1
|
Wu X, Gao B. Hydrosulfonylation of Unactivated Alkenes and Alkynes by Halogen-Atom Transfer (XAT) Cleavage of S VI-F Bond. Org Lett 2023. [PMID: 38019153 DOI: 10.1021/acs.orglett.3c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A photochemical halogen-atom transfer (XAT) method for generating sulfonyl radicals from aryl sulfonyl fluorides has been developed. It allows the hydrosulfonylation of unactivated alkenes, which was challenging to achieve through our previous single-electron transfer route. This reaction has excellent functional group tolerance and substrate scope under mild conditions.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Enantioselective Addition of Dialkyl Malonates to β-Arylethenesulfonyl Fluorides under High-Pressure Conditions. Org Lett 2023; 25:6818-6822. [PMID: 37655810 PMCID: PMC10521026 DOI: 10.1021/acs.orglett.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 09/02/2023]
Abstract
Application of high-pressure conditions enables enantioselective Michael-type addition of dialkyl malonates to β-arylethenesulfonyl fluorides. The reaction is efficiently catalyzed with 5 mol % of tertiary amino-thiourea at 9 kbar. Chiral alkanesulfonyl fluorides are formed in yields of up to 96% and enantioselectivities of up to 92%. Functionalization of the adducts via sulfur fluoride exchange (SuFEx) reaction and desulfonylative cyclization is demonstrated.
Collapse
Affiliation(s)
- Michał Kopyt
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Kwiatkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nat Commun 2023; 14:5168. [PMID: 37620301 PMCID: PMC10449886 DOI: 10.1038/s41467-023-40615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
4
|
Park JH, González-Montiel GA, Cheong PHY, Bae HY. Alkyl Sulfonyl Fluorides Incorporating Geminal Dithioesters as SuFEx Click Hubs via Water-Accelerated Organosuperbase Catalysis. Org Lett 2023; 25:1056-1060. [PMID: 36762981 DOI: 10.1021/acs.orglett.2c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) is recognized as another emerging tool for click chemistry. The preparation of the functionalized alkyl sulfonyl fluorides as key SuFEx hubs via C(sp3)-C(sp3) bond formation is exceptionally challenging. We report herein a new efficient method for accessing alkyl sulfonyl fluorides incorporating γ-geminal dithioester via phosphazene catalysis. The aqueous, neutral organosuperbase catalytic system amplifies the reactivity by taking advantage of the hydrophobic amplification. SuFEx-active products are applied to the click connection of bioactive molecules. Density functional theory studies show that the selective outcome of the product is guided by an ion-pair organosuperbase catalyst assembly that is potentially stabilized by a hydrogen-bonding interaction between the catalyst and the DTM in the C(sp3)-C(sp3) bond-forming transition structure.
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gisela A González-Montiel
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Sandeep K, Kumar AS, Kumara Swamy KC. Rhodium‐Catalyzed Vinyl Sulfonylation of 3‐Carbonyl‐Substituted Indoles with Ethenesulfonyl Fluoride by Cross‐Dehydrogenative Coupling: An Application in (3+2) Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K. Sandeep
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - A. Sanjeeva Kumar
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - K. C. Kumara Swamy
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| |
Collapse
|
6
|
Zhang H, Yang N, Li J, Wang P, Li S, Xie L, Liao S. Radical Fluorosulfonyl Arylation of Alkenes: Accessing FSO 2-Functionalized Chromanes via Formal Endo and Exo Cyclization. Org Lett 2022; 24:8170-8175. [DOI: 10.1021/acs.orglett.2c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jing Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaojie Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Lili Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
| |
Collapse
|
7
|
Zeng YZ, Wang JB, Qin HL. A reductive dehalogenative process for chemo- and stereoselective synthesis of 1,3-dienylsulfonyl fluorides. Org Biomol Chem 2022; 20:7776-7780. [PMID: 36168842 DOI: 10.1039/d2ob01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the mild and efficient synthesis of 1,3-dienylsulfonyl fluorides was developed via dehalogenation of α-halo-1,3-dienylsulfonyl fluorides in the presence of zinc powder and acetic acid, achieving exclusive chemo- and stereoselectivities. This protocol was successfully applied to the synthesis of heterocyclic dienylsulfonyl fluorides and polyene sulfonyl fluoride.
