1
|
Li M, Zhou Y, Wen Z, Ni Q, Zhou Z, Liu Y, Zhou Q, Jia Z, Guo B, Ma Y, Chen B, Zhang ZM, Wang JB. An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases. Nat Commun 2024; 15:8893. [PMID: 39406733 PMCID: PMC11480083 DOI: 10.1038/s41467-024-53209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Despite the broad potential applications of C-glycosides, facile synthetic methods remain scarce. Transforming glycosyltransferases with promiscuous or natural O-specific chemoselectivity to C-glycosyltransferases is challenging. Here, we employ rational directed evolution of the glycosyltransferase MiCGT to generate MiCGT-QDP and MiCGT-ATD mutants which either enhance C-glycosylation or switch to O-glycosylation, respectively. Structural analysis and computational simulations reveal that substrate binding mode govern C-/O-glycosylation selectivity. Notably, directed evolution and mechanism analysis pinpoint the crucial residues dictating the binding mode, enabling the rational design of four enzymes with superior non-inherent chemoselectivity, despite limited sequence homology. Moreover, our best mutants undergo testing with 34 substrates, demonstrating superb chemoselectivities, regioselectivities, and activities. Remarkably, three C-glycosides and an O-glycoside are produced on a gram scale, demonstrating practical utility. This work establishes a highly selective platform for diverse glycosides, and offers a practical strategy for creating various types of glycosylation platforms to access pharmaceutically and medicinally interesting products.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ziqin Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Yiling Liu
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China.
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China.
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| |
Collapse
|
2
|
Liu X, Liu Y, Xu X, Huang W, Yan Y, Wang Y, Tian W, Mo T, Cui X, Li J, Shi SP, Tu P. Molecular characterization and structure basis of a malonyltransferase with both substrate promiscuity and catalytic regiospecificity from Cistanche tubulosa. Acta Pharm Sin B 2024; 14:2333-2348. [PMID: 38799633 PMCID: PMC11121200 DOI: 10.1016/j.apsb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Enzymatic malonylation of natural glycosides provides a promising alternative method for drug-like malonylated glycosides supply. However, the catalytic potential and structural basis of plant malonyltransferase are far from being fully elucidated. This work identified a new malonyltransferase CtMaT1 from Cistanche tubulosa. It displayed unprecedented mono- and/or di-malonylation activity toward diverse glucosides with different aglycons. A "one-pot" system by CtMaT1 and a malonyl-CoA synthetase was established to biosynthesize nine new malonylated glucosides. Structural investigations revealed that CtMaT1 possesses an adequately spacious acyl-acceptor pocket capable of accommodating diverse glucosides. Additionally, it recognizes malonyl-CoA through strong electrotactic and hydrogen interactions. QM/MM calculation revealed the H167-mediated SN2 reaction mechanism of CtMaT1, while dynamic simulations detected the formation of stable hydrogen bonds between the glucose-6-OH group and H167, resulting in its high malonylation regiospecificity. Calculated energy profiles of two isomeric glycosides highlighted lower reaction energy barriers towards glucoside substrates, emphasizing CtMaT1's preference for glucosides. Furthermore, a mutant CtMaT1H36A with notably increased di-malonylation activity was obtained. The underlying molecular mechanism was illuminated through MM/GBSA binding free energy calculation. This study significantly advances the understanding of plant acyltransferases from both functional and protein structural perspectives, while also providing a versatile tool for enzymatic malonylation applications in pharmacology.
Collapse
Affiliation(s)
- Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingxia Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weisheng Tian
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxue Cui
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
3
|
Fan A, Zhong B, Liu D, Lu Y, Wu M, Jin H, Shi XM, Ren J, Zhang B, Su XD, Ma M, Li SM, Lin W. Biosynthesis of Epipyrone A Reveals a Highly Specific Membrane-Bound Fungal C-Glycosyltransferase for Pyrone Galactosylation. Org Lett 2024; 26:1160-1165. [PMID: 38319976 DOI: 10.1021/acs.orglett.3c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Epipyrone A is a unique C-galactosylated 4-hydroxy-2-pyrone derivative with an antifungal potential from the fungus Epicoccum nigrum. We elucidated its biosynthesis via heterologous expression and characterized an unprecedented membrane-bound pyrone C-glycosyltransferase biochemically. Molecular docking and mutagenesis experiments suggested a possible mechanism for the heterocyclic C-glycosylation and the importance of a transmembrane helix for its catalysis. These results expand the repertoire of C-glycosyltransferases and provide new insights into the formation of C-glycosides in fungi.
