6
|
Martens U, Janke U, Möller S, Talbot D, Abou-Hassan A, Delcea M. Interaction of fibrinogen-magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. NANOSCALE 2020; 12:19918-19930. [PMID: 32986054 DOI: 10.1039/d0nr04181e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles have a broad spectrum of biomedical applications including cell separation, diagnostics and therapy. One key issue is little explored: how do the engineered nanoparticles interact with blood components after injection? The formation of bioconjugates in the bloodstream and subsequent reactions are potentially toxic due to the ability to induce an immune response. The understanding of the underlying processes is of major relevance to design not only efficient, but also safe nanoparticles for e.g. targeted drug delivery applications. In this study, we report on maghemite nanoparticles functionalized with citrate-, dextran- and polyethylene glycol coatings and their interaction with the clotting protein fibrinogen. Further, we investigate using biophysical tools (e.g. dynamic light scattering, circular dichroism spectroscopy and quartz crystal microbalance) the interaction of the magnetic nanoparticles-fibrinogen bioconjugates with artificial cell membranes as a model system for blood platelets. We found that fibrinogen corona formation provides colloidal stability to maghemite nanoparticles. In addition, bioconjugates of fibrinogen with dextran- and citrate-coated NPs interact with integrin-containing lipid bilayer, especially upon treatment with divalent ions, whereas PEG-coating reveals minor interaction. Our study at the interface of protein-conjugated nanoparticles and artificial cell membranes is essential for engineering safe nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Ulrike Martens
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Jahnke K, Weiss M, Weber C, Platzman I, Göpfrich K, Spatz JP. Engineering Light-Responsive Contractile Actomyosin Networks with DNA Nanotechnology. ACTA ACUST UNITED AC 2020; 4:e2000102. [PMID: 32696544 DOI: 10.1002/adbi.202000102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
External control and precise manipulation is key for the bottom-up engineering of complex synthetic cells. Minimal actomyosin networks have been reconstituted into synthetic cells; however, their light-triggered symmetry breaking contraction has not yet been demonstrated. Here, light-activated directional contractility of a minimal synthetic actomyosin network inside microfluidic cell-sized compartments is engineered. Actin filaments, heavy-meromyosin-coated beads, and caged ATP are co-encapsulated into water-in-oil droplets. ATP is released upon illumination, leading to a myosin-generated force which results in a motion of the beads along the filaments and hence a contraction of the network. Symmetry breaking is achieved using DNA nanotechnology to establish a link between the network and the compartment periphery. It is demonstrated that the DNA-linked actin filaments contract to one side of the compartment forming actin asters and quantify the dynamics of this process. This work exemplifies that an engineering approach to bottom-up synthetic biology, combining biological and artificial elements, can circumvent challenges related to active multi-component systems and thereby greatly enrich the complexity of synthetic cellular systems.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Cornelia Weber
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany.,Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, D 69120, Germany
| |
Collapse
|
8
|
Noba K, Ishikawa M, Uyeda A, Watanabe T, Hohsaka T, Yoshimoto S, Matsuura T, Hori K. Bottom-up Creation of an Artificial Cell Covered with the Adhesive Bacterionanofiber Protein AtaA. J Am Chem Soc 2019; 141:19058-19066. [PMID: 31697479 DOI: 10.1021/jacs.9b09340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bacterial cell surface structure has important roles for various cellular functions. However, research on reconstituting bacterial cell surface structures is limited. This study aimed to bottom-up create a cell-sized liposome covered with AtaA, the adhesive bacterionanofiber protein localized on the cell surface of Acinetobacter sp. Tol 5, without the use of the protein secretion and assembly machineries. Liposomes containing a benzylguanine derivative-modified phospholipid were decorated with a truncated AtaA protein fused to a SNAP-tag expressed in a soluble fraction in Escherichia coli. The obtained liposome showed a similar surface structure and function to that of native Tol 5 cells and adhered to both hydrophobic and hydrophilic solid surfaces. Furthermore, this artificial cell was able to drive an enzymatic reaction in the adhesive state. The developed artificial cellular system will allow for analysis of not only AtaA, but also other cell surface proteins under a cell-mimicking environment. In addition, AtaA-decorated artificial cells may inspire the development of biotechnological applications that require immobilization of cells onto a variety of solid surfaces, in particular, in environments where the use of genetically modified organisms is prohibited.