Collapse
Affiliation(s)
- Yu-Zhen Zeng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Jian-Bai Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China. .,Changyi Tianyu Pharm. Co., Ltd., Weifang 261399, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Park JH, Lee SB, Koo BJ, Bae HY. β-Aminosulfonyl Fluorides via Water-Accelerated N-Heterocyclic Carbene Catalysis. CHEMSUSCHEM 2022; 15:e202201000. [PMID: 35799476 DOI: 10.1002/cssc.202201000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, a water-accelerated, N-heterocyclic carbene (NHC)-catalyzed aza-Michael addition reaction was reported to access β-aminosulfonyl fluorides, which are key hubs of the sulfur(VI) fluoride exchange (SuFEx) reaction. As a crucial reaction medium, water considerably enhanced the reaction rate with excellent chemo- and site-selectivity (up to >99 : 1) compared to conventional solvents. In addition, the late-stage ligation of bioactive molecules with the aliphatic β-amino SuFEx hub was demonstrated. Mechanistic studies on experimental, analytical, and computational approaches support noncovalent activation over NHC catalysis "on-water".
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Sun Bu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Byeong Jun Koo
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419 (Republic of, Korea
| |
Collapse
|
9
|
Lee SB, Park JH, Bae HY. Hydrophobic Amplification Enabled High-Turnover Phosphazene Superbase Catalysis. CHEMSUSCHEM 2022; 15:e202200634. [PMID: 35638148 DOI: 10.1002/cssc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
β-Sulfido sulfonyl fluoride and its derivatives have been gaining attention recently in the fields of medicinal chemistry and material science. The conventional method for the synthesis of functionalized alkyl sulfonyl fluorides requires several chemical transformations. Therefore, a direct establishment of such chemical structures remains challenging, and an efficient catalytic approach is highly desired. Herein a significant "on-water" hydrophobic amplification was achieved, enabling a high-turnover catalytic thia-Michael addition to produce unprecedented β-arylated-β-sulfido sulfonyl fluorides. Amounts as low as 100 ppm (0.01 mol %) of the phosphazene superbase were sufficient to successfully catalyze the reaction with excellent chemo-/site-selectivity and with optimal functional group tolerance. Several β-arylated ethene sulfonyl fluorides were converted into thia-Michael adducts up to >99 % yields. The mild conditions, high turnover, neutral pH, and scalability of the sustainable catalytic process benefit the preparation of potential pharmaceuticals (e. g., polyisoprenylated methylated protein methyl esterase inhibitors) and organic materials (e. g., electrolyte additives).
Collapse
Affiliation(s)
- Sun Bu Lee
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Zhang W, Deng X, Zhang FX, Lin JH, Xiao JC, Liang SH. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Org Lett 2022; 24:4992-4997. [PMID: 35771975 DOI: 10.1021/acs.orglett.2c02091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A successful Cu-catalyzed addition of both Cl and SO2OCF2H groups into alkenes allows us to discover the unusual reactivity of the SO2OCF2H group. As opposed to common sulfonic esters (RSO2-O-R'), in which the R' group is highly electrophilic, the SO2 moiety demonstrates higher electrophilicity in RSO2-OCF2H. The unexpected reactivity is further developed not only as a synthetic tool for well-functionalized alkenyl sulfonyl fluorides but also for the first 18F labeling of alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States
| |
Collapse
|
11
|
Zhu DY, Chen Y, Zhang XJ, Yan M. Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride. Org Biomol Chem 2022; 20:4714-4718. [PMID: 35622375 DOI: 10.1039/d2ob00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride (ESF) has been developed. In the presence of different bases, N2-alkylated and C4-alkylated isoxazol-5-ones with a sulfonyl fluoride group were obtained separately with good to excellent yields. Further transformations with amines and phenol gave sulfonamides and sulfonates. The intriguing combination of isoxazol-5-ones and the sulfonyl fluoride group produces valuable products for drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
13
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
14
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
16
|