Collapse
Affiliation(s)
- Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Boyuan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, China
| | - Yubo Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Liu XY, Wang YN, Du JS, Chen BH, Liu KY, Feng L, Xiang GS, Zhang SY, Lu YC, Yang SC, Zhang GH, Hao B. Biosynthetic pathway of prescription bergenin from Bergenia purpurascens and Ardisia japonica. FRONTIERS IN PLANT SCIENCE 2024; 14:1259347. [PMID: 38239219 PMCID: PMC10794647 DOI: 10.3389/fpls.2023.1259347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Bergenin is a typical carbon glycoside and the primary active ingredient in antitussive drugs widely prescribed for central cough inhibition in China. The bergenin extraction industry relies on the medicinal plant species Bergenia purpurascens and Ardisia japonica as their resources. However, the bergenin biosynthetic pathway in plants remains elusive. In this study, we functionally characterized a shikimate dehydrogenase (SDH), two O-methyltransferases (OMTs), and a C-glycosyltransferase (CGT) involved in bergenin synthesis through bioinformatics analysis, heterologous expression, and enzymatic characterization. We found that BpSDH2 catalyzes the two-step dehydrogenation process of shikimic acid to form gallic acid (GA). BpOMT1 and AjOMT1 facilitate the methylation reaction at the 4-OH position of GA, resulting in the formation of 4-O-methyl gallic acid (4-O-Me-GA). AjCGT1 transfers a glucose moiety to C-2 to generate 2-Glucosyl-4-O-methyl gallic acid (2-Glucosyl-4-O-Me-GA). Bergenin production ultimately occurs in acidic conditions or via dehydration catalyzed by plant dehydratases following a ring-closure reaction. This study for the first time uncovered the biosynthetic pathway of bergenin, paving the way to rational production of bergenin in cell factories via synthetic biology strategies.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Yi-Na Wang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Jiang-Shun Du
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Bi-Huan Chen
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Kun-Yi Liu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lei Feng
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shuang-Yan Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Ying-Chun Lu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Sheng-Chao Yang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Bing Hao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Han BY, Wang ZL, Li J, Jin Q, Wang HT, Chen K, Yi Y, Ågren H, Qiao X, Ye M. A highly selective C-rhamnosyltransferase from Viola tricolor and insights into its mechanisms. Acta Pharm Sin B 2023; 13:3535-3544. [PMID: 37655315 PMCID: PMC10465961 DOI: 10.1016/j.apsb.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023] Open
Abstract
C-Glycosides are important natural products with various bioactivities. In plant biosynthetic pathways, the C-glycosylation step is usually catalyzed by C-glycosyltransferases (CGTs), and most of them prefer to accept uridine 5'-diphosphate glucose (UDP-Glc) as sugar donor. No CGTs favoring UDP-rhamnose (UDP-Rha) as sugar donor has been reported, thus far. Herein, we report the first selective C-rhamnosyltransferase VtCGTc from the medicinal plant Viola tricolor. VtCGTc could efficiently catalyze C-rhamnosylation of 2-hydroxynaringenin 3-C-glucoside, and exhibited high selectivity towards UDP-Rha. Mechanisms for the sugar donor selectivity of VtCGTc were investigated by molecular dynamics (MD) simulations and molecular mechanics with generalized Born and surface area solvation (MM/GBSA) binding free energy calculations. Val144 played a vital role in recognizing UDP-Rha, and the V144T mutant could efficiently utilize UDP-Glc. This work provides a new and efficient approach to prepare flavonoid C-rhamnosides such as violanthin and iso-violanthin.
