1
|
Jiang J, Yuan D, Ma C, Song W, Lin Y, Hu L, Zhang Y. Palladium-Catalyzed Regiospecific peri- and ortho-C-H Oxygenations of Polyaromatic Rings Mediated by Tunable Directing Groups. Org Lett 2021; 23:279-284. [PMID: 33352055 DOI: 10.1021/acs.orglett.0c03701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient divergent approach of Pd-catalyzed C-H oxygenation of polyaromatic rings is described. Reversible directing groups enable regiospecific peri- and ortho-oxygenation to readily access a wide array of polyaromatic phenols without pre- and postmanipulation of directing groups. The systematic mechanistic investigation, including deuterium-labeling experiments, palladacycle trapping, and DFT calculations, reveals that the tunable ligand-assisted C-H bond cleavage played a crucial role during the reaction process.
Collapse
Affiliation(s)
- Jing Jiang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Yuan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Congzhe Ma
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wanbin Song
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaoyu Lin
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Kopp J, Brückner R. Stereoselective Total Synthesis of the Dimeric Naphthoquinonopyrano-γ-lactone (-)-Crisamicin A: Introducing the Dimerization Site by a Late-Stage Hartwig Borylation. Org Lett 2020; 22:3607-3612. [PMID: 32298125 DOI: 10.1021/acs.orglett.0c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first stereoselective total synthesis of the dimeric naphthoquinonopyrano-γ-lactone (-)-crisamicin A was realized (13 steps, 5% overall yield). 1,4,5-Trimethoxynaphthalene, reached in five known steps, was brominated at C-3 to install a but-3-enoic ester by an ensuing Heck coupling. An asymmetric Sharpless dihydroxylation followed and gave a β-hydroxy-γ-lactone with >99.9% ee. Its OH substituent and acetaldehyde established the dihydropyran ring in a completely diastereoselective oxa-Pictet-Spengler cyclization. The 2,3-fused anisole moiety allowed the C5-H bond under Hartwig's conditions to be borylated. This set the stage for engaging the resulting C5-B bond in an oxidative dimerization, which led to a binaphthohydroquinon-5-yl. The latter was advanced to synthetic crisamicin A by a double CAN oxidation (→ a binaphthoquinon-5-yl) and a double demethylation.
Collapse
Affiliation(s)
- Julia Kopp
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg, Germany
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg, Germany
| |
Collapse
|
3
|
Zhang Y, Ye Q, Ponomareva LV, Cao Y, Liu Y, Cui Z, Van Lanen SG, Voss SR, She QB, Thorson JS. Total synthesis of griseusins and elucidation of the griseusin mechanism of action. Chem Sci 2019; 10:7641-7648. [PMID: 31583069 PMCID: PMC6755659 DOI: 10.1039/c9sc02289a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient divergent synthesis of griseusins enabled SAR studies, mechanistic elucidation and evaluation in an axolotl tail regeneration model.
A divergent modular strategy for the enantioselective total synthesis of 12 naturally-occurring griseusin type pyranonaphthoquinones and 8 structurally-similar analogues is described. Key synthetic highlights include Cu-catalyzed enantioselective boration–hydroxylation and hydroxyl-directed C–H olefination to afford the central pharmacophore followed by epoxidation–cyclization and maturation via diastereoselective reduction and regioselective acetylation. Structural revision of griseusin D and absolute structural assignment of 2a,8a-epoxy-epi-4′-deacetyl griseusin B are also reported. Subsequent mechanistic studies establish, for the first time, griseusins as potent inhibitors of peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3). Biological evaluation, including comparative cancer cell line cytotoxicity and axolotl embryo tail inhibition studies, highlights the potential of griseusins as potent molecular probes and/or early stage leads in cancer and regenerative biology.
Collapse
Affiliation(s)
- Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine , School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210023 , China.,Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Qing Ye
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Yanan Cao
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Yang Liu
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Zheng Cui
- College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Steven G Van Lanen
- College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - S Randal Voss
- Department of Neuroscience , Spinal Cord and Brain Injury Research Center , Ambystoma Genetic Stock Center , University of Kentucky , Lexington , KY 40536 , USA
| | - Qing-Bai She
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| |
Collapse
|
4
|
Ye Q, Zhang Y, Cao Y, Wang X, Guo Y, Chen J, Horn J, Ponomareva LV, Chaiswing L, Shaaban KA, Wei Q, Anderson BD, St Clair DK, Zhu H, Leggas M, Thorson JS, She QB. Frenolicin B Targets Peroxiredoxin 1 and Glutaredoxin 3 to Trigger ROS/4E-BP1-Mediated Antitumor Effects. Cell Chem Biol 2019; 26:366-377.e12. [PMID: 30661989 DOI: 10.1016/j.chembiol.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3) are two major antioxidant proteins that play a critical role in maintaining redox homeostasis for tumor progression. Here, we identify the prototypical pyranonaphthoquinone natural product frenolicin B (FB) as a selective inhibitor of Prx1 and Grx3 through covalent modification of active-site cysteines. FB-targeted inhibition of Prx1 and Grx3 results in a decrease in cellular glutathione levels, an increase of reactive oxygen species (ROS), and concomitant inhibition of cancer cell growth, largely by activating the peroxisome-bound tuberous sclerosis complex to inhibit mTORC1/4E-BP1 signaling axis. FB structure-activity relationship studies reveal a positive correlation between inhibition of 4E-BP1 phosphorylation, ROS-mediated cancer cell cytotoxicity, and suppression of tumor growth in vivo. These findings establish FB as the most potent Prx1/Grx3 inhibitor reported to date and also notably highlight 4E-BP1 phosphorylation status as a potential predictive marker in response to ROS-based therapies in cancer.