Collapse
Affiliation(s)
- Kosaku Noba
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Atsuko Uyeda
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Takayoshi Watanabe
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Takahiro Hohsaka
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| |
Collapse
|
9
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria‐Based Production of Thiol‐Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jorge Royes
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Oana Ilioaia
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Quentin Lubart
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Federica Angius
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
- Present Address: Department of MicrobiologyInstitute for Water and Wetland Research Heyendaalseweg 135 6525 Nijmegen The Netherlands
| | - Galina V. Dubacheva
- PPSMCNRSÉcole Normale Supérieure Paris-SaclayUniversité Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan France
| | - Marta Bally
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Bruno Miroux
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Christophe Tribet
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
| |
Collapse
|
10
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria-Based Production of Thiol-Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019; 58:7395-7399. [PMID: 30934157 DOI: 10.1002/anie.201902929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high-yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria-based proteoliposomes are an attractive eco-friendly alternative that can outperform currently used liposomes.
Collapse
Affiliation(s)
- Jorge Royes
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France.,UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Oana Ilioaia
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Quentin Lubart
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Federica Angius
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France.,Present Address: Department of Microbiology, Institute for Water and Wetland Research, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Galina V Dubacheva
- PPSM, CNRS, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Bruno Miroux
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France
| |
Collapse
|
11
|
Janke U, Kulke M, Buchholz I, Geist N, Langel W, Delcea M. Drug-induced activation of integrin alpha IIb beta 3 leads to minor localized structural changes. PLoS One 2019; 14:e0214969. [PMID: 30978226 PMCID: PMC6461286 DOI: 10.1371/journal.pone.0214969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbβ3. Although the dramatic rearrangement of the overall structure of αIIbβ3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbβ3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism spectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbβ3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbβ3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.
Collapse
Affiliation(s)
- Una Janke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Martin Kulke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Ina Buchholz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Norman Geist
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Walter Langel
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| |
Collapse
|
12
|
Zarka R, Horev MB, Volberg T, Neubauer S, Kessler H, Spatz JP, Geiger B. Differential Modulation of Platelet Adhesion and Spreading by Adhesive Ligand Density. NANO LETTERS 2019; 19:1418-1427. [PMID: 30649888 PMCID: PMC6437653 DOI: 10.1021/acs.nanolett.8b03513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbβ3 integrin ligand, SN528. Combining light- and scanning electron-microscopy, we found that interaction of platelets with surfaces coated with SN528 at spacing of 30-60 nm induces the extension of filopodia through which the platelets stably attach to the nanopatterned surface and spread on it. Increasing the nanopattern-gold spacing to 80-100 nm resulted in a dramatic reduction (>95%) in the number of adhering platelets. Surprisingly, a further increase in ligand spacing to 120 nm resulted in platelet binding to the surface at substantially larger numbers, yet these platelets remained discoid and were essentially devoid of filopodia and lamellipodia. These results indicate that the stimulation of filopodia extension by adhering platelets, and the consequent spreading on these surfaces depend on different ligand densities. Thus, the extension of filopodia occurs on surfaces with a ligand spacing of 100 nm or less, while the sustainability and growth of these initial adhesions and induction of extensive platelet adhesion and spreading requires lower ligand-to-ligand spacing (≤60 nm). The mechanisms underlying this differential ligand-density sensing by platelets, as well as the unexpected retention of discoid platelets on surfaces with even larger spacing (120 nm) are discussed.