Collapse
Affiliation(s)
- Bo-Yun Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Qing Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| |
Collapse
|
6
|
Comparative Transcriptome Analysis of Pueraria lobata Provides Candidate Genes Involved in Puerarin Biosynthesis and Its Regulation. Biomolecules 2023; 13:biom13010170. [PMID: 36671554 PMCID: PMC9855344 DOI: 10.3390/biom13010170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Pueraria lobata is a traditional Chinese herb in which an isoflavone C-glucoside, namely puerarin, has received the utmost interest due to its medicinal properties. To date, the biogenesis of puerarin, especially its C-glucosyl reaction in the pathway, remains poorly understood. Moreover, the transcription factors (TFs) that regulate puerarin biosynthesis in P. lobata have not been reported. Here, we performed phytochemical studies on the different developmental stages of the root, stem, and leaf tissues of two P. lobata cultivars, which suggested that both the roots and stems of P. lobata were the sites of puerarin biosynthesis. RNA-sequencing was conducted with the root and stem tissues of the two cultivars under different stages, and the clean reads were mapped to the recently published genome of P. lobata var. thomsonii, yielding the transcriptome dataset. A detailed analysis of the gene expression data, gene coexpression network, and phylogeny proposed several C-GTs that likely participate in puerarin biosynthesis. The first genome-wide analysis of the whole MYB superfamily in P. lobata presented here identified a total of 123 nonredundant PlMYB genes that were significantly expressed in the analyzed tissues. The phylogenetic analysis of PlMYBs with other plant MYB proteins revealed strong PlMYB candidates that may regulate the biosynthesis of isoflavones, such as puerarin.
Collapse
|
7
|
Phenolic C-glycoside synthesis using microbial systems. Curr Opin Biotechnol 2022; 78:102827. [PMID: 36308986 DOI: 10.1016/j.copbio.2022.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022]
Abstract
Plants produce different types of phenolic compounds. The majority of these compounds are glycosylated. Phenolic O-glycosides are also common. Recently, C-glycosylation of phenolic compounds has received attention because of the biological importance of phenolic C-glycosides. To date, three classes of C-glycosyltransferases (CGTs) have been characterized based on the type of sugar acceptor: flavonoid CGT, coumarin CGT, and xanthone CGT. Phylogenetic analysis of glycosyltransferases has revealed that CGTs form a distinct class that is clearly different from that of O-glycosyltransferases. The characterized CGTs have been introduced into microbial systems to synthesize phenolic C-glycosides. Here, we review recent progress in the development of CGTs and their application in the synthesis of phenolic C-glycosides using microbial systems.
Collapse
|
8
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
9
|
Teze D, Bidart GN, Welner DH. Family 1 glycosyltransferases (GT1, UGTs) are subject to dilution-induced inactivation and low chemo stability toward their own acceptor substrates. Front Mol Biosci 2022; 9:909659. [PMID: 35936788 PMCID: PMC9354691 DOI: 10.3389/fmolb.2022.909659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosylation reactions are essential but challenging from a conventional chemistry standpoint. Conversely, they are biotechnologically feasible as glycosyltransferases can transfer sugar to an acceptor with perfect regio- and stereo-selectivity, quantitative yields, in a single reaction and under mild conditions. Low stability is often alleged to be a limitation to the biotechnological application of glycosyltransferases. Here we show that these enzymes are not necessarily intrinsically unstable, but that they present both dilution-induced inactivation and low chemostability towards their own acceptor substrates, and that these two phenomena are synergistic. We assessed 18 distinct GT1 enzymes against three unrelated acceptors (apigenin, resveratrol, and scopoletin—respectively a flavone, a stilbene, and a coumarin), resulting in a total of 54 enzymes: substrate pairs. For each pair, we varied catalyst and acceptor concentrations to obtain 16 different reaction conditions. Fifteen of the assayed enzymes (83%) displayed both low chemostability against at least one of the assayed acceptors at submillimolar concentrations, and dilution-induced inactivation. Furthermore, sensitivity to reaction conditions seems to be related to the thermal stability of the enzymes, the three unaffected enzymes having melting temperatures above 55°C, whereas the full enzyme panel ranged from 37.4 to 61.7°C. These results are important for GT1 understanding and engineering, as well as for discovery efforts and biotechnological use.
Collapse
Affiliation(s)
- David Teze
- *Correspondence: David Teze, ; Ditte Hededam Welner,
| | | | | |
Collapse
|
10
|
Gao YH, Nie QY, Hu Y, Lu X, Xiang W, Wang X, Tang GL. Discovery of glycosylated naphthacemycins and elucidation of the glycosylation. Biochem Biophys Res Commun 2022; 622:122-128. [PMID: 35849953 DOI: 10.1016/j.bbrc.2022.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
Two glycosylated naphthacemycins (naphthacemycins D1 and D2) were identified in Streptomyces sp. N12W1565. These two compounds not only showed antimicrobial potential against bacteria but also exhibited more aqueous solubility than naphthacemycins. Furthermore, the whole genome of Streptomyces sp. N12W1565 has been sequenced, the natY gene, located outside the biosynthetic gene cluster encoding a D-glucose glycosyltransferase, was identified to mediate glycosylation in the phenolic hydroxyl of the naphthacemycin core scaffold. Glycosyltransferase was elucidated in vitro by using a homologous enzyme, which showed potential as a biocatalyst.