Collapse
Affiliation(s)
- Qing Ye
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yinan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210047, China
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210047, China
| | - Yubin Guo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jing Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Larissa V Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Luksana Chaiswing
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Qiou Wei
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bradley D Anderson
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Jon S Thorson
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
5
|
Pan D, Zhang X, Zheng H, Zheng Z, Nong X, Liang X, Ma X, Qi S. Novel anthraquinone derivatives as inhibitors of protein tyrosine phosphatases and indoleamine 2,3-dioxygenase 1 from the deep-sea derived fungusAlternaria tenuissimaDFFSCS013. Org Chem Front 2019. [DOI: 10.1039/c9qo00775j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel hydroanthraquinone possessing an unprecedented hexacyclic spiro-fused ring system, anthrininone A (1), and two new anthraquinones, anthrininones B and C (2and3), were obtained from the deep-sea derived fungusAlternaria tenuissima.
Collapse
Affiliation(s)
- Dongyan Pan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Institution of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Xuexia Zhang
- New Drug Research & Development Co
- Ltd
- North China Pharmaceutical Group Corporation
- Shijiazhuang
- China
| | - Haizhou Zheng
- New Drug Research & Development Co
- Ltd
- North China Pharmaceutical Group Corporation
- Shijiazhuang
- China
| | - Zhihui Zheng
- New Drug Research & Development Co
- Ltd
- North China Pharmaceutical Group Corporation
- Shijiazhuang
- China
| | - Xuhua Nong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Institution of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Institution of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Institution of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Shuhua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- Institution of South China Sea Ecology and Environmental Engineering
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
6
|
|
7
|
Zhu Z, Glazier DA, Yang D, Tang W. Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6-Tetradeoxy-4-Aminohexopyranosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongpeng Zhu
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemical Sciences; University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Daniel A. Glazier
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| | - Daoshan Yang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 People's Republic of China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53705 USA
| |
Collapse
|
8
|
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
9
|
Zhang FM, Zhang SY, Tu YQ. Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals. Nat Prod Rep 2018; 35:75-104. [DOI: 10.1039/c7np00043j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals from 2011 to July 2017 have been summarized in this review.
Collapse
Affiliation(s)
- Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
10
|
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total Synthesis of Aryl C-Glycoside Natural Products: Strategies and Tactics. Chem Rev 2017; 118:1495-1598. [DOI: 10.1021/acs.chemrev.7b00380] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kei Kitamura
- Department
of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshio Ando
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takashi Matsumoto
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1
Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Suzuki
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Neumeyer M, Kopp J, Brückner R. Controlling the Substitution Pattern of Hexasubstituted Naphthalenes by Aryne/Siloxyfuran Diels-Alder Additions: Regio- and Stereocontrolled Synthesis of Arizonin C1 Analogs. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität; Albertstraße 21 79104 Freiburg Germany
| | - Julia Kopp
- Institut für Organische Chemie; Albert-Ludwigs-Universität; Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität; Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
12
|
Naysmith BJ, Hume PA, Sperry J, Brimble MA. Pyranonaphthoquinones - isolation, biology and synthesis: an update. Nat Prod Rep 2017; 34:25-61. [PMID: 27759131 DOI: 10.1039/c6np00080k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2008 to 2015. A review on the isolation, biological activity and synthesis of pyranonaphthoquinone natural products from 2008-2015 is providedThis review discusses the isolation, biological activity and synthesis of pyranonaphthoquinone natural products, covering the years 2008-2015. The pyranonaphthoquinones are a group of metabolites sharing a common naphtho[2,3-c]pyran-5,10-dione ring system that have been isolated from a wide range of microorganisms, plants and insects. In addition to their synthetically challenging molecular structures, pyranonaphthoquinones exhibit a wide array of biological activity, including anti-bacterial, anti-fungal and anti-cancer properties. The therapeutic potential of these compounds has led to a dynamic interplay between total synthesis and biological evaluation.