Zhu DY, Zhang XJ, Yan M. Enantioselective Addition of Azlactones to Ethylene Sulfonyl Fluoride via Dual Catalysis. Org Lett 2021; 23:4228-4232. [PMID: 34029100 DOI: 10.1021/acs.orglett.1c01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enantioselective conjugate addition of azlactones to ethylene sulfonyl fluoride has been achieved via the cooperative catalysis with (DHQD)2PHAL and a hydrogen-bond donor (HBD). This approach furnishes a facile access to a range of structurally diverse azlactone sulfonyl fluoride derivatives with good to excellent yields and enantioselectivities. The combination of azlactone and sulfonyl fluoride group produces valuable unnatural α-quaternary amino acid derivatives for the drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Xu Y, Zhang Z, Shi J, Liu X, Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
18
|
Chen J, Zhu DY, Zhang XJ, Yan M. Highly Enantioselective Addition of N-2,2,2-Trifluoroethylisatin Ketimines to Ethylene Sulfonyl Fluoride. J Org Chem 2021; 86:3041-3048. [PMID: 33503367 DOI: 10.1021/acs.joc.0c02511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective Michael addition between N-2,2,2-trifluoroethylisatin ketimines and ethylene sulfonyl fluoride has been disclosed. This method provides a facile strategy to access a range of structurally diverse isatin-derived α-(trifluoromethyl)imine derivatives with excellent yields and enantioselectivities. The intriguing combination of α-(trifluoromethyl)amine and sulfonyl fluoride groups leads to the valuable candidates for the drug discovery.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zhang ZW, Wang SM, Fang WY, Lekkala R, Qin HL. Protocol for Stereoselective Construction of Highly Functionalized Dienyl Sulfonyl Fluoride Warheads. J Org Chem 2020; 85:13721-13734. [DOI: 10.1021/acs.joc.0c01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Life Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Ravindar Lekkala
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
20
|
Moku B, Fang WY, Leng J, Li L, Zha GF, Rakesh KP, Qin HL. Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience 2019; 21:695-705. [PMID: 31733515 PMCID: PMC6889689 DOI: 10.1016/j.isci.2019.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
Rh-catalyzed, highly enantioselective (up to 99.8% ee) synthesis of aliphatic sulfonyl fluorides was accomplished. This protocol provides a portal to a class of novel 2-aryl substituted chiral sulfonyl fluorides, which are otherwise extremely difficult to access. This asymmetric synthesis has the feature of mild conditions, excellent functional group compatibility, and wide substrate scope (51 examples) generating a wide array of structurally unique chiral β-arylated sulfonyl fluorides for sulfur(VI) fluoride exchange (SuFEx) click reaction and drug discovery.
Collapse
Affiliation(s)
- Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - K P Rakesh
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China.
| |
Collapse
|
21
|
Chen J, Huang BQ, Wang ZQ, Zhang XJ, Yan M. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org Lett 2019; 21:9742-9746. [DOI: 10.1021/acs.orglett.9b03911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bao-qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeng-qing Wang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Xu R, Xu T, Yang M, Cao T, Liao S. A rapid access to aliphatic sulfonyl fluorides. Nat Commun 2019; 10:3752. [PMID: 31434898 PMCID: PMC6704106 DOI: 10.1038/s41467-019-11805-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
The past few years have witnessed a fast-growing research interest on the study of sulfonyl fluorides as reactive probes in chemical biology and molecular pharmacology, which raises an urgent need for the development of effective synthetic methods to expand the toolkit. Herein, we present the invention of a facile and general approach for the synthesis of aliphatic sulfonyl fluorides via visible-light-mediated decarboxylative fluorosulfonylethylation. The method is based on abundant carboxylic acid feed stock, applicable to various alkyl carboxylic acids including primary, secondary, and tertiary acids, and is also suitable for the modification of natural products like amino acids, peptides, as well as drugs, forging a rapid, metal-free approach to build sulfonyl fluoride compound libraries of considerable structural diversity. Further diversification of the SO2F-containing products is also demonstrated, which allows for access to a range of pharmaceutically important motifs such as sultam, sulfonate, and sulfonamide. Sulfonyl fluorides are important probes in chemical biology and molecular pharmacology. Here, the authors report a mild visible light-mediated decarboxylative fluorosulfonylethylation for the synthesis of aliphatic sulfonyl fluorides from a wide range of carboxylic acids, including natural products and drug derivatives.