Collapse
Affiliation(s)
- Yu-Hang Gao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, PR China.
| | - Yu Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, PR China
| | - Xinhua Lu
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, 050015, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, PR China; School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, PR China.
| |
Collapse
|
11
|
Gao HY, Liu Y, Tan FF, Zhu LW, Jia KZ, Tang YJ. Advances and Challenges in Enzymatic C-glycosylation of Flavonoids in Plants. Curr Pharm Des 2022; 28:1466-1479. [PMID: 35466866 DOI: 10.2174/1381612828666220422085128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Flavonoid glycosides play required determinant roles in plants and have considerable potential for applications in medicine and biotechnology. Glycosyltransferases transfer a sugar moiety from uridine diphosphate-activated sugar molecules to an acceptor flavonoid via C-O and C-C linkages. Compared with O-glycosylflavonoids, C-glycosylflavonoids are more stable, are resistant to glycosidase or acid hydrolysis, exhibit better pharmacological properties, and have received more attention. Herein, we discuss the mining of C-glycosylflavones and the corresponding C-glycosyltransferases and evaluate the differences in structure and catalytic mechanisms between C-glycosyltransferase and O-glycosyltransferase. We conclude that promiscuity and specificity are key determinants for general flavonoid C-glycosyltransferase engineering and summarize the C-glycosyltransferase engineering strategy. A thorough understanding of the properties, catalytic mechanisms, and engineering of C-glycosyltransferases will be critical for any future biotechnological applications in areas such as the production of desired C-glycosylflavonoids for nutritional or medicinal use.
Collapse
Affiliation(s)
- Hui-Yao Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yan Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Fei-Fan Tan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Li-Wen Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Kai-Zhi Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Remali J, Sahidin I, Aizat WM. Xanthone Biosynthetic Pathway in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:809497. [PMID: 35463410 PMCID: PMC9024401 DOI: 10.3389/fpls.2022.809497] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Xanthones are secondary metabolites rich in structural diversity and possess a broad array of pharmacological properties, such as antitumor, antidiabetic, and anti-microbes. These aromatic compounds are found in higher plants, such as Clusiaceae, Hypericaceae, and Gentianaceae, yet their biosynthetic pathways have not been comprehensively updated especially within the last decade (up to 2021). In this review, plant xanthone biosynthesis is detailed to illuminate their intricacies and differences between species. The pathway initially involves the shikimate pathway, either through L-phenylalanine-dependent or -independent pathway, that later forms an intermediate benzophenone, 2,3',4,6-tetrahydoxybenzophenone. This is followed by a regioselective intramolecular mediated oxidative coupling to form xanthone ring compounds, 1,3,5-trihydroxyxanthone (1,3,5-THX) or 1,3,7-THX, the core precursors for xanthones in most plants. Recent evidence has shed some lights onto the enzymes and reactions involved in this xanthone pathway. In particular, several biosynthetic enzymes have been characterized at both biochemical and molecular levels from various organisms including Hypericum spp., Centaurium erythraea and Garcinia mangostana. Proposed pathways for a plethora of other downstream xanthone derivatives including swertianolin and gambogic acid (derived from 1,3,5-THX) as well as gentisin, hyperixanthone A, α-mangostin, and mangiferin (derived from 1,3,7-THX) have also been thoroughly covered. This review reports one of the most complete xanthone pathways in plants. In the future, the information collected here will be a valuable resource for a more directed molecular works in xanthone-producing plants as well as in synthetic biology application.