Collapse
Affiliation(s)
- Briar J Naysmith
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Paul A Hume
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Neumeyer M, Brückner R. Establishing Consensus Stereostructures for the Naphthoquinonopyrano-γ-lactone Natural Products (-)-Arizonin B1 and (-)-Arizonin C1 by Total Syntheses. Diastereocontrol of Oxa-Pictet-Spengler Cyclizations by Protective-Group Optimization. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
14
|
Neumeyer M, Brückner R. First Stereoselective Total Synthesis of a Dimeric Naphthoquinonopyrano-γ-lactone: (+)-γ-Actinorhodin. Angew Chem Int Ed Engl 2017; 56:3383-3388. [DOI: 10.1002/anie.201611183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg Germany
| |
Collapse
|
15
|
Neumeyer M, Brückner R. Die erste stereoselektive Totalsynthese eines dimeren γ-Lacton- anellierten Pyranonaphthochinons: (+)-γ-Actinorhodin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| |
Collapse
|
16
|
Zhang J, Hughes RR, Saunders MA, Elshahawi SI, Ponomareva LV, Zhang Y, Winchester SR, Scott SA, Sunkara M, Morris AJ, Prendergast MA, Shaaban KA, Thorson JS. Identification of Neuroprotective Spoxazomicin and Oxachelin Glycosides via Chemoenzymatic Glycosyl-Scanning. JOURNAL OF NATURAL PRODUCTS 2017; 80:12-18. [PMID: 28029796 PMCID: PMC5337260 DOI: 10.1021/acs.jnatprod.6b00949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The assessment of glycosyl-scanning to expand the molecular and functional diversity of metabolites from the underground coal mine fire-associated Streptomyces sp. RM-14-6 is reported. Using the engineered glycosyltransferase OleD Loki and a 2-chloro-4-nitrophenylglycoside-based screen, six metabolites were identified as substrates of OleD Loki, from which 12 corresponding metabolite glycosides were produced and characterized. This study highlights the first application of the 2-chloro-4-nitrophenylglycoside-based screen toward an unbiased set of unique microbial natural products and the first reported application of the 2-chloro-4-nitrophenylglycoside-based transglycosylation reaction for the corresponding preparative synthesis of target glycosides. Bioactivity analysis (including antibacterial, antifungal, anticancer, and EtOH damage neuroprotection assays) revealed glycosylation to attenuate the neuroprotective potency of 4, while glycosylation of the structurally related inactive spoxazomicin C (3) remarkably invoked neuroprotective activity.
Collapse
Affiliation(s)
- Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ryan R. Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Meredith A. Saunders
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sydney R. Winchester
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Samantha A. Scott
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mark A. Prendergast
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
17
|
Chakraborty S, Das G, Ghosh S, Mal D. Regioselective synthesis of naphthoquinone/naphthoquinol-carbohydrate hybrids by [4 + 2] anionic annulations and studies on their cytotoxicity. Org Biomol Chem 2016; 14:10636-10647. [PMID: 27782276 DOI: 10.1039/c6ob02154a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and regioselective synthetic route to naphthoquinone/naphthoquinol-carbohydrate hybrids has been developed. It is based upon anionic annulation of 3-nucleofugalphthalides with an acrylate appended sugar moiety. In each of the annulations studied, the arene-carbohydrate hybrids were obtained in good to excellent yields. The in vitro cytotoxic activity of the synthetic naphthoquinone/naphthonol-carbohydrate hybrids were evaluated against the human cervical cancer cell line (HeLa), and a few of them were found to exhibit potent anticancer activity against the cell line.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.
| | | | | | | |
Collapse
|
18
|
Neumeyer M, Brückner R. Nonracemic γ-Lactones from the Sharpless Asymmetric Dihydroxylation of β,γ-Unsaturated Carboxylic Esters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Markus Neumeyer
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
19
|
Zhou S, Wang J, Wang L, Song C, Chen K, Zhu J. Enaminones as Synthons for a Directed C−H Functionalization: Rh
III
‐Catalyzed Synthesis of Naphthalenes. Angew Chem Int Ed Engl 2016; 55:9384-8. [DOI: 10.1002/anie.201603943] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/14/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Shuguang Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| | - Jinhu Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| | - Lili Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| | - Chao Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| | - Kehao Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of MicrostructuresNanjing University Nanjing 210093 China
| |
Collapse
|
20
|
Alamillo-Ferrer C, Karabourniotis-Sotti M, Kennedy AR, Campbell M, Tomkinson NCO. Alkene Dioxygenation with Malonoyl Peroxides: Synthesis of γ-Lactones, Isobenzofuranones, and Tetrahydrofurans. Org Lett 2016; 18:3102-5. [DOI: 10.1021/acs.orglett.6b01253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carla Alamillo-Ferrer
- WestCHEM,
Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Marianna Karabourniotis-Sotti
- WestCHEM,
Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Alan R. Kennedy
- WestCHEM,
Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Matthew Campbell
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage SG1
2NY, United Kingdom
| | - Nicholas C. O. Tomkinson
- WestCHEM,
Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
21
|
Enaminones as Synthons for a Directed C−H Functionalization: Rh
III
‐Catalyzed Synthesis of Naphthalenes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|