Collapse
Affiliation(s)
- Ruting Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianxiao Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianpeng Cao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Saihu Liao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
23
|
Liu H, Moku B, Li F, Ran J, Han J, Long S, Zha G, Qin H. Stereoselective Construction of Nitrile‐Substituted Cyclopropanes from 2‐Substituted Ethenesulfonyl Fluorides
via
Carbon‐Sulfur Bond Cleavage. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
| | - Balakrishna Moku
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Fei Li
- School of EngineeringChina Pharmaceutical University Nanjing 210009 People's Republic of China
| | - Jiabing Ran
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 People's Republic of China
| | - Jinsong Han
- School of EngineeringChina Pharmaceutical University Nanjing 210009 People's Republic of China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
| | - Gao‐Feng Zha
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Hua‐Li Qin
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
24
|
Chen XY, Wu Y, Zhou J, Wang P, Yu JQ. Synthesis of β-Arylethenesulfonyl Fluoride via Pd-Catalyzed Nondirected C–H Alkenylation. Org Lett 2019; 21:1426-1429. [DOI: 10.1021/acs.orglett.9b00165] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P.R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P.R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
| | - Jin-Quan Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Gao Y, Liu D, Fu Z, Huang W. Facile Synthesis of 2,2-Diacyl Spirocyclohexanones via an N-Heterocyclic Carbene-Catalyzed Formal [3C + 3C] Annulation. Org Lett 2019; 21:926-930. [PMID: 30714381 DOI: 10.1021/acs.orglett.8b03892] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel strategy for the construction of 2,2-diacyl spirocyclohexanones 3 has been demonstrated on the basis of an NHC-catalyzed [3C + 3C] annulation of potassium 2-oxo-3-enoates with 2-ethylidene 1,3-indandiones. Furthermore, enantioenriched 3 was obtained in good to excellent yields with good enantioselectivities when chiral N-heterocyclic carbene (NHC) was employed. Notably, ring opening of the resulting 2,2-diacyl spirocyclohexanones 3 with hydrazine led to the formation of phthalazinones in good to excellent yields.
Collapse
Affiliation(s)
- Yaru Gao
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Dehai Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhenqian Fu
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| |
Collapse
|
26
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
27
|
Waiba S, Barman MK, Maji B. Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones. J Org Chem 2018; 84:973-982. [DOI: 10.1021/acs.joc.8b02911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Milan K. Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
28
|
Maji A, Dahiya A, Lu G, Bhattacharya T, Brochetta M, Zanoni G, Liu P, Maiti D. H-bonded reusable template assisted para-selective ketonisation using soft electrophilic vinyl ethers. Nat Commun 2018; 9:3582. [PMID: 30181575 PMCID: PMC6123475 DOI: 10.1038/s41467-018-06018-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/07/2018] [Indexed: 11/09/2022] Open
Abstract
In nature, enzymatic pathways generate Caryl−C(O) bonds in a site-selective fashion. Synthetically, Caryl−C(O) bonds are synthesised in organometallic reactions using prefunctionalized substrate materials. Electrophilic routes are largely limited to electron-rich systems, non-polar medium, and multiple product formations with a limited scope of general application. Herein we disclose a directed para-selective ketonisation technique of arenes, overriding electronic bias and structural congestion, in the presence of a polar protic solvent. The concept of hard–soft interaction along with in situ activation techniques is utilised to suppress the competitive routes. Mechanistic pathways are investigated both experimentally and computationally to establish the hypothesis. Synthetic utility of the protocol is highlighted in formal synthesis of drugs, drug cores, and bioactive molecules. Electrophilic acylation of arenes is largely limited to electron rich systems, non-polar medium and often displays moderate selectivity. Here, the authors show a directed para-selective ketonisation of arenes, overriding electronic bias and structural congestion, and apply it to the synthesis of bioactive compounds.
Collapse
Affiliation(s)
- Arun Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amit Dahiya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gang Lu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Massimo Brochetta
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy
| | - Giuseppe Zanoni
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy.