Collapse
Affiliation(s)
- Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Idin Sahidin
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
13
|
Huang J, She Y, Yue J, Chen Y, Li Y, Li J, Hu Y, Yang D, Chen J, Yang L, Liu Z, Wu R, Jin P, Duan L. Exploring the catalytic function and active sites of a novel C-glycosyltransferase from Anemarrhena asphodeloides. Synth Syst Biotechnol 2022; 7:621-630. [PMID: 35198747 PMCID: PMC8841362 DOI: 10.1016/j.synbio.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Anemarrhena asphodeloides is an immensely popular medicinal herb in China, which contains an abundant of mangiferin. As an important bioactive xanthone C-glycoside, mangiferin possesses a variety of pharmacological activities and is derived from the cyclization reaction of a benzophenone C-glycoside (maclurin). Biosynthetically, C-glycosyltransferases are critical for the formation of benzophenone C-glycosides. However, the benzophenone C-glycosyltransferases from Anemarrhena asphodeloides have not been discovered. Herein, a promiscuous C-glycosyltransferase (AaCGT) was identified from Anemarrhena asphodeloides. It was able to catalyze efficiently mono-C-glycosylation of benzophenone, together with di-C-glycosylation of dihydrochalcone. It also exhibited the weak O-glycosylation or potent S-glycosylation capacities toward 12 other types of flavonoid scaffolds and a simple aromatic compound with –SH group. Homology modeling and mutagenesis experiments revealed that the glycosylation reaction of AaCGT was initiated by the conserved residue H23 as the catalytic base. Three critical residues H356, W359 and D380 were involved in the recognition of sugar donor through hydrogen-bonding interactions. In particular, the double mutant of F94W/L378M led to an unexpected enzymatic conversion of mono-C- to di-C-glycosylation. This study highlights the important value of AaCGT as a potential biocatalyst for efficiently synthesizing high-value C-glycosides.
Collapse
Affiliation(s)
- Jia Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yaru She
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jingyang Yue
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yidu Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jing Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yonger Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiabo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Lu Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
- Corresponding author.
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Corresponding author.
| |
Collapse
|
14
|
Zhang LJ, Wang DG, Zhang P, Wu C, Li YZ. Promiscuity Characteristics of Versatile Plant Glycosyltransferases for Natural Product Glycodiversification. ACS Synth Biol 2022; 11:812-819. [PMID: 35076210 DOI: 10.1021/acssynbio.1c00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycodiversification can optimize the properties of pharmaceutical compounds, and versatile glycosyltransferases (GTs) are the key enzymatic toolkits to achieve this goal. Plant GTs in the GT1 family (GT1-pGTs) have attracted much attention due to their promising substrate promiscuity, but previous investigations on GT1-pGTs were mainly conducted sporadically and without systematic phylogenetic comparisons. In this study, we exemplified the phylogeny-guided characterization of highly promiscuous GT1-pGTs from the contemporary surge of genomic information. All the available GT1-pGT sequences in the database were analyzed to explore the relationships between the substrate promiscuity and the phylogeny of GT1-pGTs. This systematic phylogenetic analysis directed us to choose 29 anonymous GT sequences from different evolutionary branches to probe their substrate promiscuity toward 10 aromatic compounds differing in chemical scaffolds. We found that promiscuous plant GTs (PPGTs) active toward ≥3 substrates were widely distributed in different clades but particularly enriched in the one containing the known promiscuous enzyme GuGT10. Ten highly promiscuous plant GTs were found to tolerate a wide spectrum (≥8) of substrates and inclusively catalyze the formation of O-, N-, and S-glycosidic bonds. The promiscuity of these 10 PPGTs was further tested using 15 sugar donors. Finally, we characterized FiGT2 that simultaneously exhibited pronounced promiscuity in terms of both the sugar acceptor and sugar donor. All in all, this study paves the way to unearth many more PPGTs and thus strengthen the enzymatic toolkit for the sustainable production of valuable glycosides through a synthetic biological approach.