Collapse
Affiliation(s)
- Revital Zarka
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Melanie B. Horev
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tova Volberg
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefanie Neubauer
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Horst Kessler
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Benjamin Geiger
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
14
|
Bartelt SM, Steinkühler J, Dimova R, Wegner SV. Light-Guided Motility of a Minimal Synthetic Cell. NANO LETTERS 2018; 18:7268-7274. [PMID: 30350637 DOI: 10.1021/acs.nanolett.8b03469] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell motility is an important but complex process; as cells move, new adhesions form at the front and adhesions disassemble at the back. To replicate this dynamic and spatiotemporally controlled asymmetry of adhesions and achieve motility in a minimal synthetic cell, we controlled the adhesion of a model giant unilamellar vesicle (GUV) to the substrate with light. For this purpose, we immobilized the proteins iLID and Micro, which interact under blue light and dissociate from each other in the dark, on a substrate and a GUV, respectively. Under blue light, the protein interaction leads to adhesion of the vesicle to the substrate, which is reversible in the dark. The high spatiotemporal control provided by light, allowed partly illuminating the GUV and generating an asymmetry in adhesions. Consequently, the GUV moves into the illuminated area, a process that can be repeated over multiple cycles. Thus, our system reproduces the dynamic spatiotemporal distribution of adhesions and establishes mimetic motility of a synthetic cell.
Collapse
Affiliation(s)
- Solveig M Bartelt
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Jan Steinkühler
- Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Rumiana Dimova
- Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Seraphine V Wegner
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
15
|
Binder WH. The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromol Rapid Commun 2018; 40:e1800610. [DOI: 10.1002/marc.201800610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Wolfgang H. Binder
- Institute of Chemistry; Faculty of Natural Sciences II; Martin-Luther University Halle-Wittenberg; von Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| |
Collapse
|
16
|
Zapp C, Minsky BB, Boehm H. Tuning RGD Motif and Hyaluronan Density to Study Integrin Binding. Front Physiol 2018; 9:1022. [PMID: 30131707 PMCID: PMC6090076 DOI: 10.3389/fphys.2018.01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023] Open
Abstract
Well-controlled surfaces with immobilized substrates enable novel approaches to investigate specific aspects of biological processes related to cell adhesion or motility. A subset of integrins, cellular transmembrane glycoproteins, recognize the evolutionarily conserved tripeptide sequence RGD, and anchor cells to their surrounding proteins as well as mediate bidirectional signaling. In this study, the main question was how co-presentation of hyaluronan (HA), an essential component of the extracellular matrix (ECM), and the RGD motif affect integrin binding. We report a method to prepare self-assembled monolayers on gold surfaces, co-presenting the cell adhesive RGD motif and small HA molecules, to investigate integrin containing proteoliposome binding. This technique enables an independent adjustment of the RGD motif and HA density while maintaining a passivating background: Layer formation and subsequent interactions with αIIbβ3 integrins, which are reconstituted in liposomes, was monitored by label-free quartz crystal microbalance with dissipation monitoring (QCM-D). Exceeding a critical RGD motif density of 40% results in enhanced binding of proteoliposomes. Co-presentation studies with varying HA and constant RGD motif density demonstrate that marginal amounts of HA are sufficient to prevent integrin binding. These findings are of specific importance in relation to cancer cell microenvironments, which show highly enriched HA in the surrounding ECM to reduce adhesion properties.
Collapse
Affiliation(s)
- Cornelia Zapp
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Burcu B Minsky
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Heike Boehm
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.
Collapse
Affiliation(s)
- Yuval Mulla
- These authors contributed equally to this work
| | | | | |
Collapse
|
18
|
Kang Q, Shen Q, Zhang P, Wang H, Sun Y, Shen D. Unfound Associated Resonant Model and Its Impact on Response of a Quartz Crystal Microbalance in the Liquid Phase. Anal Chem 2018; 90:2796-2804. [PMID: 29376639 DOI: 10.1021/acs.analchem.7b04906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quartz crystal microbalance (QCM) is an important tool to detect in real time the mass change at the nanogram level. However, for a QCM operated in the liquid phase, the Sauerbrey equation is usually disturbed by the changes in liquid properties and the longitudinal wave effect. Herein, we report another unfound associated high-frequency resonance (HFR) model for the QCM, with the intensity 2 orders of magnitude higher than that of the fundamental peak in the liquid phase. The HFR model exhibits obvious impact on the response of QCM in the thickness-shear model (TSM), especially for overtones. The frequency of HFR peak is decreased dramatically with increasing conductivity or permittivity of the liquid phase, resulting in considerable additional frequency shifts in the TSM as baseline drift. Compared to that with a faraway HFR peak, the overlapping of HFR peak to a TSM overtone results in the frequency shifts of ±50-70 kHz with its intensity enhancement by 3 orders of magnitude in the later. The HFR behavior is explained by an equivalent circuit model including leading wire inductance, liquid inductance, and static capacitance of QCM. Taking into account the HFR model, the positive frequency shifts of the QCM at high overtones during the cell adhesion process is understandable. Combining the TSM and HFR is an effective way to improve the stability of QCM and provides more reliable information from the responses of QCM. The HFR may have potential application in chemical and biological sensors.