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100, Pavia, Italy.
| |
Collapse
|
29
|
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; Durban South Africa
- Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
30
|
Mykhalchuk VL, Yarmolchuk VS, Doroschuk RO, Tolmachev AA, Grygorenko OO. [3+2] Cycloaddition of an Azomethyne Ylide and Vinyl Sulfonyl Fluorides ― an Approach to Pyrrolidine-3-sulfonyl Fluorides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Volodymyr L. Mykhalchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Vladimir S. Yarmolchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Roman O. Doroschuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Andrey A. Tolmachev
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
31
|
Gaunersdorfer C, Waser M. Progress in the synthesis of δ-sultones. MONATSHEFTE FUR CHEMIE 2018; 149:701-714. [PMID: 29681654 PMCID: PMC5906513 DOI: 10.1007/s00706-017-2010-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 11/28/2022]
Abstract
Abstract Sultones, the cyclic esters of hydroxyl sulfonic acids, are a fascinating class of heterocycles and the recent years have witnessed an increasing interest in these molecules, especially in six-ring δ-sultones. The importance of these compounds is either because of their biological properties themselves or due to their versatility as intermediates in more complex target syntheses. Accordingly, the development of new synthesis methods to access δ-sultones is an important and rewarding task which we wish to highlight in this review. Graphical abstract ![]()
Collapse
Affiliation(s)
- Christina Gaunersdorfer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| |
Collapse
|
32
|
Xie Y, Wang J. N-Heterocyclic carbene-catalyzed annulation of ynals with amidines: access to 1,2,6-trisubstituted pyrimidin-4-ones. Chem Commun (Camb) 2018; 54:4597-4600. [DOI: 10.1039/c8cc02023j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A thiazolium-catalyzed annulation of ynals and amidines has been reported to construct pyrimidin-4-ones.
Collapse
Affiliation(s)
- Yangxi Xie
- School of Pharmaceutical Sciences
- Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing
- China
| | - Jian Wang
- School of Pharmaceutical Sciences
- Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing
- China
| |
Collapse
|
33
|
Chen X, Zha GF, Fang WY, Rakesh KP, Qin HL. A portal to a class of novel sultone-functionalized pyridines via an annulative SuFEx process employing earth abundant nickel catalysts. Chem Commun (Camb) 2018; 54:9011-9014. [DOI: 10.1039/c8cc04032j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient Ni2+ promoted process for the synthesis of a class of structurally unique heterocycles containing both pyridines and sultones was developed through a SuFEx annulation. This protocol serves as an irreplaceable asset for medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| |
Collapse
|
34
|
Zhao M, Zhang YT, Chen J, Zhou L. Enantioselective Reactions Catalyzed by N-Heterocyclic Carbenes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700538] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ming Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| | - Yu-Tong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| |
Collapse
|
35
|
Chen X, Zha GF, Bare GAL, Leng J, Wang SM, Qin HL. Synthesis of a Class of Fused δ-Sultone HeterocyclesviaDBU-Catalyzed Direct Annulative SuFEx Click of Ethenesulfonyl Fluorides and Pyrazolones or 1,3-Dicarbonyl Compounds. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Chen
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Grant A. L. Bare
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla, CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| |
Collapse
|
36
|
Zha GF, Bare GAL, Leng J, Shang ZP, Luo Z, Qin HL. Gram-Scale Synthesis of β-(Hetero)arylethenesulfonyl Fluorides via
a Pd(OAc)2
Catalyzed Oxidative Heck Process with DDQ or AgNO3
as an Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700688] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Grant A. L. Bare
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla, CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhen-Peng Shang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhixiong Luo
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| |
Collapse
|
37
|
Ren Q, Li M, Yuan L, Wang J. Recent advances in N-heterocyclic carbene catalyzed achiral synthesis. Org Biomol Chem 2017; 15:4731-4749. [PMID: 28540374 DOI: 10.1039/c7ob00568g] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as powerful and elegant organocatalysts in a variety of newly developed and unprecedented enantioselective transformations due to their unique umpolung capacity. As a supplement to conventional enantioselective organocatalysis, NHC-induced non-asymmetric catalysis has gradually attracted much interest in recent years. Herein, this review aims to reveal the recent developments in NHC-promoted non-asymmetric umpolung transformations resulting in the expeditious construction of versatile achiral natural heterocycles, carbocycles and acylated products.