Collapse
Affiliation(s)
- Li-Juan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P. R. China
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P. R. China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P. R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P. R. China
| |
Collapse
|
15
|
Huang W, He Y, Jiang R, Deng Z, Long F. Functional and Structural Dissection of a Plant Steroid 3-O-Glycosyltransferase Facilitated the Engineering Enhancement of Sugar Donor Promiscuity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yue He
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Renwang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Long
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Zhu T, Zhang M, Su H, Li M, Wang Y, Jin L, Li M. Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Mechanism of Flavonoid Biosynthesis in Two Cultivars of Angelica sinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010306. [PMID: 35011537 PMCID: PMC8746331 DOI: 10.3390/molecules27010306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Angelica sinensis is a traditional Chinese medicinal plant that has been primarily used as a blood tonic. It largely relies on its bioactive metabolites, which include ferulic acid, volatile oils, polysaccharides and flavonoids. In order to improve the yield and quality of A. sinensis, the two cultivars Mingui 1 (M1), with a purple stem, and Mingui 2 (M2), with a green stem, have been selected in the field. Although a higher root yield and ferulic acid content in M1 than M2 has been observed, the differences of flavonoid biosynthesis and stem-color formation are still limited. In this study, the contents of flavonoids and anthocyanins were determined by spectrophotometer, the differences of flavonoids and transcripts in M1 and M2 were conducted by metabolomic and transcriptomic analysis, and the expression level of candidate genes was validated by qRT-PCR. The results showed that the contents of flavonoids and anthocyanins were 1.5- and 2.6-fold greater in M1 than M2, respectively. A total of 26 differentially accumulated flavonoids (DAFs) with 19 up-regulated (UR) and seven down-regulated (DR) were obtained from the 131 identified flavonoids (e.g., flavonols, flavonoid, isoflavones, and anthocyanins) in M1 vs. M2. A total 2210 differentially expressed genes (DEGs) were obtained from the 34,528 full-length isoforms in M1 vs. M2, and 29 DEGs with 24 UR and 5 DR were identified to be involved in flavonoid biosynthesis, with 25 genes (e.g., CHS1, CHI3, F3H, DFR, ANS, CYPs and UGTs) mapped on the flavonoid biosynthetic pathway and four genes (e.g., RL1, RL6, MYB90 and MYB114) belonging to transcription factors. The differential accumulation level of flavonoids is coherent with the expression level of candidate genes. Finally, the network of DAFs regulated by DEGs was proposed. These findings will provide references for flavonoid production and cultivars selection of A. sinensis.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.Z.); (M.Z.); (Y.W.)
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, China
| | - Minghui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.Z.); (M.Z.); (Y.W.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (M.L.)
| | - Meiling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (M.L.)
| | - Yuanyuan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.Z.); (M.Z.); (Y.W.)
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.Z.); (M.Z.); (Y.W.)
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, China
- Correspondence: (L.J.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (M.L.)
- Correspondence: (L.J.); (M.L.)
| |
Collapse
|
17
|
Bao YO, Zhang M, Qiao X, Ye M. Functional characterization of a C-glycosyltransferase from Pueraria lobata with dual-substrate selectivity. Chem Commun (Camb) 2022; 58:12337-12340. [DOI: 10.1039/d2cc04279g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported a C-glycosyltransferase PlCGT with dual-substrate selectivity. An Asn16–Asp124 dyad may mediate the SN2-like mechanism in the C-glycosylation.
Collapse
Affiliation(s)
- Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
18
|
Zhang M, Yi Y, Gao B, Su H, Bao Y, Shi X, Wang H, Li F, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3‐/6‐/2′‐
O
‐Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Bai‐Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hui‐Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang‐Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xiao‐Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hai‐Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Fu‐Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences University of Science and Technology of China Hefei Anhui 230026 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
19
|
Zhang M, Yi Y, Gao BH, Su HF, Bao YO, Shi XM, Wang HD, Li FD, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3-/6-/2'-O-Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021; 61:e202113587. [PMID: 34894044 DOI: 10.1002/anie.202113587] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Engineering the function of triterpene glucosyltransferases (GTs) is challenging due to the large size of the sugar acceptors. In this work, we identified a multifunctional glycosyltransferase AmGT8 catalyzing triterpene 3-/6-/2'-O-glycosylation from the medicinal plant Astragalus membranaceus. To engineer its regiospecificity, a small mutant library was built based on semi-rational design. Variants A394F, A394D, and T131V were found to catalyze specific 6-O, 3-O, and 2'-O glycosylation, respectively. The origin of regioselectivity of AmGT8 and its A394F variant was studied by molecular dynamics and hydrogen deuterium exchange mass spectrometry. Residue 394 is highly conserved as A/G and is critical for the regiospecificity of the C- and O-GTs TcCGT1 and GuGT10/14. Finally, astragalosides III and IV were synthesized by mutants A394F, T131V and P192E. This work reports biocatalysts for saponin synthesis and gives new insights into protein engineering of regioselectivity in plant GTs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bai-Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale, Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
20
|