Collapse
Affiliation(s)
- Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, P. R. China
| | - Qirui Shen
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University , Zaozhuang 277160, P.R. China
| | - Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, P. R. China
| | - Honghai Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, P. R. China
| | - Yan Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
19
|
Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, Börsch M, Lira RB, Dimova R, Lipowsky R, Bodenschatz E, Baret JC, Vidakovic-Koch T, Sundmacher K, Platzman I, Spatz JP. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. NATURE MATERIALS 2018; 17:89-96. [PMID: 29035355 DOI: 10.1038/nmat5005] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Collapse
Affiliation(s)
- Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Johannes Patrick Frohnmayer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Lucia Theresa Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rafael B Lira
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jean-Christophe Baret
- Droplets, Membranes and Interfaces, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Soft Micro Systems, CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Tanja Vidakovic-Koch
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Kai Sundmacher
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Zhang Y, Baekgaard-Laursen M, Städler B. Small Subcompartmentalized Microreactors as Support for Hepatocytes. Adv Healthc Mater 2017; 6. [PMID: 27901316 DOI: 10.1002/adhm.201601141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/26/2016] [Indexed: 12/14/2022]
Abstract
Mimicking specific structural or functional aspects of cells is considered a promising approach to substitute for missing or lost cellular functions. However, the interaction of such artificial assemblies with their biological counterparts including the exploitation of the activity of the synthetic partner remains thus-far a rather unexplored avenue. Herein, the assembly of active microreactors with similar size to hepatocytes is reported. These microreactors are successfully cocultured with hepatocytes into bionic tissue for up to 10 d. Further, microreactors loaded with the liver enzyme catalase are effective in alleviating external pressure, induced by the addition of hydrogen peroxide, from such bionic tissue in an attempt to mimic the detoxification ability of hepatocytes. Taken together, the findings open up a different route in combining synthetic and biological entities for tissue engineering by using the former partner not only as structural support, but also to induce beneficial activity.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus 8000 Denmark
| | | | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO); Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
21
|
Iturri J, Vianna AC, Moreno-Cencerrado A, Pum D, Sleytr UB, Toca-Herrera JL. Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:91-98. [PMID: 28144568 PMCID: PMC5238667 DOI: 10.3762/bjnano.8.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - Ana C Vianna
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
- University of Sao Paulo (USP), Faculty of Philosophy, Science and Letters of Ribeirao Preto (FFCLRP), Department of Chemistry, Ribeirao Preto, SP, Brazil
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - Dietmar Pum
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - Uwe B Sleytr
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - José Luis Toca-Herrera
- Institute for Biophysics, Dept. of Nanobiotechnology, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| |
Collapse
|
22
|
Agthe M, Wetterskog E, Bergström L. Following the Assembly of Iron Oxide Nanocubes by Video Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:303-310. [PMID: 27991791 DOI: 10.1021/acs.langmuir.6b03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model. The growth of each mesocrystal depends only on the number of nanoparticles within the accessible region irrespective of the relative time of formation. The mass of the dried mesocrystals estimated from the analysis of the bandwidth-shift-to-frequency-shift ratio correlates well with the total mass of the oleate-coated nanoparticles in the deposited dispersion drop.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Erik Wetterskog
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University , SE-75121 Uppsala, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| |
Collapse
|
23
|
Kresse KM, Xu M, Pazzi J, García-Ojeda M, Subramaniam AB. Novel Application of Cellulose Paper As a Platform for the Macromolecular Self-Assembly of Biomimetic Giant Liposomes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32102-32107. [PMID: 27933839 DOI: 10.1021/acsami.6b11960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a facile and scalable method to fabricate biomimetic giant liposomes by using a cellulose paper-based materials platform. Termed PAPYRUS for Paper-Abetted liPid hYdRation in aqUeous Solutions, the method is general and can produce liposomes in various aqueous media and at elevated temperatures. Encapsulation of macromolecules and production of liposomes with membranes of complex compositions is straightforward. The ease of manipulation of paper makes practical massive parallelization and scale-up of the fabrication of giant liposomes, demonstrating for the first time the surprising usefulness of paper as a platform for macromolecular self-assembly.