Collapse
Affiliation(s)
- Qiao Ren
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Muyao Li
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Lujiang Yuan
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Jian Wang
- School of Chemical & Environmental Engineering, Wuyi University, Jiangmen 529020, China. and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Chinthakindi PK, Govender KB, Kumar AS, Kruger HG, Govender T, Naicker T, Arvidsson PI. A Synthesis of “Dual Warhead” β-Aryl Ethenesulfonyl Fluorides and One-Pot Reaction to β-Sultams. Org Lett 2017; 19:480-483. [DOI: 10.1021/acs.orglett.6b03634] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - A. Sanjeeva Kumar
- Catalysis
and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis
and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Per I. Arvidsson
- Catalysis
and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Levens A, Ametovski A, Lupton DW. Enantioselective (4+2) Annulation of Donor-Acceptor Cyclobutanes by N-Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2016; 55:16136-16140. [PMID: 27891746 DOI: 10.1002/anie.201609330] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Herein we report the enantioselective (4+2) annulation of donor-acceptor cyclobutanes and unsaturated acyl fluorides using N-heterocyclic carbene catalysis. The reaction allows a 3-step synthesis of cyclohexyl β-lactones (25 examples) in excellent chemical yield (most ≥90 %) and stereochemical integrity (all >20:1 d.r., most ≥97:3 e.r.). Mechanistic studies support ester enolate Claisen rearrangement, while derivatizations provide functionalized cyclohexenes and dihydroquinolinones.
Collapse
Affiliation(s)
- Alison Levens
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Adam Ametovski
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
40
|
Levens A, Ametovski A, Lupton DW. Enantioselective (4+2) Annulation of Donor-Acceptor Cyclobutanes by N-Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alison Levens
- School of Chemistry; Monash University; Clayton 3800 Victoria Australia
| | - Adam Ametovski
- School of Chemistry; Monash University; Clayton 3800 Victoria Australia
| | - David W. Lupton
- School of Chemistry; Monash University; Clayton 3800 Victoria Australia
| |
Collapse
|
41
|
Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Asymmetric Synthesis of Spirobenzazepinones with Atroposelectivity and Spiro-1,2-Diazepinones by NHC-Catalyzed [3+4] Annulation Reactions. Angew Chem Int Ed Engl 2016; 55:11110-4. [DOI: 10.1002/anie.201604819] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/24/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Wang
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Sun Li
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Marcus Blümel
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Arne R. Philipps
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Ai Wang
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Rakesh Puttreddy
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Dieter Enders
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
42
|
Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Asymmetric Synthesis of Spirobenzazepinones with Atroposelectivity and Spiro-1,2-Diazepinones by NHC-Catalyzed [3+4] Annulation Reactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604819] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lei Wang
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Sun Li
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Marcus Blümel
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Arne R. Philipps
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Ai Wang
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Rakesh Puttreddy
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Dieter Enders
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
43
|
Chen Q, Mayer P, Mayr H. Ethensulfonylfluorid: der beste je entdeckte Michael-Akzeptor? Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan Chen
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| | - Peter Mayer
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| | - Herbert Mayr
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13, Haus F 81377 München Deutschland
| |
Collapse
|
44
|
Chen Q, Mayer P, Mayr H. Ethenesulfonyl Fluoride: The Most Perfect Michael Acceptor Ever Found? Angew Chem Int Ed Engl 2016; 55:12664-7. [DOI: 10.1002/anie.201601875] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Quan Chen
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Peter Mayer
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Herbert Mayr
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| |
Collapse
|
45
|
Alcaide B, Almendros P, Aragoncillo C, Fernández I, Gómez-Campillos G. Metal-Free Allene-Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry 2015; 22:285-94. [PMID: 26592734 DOI: 10.1002/chem.201504045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain).
| | - Pedro Almendros
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain).
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| | - Gonzalo Gómez-Campillos
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| |
Collapse
|