Wen Z, Zhang ZM, Zhong L, Fan J, Li M, Ma Y, Zhou Y, Zhang W, Guo B, Chen B, Wang JB. Directed Evolution of a Plant Glycosyltransferase for Chemo- and Regioselective Glycosylation of Pharmaceutically Significant Flavonoids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan, Guangdong 528200, P. R. China
| | - Liang Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jiaqian Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
21
|
Chen D, Fan S, Yang Z, Dai J. Biocatalytic Application of a Membrane‐Bound Coumarin C‐Glucosyltransferase in the Synthesis of Coumarin and Benzofuran C‐Glucosides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
22
|
Yin Q, Zhang J, Wang S, Cheng J, Gao H, Guo C, Ma L, Sun L, Han X, Chen S, Liu A. N-glucosyltransferase GbNGT1 from ginkgo complements the auxin metabolic pathway. HORTICULTURE RESEARCH 2021; 8:229. [PMID: 34719674 PMCID: PMC8558338 DOI: 10.1038/s41438-021-00658-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 05/30/2023]
Abstract
As auxins are among the most important phytohormones, the regulation of auxin homeostasis is complex. Generally, auxin conjugates, especially IAA glucosides, are predominant at high auxin levels. Previous research on terminal glucosylation focused mainly on the O-position, while IAA-N-glucoside and IAA-Asp-N-glucoside have been neglected since their discovery in 2001. In our study, IAA-Asp-N-glucoside was found to be specifically abundant (as high as 4.13 mg/g) in the seeds of 58 ginkgo cultivars. Furthermore, a novel N-glucosyltransferase, termed GbNGT1, was identified via differential transcriptome analysis and in vitro enzymatic testing. It was found that GbNGT1 could catalyze IAA-Asp and IAA to form their corresponding N-glucosides. The enzyme was demonstrated to possess a specific catalytic capacity toward the N-position of the IAA-amino acid or IAA from 52 substrates. Docking and site-directed mutagenesis of this enzyme confirmed that the E15G mutant could almost completely abolish its N-glucosylation ability toward IAA-Asp and IAA in vitro and in vivo. The IAA modification of GbNGT1 and GbGH3.5 was verified by transient expression assay in Nicotiana benthamiana. The effect of GbNGT1 on IAA distribution promotes root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuhui Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Han Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lianbao Ma
- Institute of Ginkgo, Pizhou, Jiangsu, 221300, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Sasaki N, Nemoto K, Nishizaki Y, Sugimoto N, Tasaki K, Watanabe A, Goto F, Higuchi A, Morgan E, Hikage T, Nishihara M. Identification and characterization of xanthone biosynthetic genes contributing to the vivid red coloration of red-flowered gentian. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1711-1723. [PMID: 34245606 DOI: 10.1111/tpj.15412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/09/2023]
Abstract
Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.
Collapse
Affiliation(s)
- Nobuhiro Sasaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Yuzo Nishizaki
- Division of Food Additives, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Naoki Sugimoto
- Division of Food Additives, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Fumina Goto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Atsumi Higuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Takashi Hikage
- Hachimantai City Floricultural Research and Development Center, Kamasuda 70, Hachimantai, Iwate, 028-7533, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| |
Collapse
|
24
|
Uchida K, Akashi T, Hirai MY. Identification and characterization of glycosyltransferases catalyzing direct xanthone 4-C-glycosylation in Hypericum perforatum. FEBS Lett 2021; 595:2608-2615. [PMID: 34390592 DOI: 10.1002/1873-3468.14179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Xanthones are compounds with a diphenyl ether skeleton mainly found in plants and often glycosylated at carbon atoms. Although many C-glycosyltransferases (CGTs) participating in flavone C-glycosylation have been identified, MiCGT from Mangifera indica, adding sugar to an open-chain benzophenone skeleton, is the only identified xanthone biosynthesis-related CGT. Here, we identified two CGTs from Hypericum perforatum that add sugar to the closed-ring xanthone, but not benzophenone. These CGTs catalyze sugar transfer to the C-4 position of norathyriol (1,3,6,7-tetrahydroxyxanthone) to form isomangiferin (1,3,6,7-tetrahydroxyxanthone 4-C-glucoside), a major xanthone C-glucoside. This is the first study to report CGTs that mediate the direct C-glycosylation of xanthone.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.,Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
25
|
Quezada E, Rodríguez-Enríquez F, Laguna R, Cutrín E, Otero F, Uriarte E, Viña D. Curcumin-Coumarin Hybrid Analogues as Multitarget Agents in Neurodegenerative Disorders. Molecules 2021; 26:molecules26154550. [PMID: 34361702 PMCID: PMC8348017 DOI: 10.3390/molecules26154550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases have a complex nature which highlights the need for multitarget ligands to address the complementary pathways involved in these diseases. Over the last decade, many innovative curcumin-based compounds have been designed and synthesized, searching for new derivatives having anti-amyloidogenic, inhibitory of tau formation, as well as anti-neuroinflammation, antioxidative, and AChE inhibitory activities. Regarding our experience studying 3-substituted coumarins with interesting properties for neurodegenerative diseases, our aim was to synthesize a new series of curcumin–coumarin hybrid analogues and evaluate their activity. Most of the 3-(7-phenyl-3,5-dioxohepta-1,6-dien-1-yl)coumarin derivatives 11–18 resulted in moderated inhibitors of hMAO isoforms and AChE and BuChE activity. Some of them are also capable of scavenger the free radical DPPH. Furthermore, compounds 14 and 16 showed neuroprotective activity against H2O2 in SH-SY5Y cell line. Nanoparticles formulation of these derivatives improved this property increasing the neuroprotective activity to the nanomolar range. Results suggest that by modulating the substitution pattern on both coumarin moiety and phenyl ring, ChE and MAO-targeted derivatives or derivatives with activity in cell-based phenotypic assays can be obtained.