Collapse
Affiliation(s)
- Kayleigh M Kresse
- School of Engineering and §School of Natural Sciences, University of California , Merced, California 95343, United States
| | - Melissa Xu
- School of Engineering and §School of Natural Sciences, University of California , Merced, California 95343, United States
| | - Joseph Pazzi
- School of Engineering and §School of Natural Sciences, University of California , Merced, California 95343, United States
| | - Marcos García-Ojeda
- School of Engineering and §School of Natural Sciences, University of California , Merced, California 95343, United States
| | - Anand Bala Subramaniam
- School of Engineering and §School of Natural Sciences, University of California , Merced, California 95343, United States
| |
Collapse
|
24
|
Geiger B, Spatz J. Application of synthetic biology approaches for understanding encounters between cells and their microenvironment. Cell Adh Migr 2016; 10:447-450. [PMID: 27442709 DOI: 10.1080/19336918.2016.1215184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Benjamin Geiger
- a Department of Molecular Cell Biology Weizmann Institute of Science , Rehovot , Israel
| | - Joachim Spatz
- b Department of Biointerphase Science & Technology Max Planck Institute for Medical Research Jahnstraße, Heidelberg, Germany Laboratory of Biophysical Chemistry Institute of Physical Chemistry, University of Heidelberg Im Neuenheimer Feld, Heidelberg , Germany
| |
Collapse
|
25
|
Abstract
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Collapse
Affiliation(s)
- Eli Zamir
- a Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
26
|
Denning D, Roos WH. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches. Cell Adh Migr 2016; 10:540-553. [PMID: 27266767 DOI: 10.1080/19336918.2016.1170259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response.
Collapse
Affiliation(s)
- Denise Denning
- a Moleculaire Biofysica , Zernike instituut, Rijksuniversiteit Groningen , Groningen , The Netherlands
| | - Wouter H Roos
- a Moleculaire Biofysica , Zernike instituut, Rijksuniversiteit Groningen , Groningen , The Netherlands
| |
Collapse
|
27
|
Catch bond interaction allows cells to attach to strongly hydrated interfaces. Biointerphases 2016; 11:018905. [PMID: 26753785 DOI: 10.1116/1.4939040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyaluronans are a class of glycosaminoglycans that are widespread in the mammalian body and serve a variety of functions. Their most striking characteristic is their pronounced hydrophilicity and their capability to inhibit unspecific adhesion when present at interfaces. Catch-bond interactions are used by the CD44 receptor to interact with this inert material and to roll on the surfaces coated with hyaluronans. In this minireview, the authors discuss the general properties of hyaluronans and the occurrence and relevance of the CD44 catch-bond interaction in the context of hematopoiesis, cancer development, and leukemia.
Collapse
|
28
|
Minsky BB, Antoni CH, Boehm H. Controlled Immobilization Strategies to Probe Short Hyaluronan-Protein Interactions. Sci Rep 2016; 6:21608. [PMID: 26883791 PMCID: PMC4756360 DOI: 10.1038/srep21608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Well-controlled grafting of small hyaluronan oligosaccharides (sHA) enables novel approaches to investigate biological processes such as angiogenesis, immune reactions and cancer metastasis. We develop two strategies for covalent attachment of sHA, a fast high-density adsorption and a two-layer system that allows tuning the density and mode of immobilization. We monitored the sHA adlayer formation and subsequent macromolecular interactions by label-free quartz crystal microbalance with dissipation (QCM-D). The modified surfaces are inert to unspecific protein adsorption, and yet retain the specific binding capacity of sHA. Thus they are an ideal tool to study the interactions of hyaluronan-binding proteins and short hyaluronan molecules as demonstrated by the specific recognition of LYVE-1 and aggrecan. Both hyaladherins recognize sHA and the binding is independent to the presence of the reducing end.
Collapse
Affiliation(s)
- Burcu Baykal Minsky
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Christiane H. Antoni
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent Systems
| |
Collapse
|