Collapse
Affiliation(s)
- Elías Quezada
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (E.U.)
| | - Fernanda Rodríguez-Enríquez
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
| | - Reyes Laguna
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
| | - Elena Cutrín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.C.); (F.O.)
| | - Francisco Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.C.); (F.O.)
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
- Correspondence: ; Tel.: +34-881-815-424
| |
Collapse
|
26
|
Functional Characterization of a Novel Glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the Substrate promiscuity. Mol Biotechnol 2021; 63:1030-1039. [PMID: 34196922 DOI: 10.1007/s12033-021-00364-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Glycosylflavonoids are a class of natural products with multiple pharmacological activities and a lot of glycosyltransferases from various plant species have been reported that they were involved in the biosynthesis of these phytochemicals. However, no corresponding glycosyltransferase has been identified from the famous horticultural and medicinal plant Iris tectorum Maxim. Here, UGT73CD1, a novel glycosyltransferase, was identified from I. tectorum. based on transcriptome analysis and functional identification. Phylogenetic analysis revealed that UGT73CD1 grouped into the clade of flavonoid 7-OH OGTs. Biochemical analysis showed that UGT73CD1 was able to glycosylate tectorigenin at 7-OH to produce tectoridin, and thus assigned as a 7-O-glycosyltransferase. In addition, it also possessed robust catalytic promiscuity toward 12 structurally diverse flavonoid scaffolds and 3, 4-dichloroaniline, resulting in forming O- and N-glycosides. This work will provide insights into efficient biosynthesis of structurally diverse flavonoid glycosides for drug discovery.
Collapse
|
27
|
Yang D, Jang WD, Lee SY. Production of Carminic Acid by Metabolically Engineered Escherichia coli. J Am Chem Soc 2021; 143:5364-5377. [PMID: 33797895 DOI: 10.1021/jacs.0c12406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carminic acid is an aromatic polyketide found in scale insects (i.e., Dactylopius coccus) and is a widely used natural red colorant. It has long been produced by the cumbersome farming of insects followed by multistep purification processes. Thus, there has been much interest in producing carminic acid by the fermentation of engineered bacteria. Here we report the complete biosynthesis of carminic acid from glucose in engineered Escherichia coli. We first optimized the type II polyketide synthase machinery from Photorhabdus luminescens, enabling a high-level production of flavokermesic acid upon coexpression of the cyclases ZhuI and ZhuJ from Streptomyces sp. R1128. To discover the enzymes responsible for the remaining two reactions (hydroxylation and C-glucosylation), biochemical reaction analyses were performed by testing enzyme candidates reported to perform similar reactions. The two identified enzymes, aklavinone 12-hydroxylase (DnrF) from Streptomyces peucetius and C-glucosyltransferase (GtCGT) from Gentiana triflora, could successfully perform hydroxylation and C-glucosylation of flavokermesic acid, respectively. Then, homology modeling and docking simulations were performed to enhance the activities of these two enzymes, leading to the generation of beneficial mutants with 2-5-fold enhanced conversion efficiencies. In addition, the GtCGT mutant was found to be a generally applicable C-glucosyltransferase in E. coli, as was showcased by the successful production of aloesin found in Aloe vera. Simple metabolic engineering followed by fed-batch fermentation resulted in 0.63 ± 0.02 mg/L of carminic acid production from glucose. The strategies described here will be useful for the design and construction of biosynthetic pathways involving unknown enzymes and consequently the production of diverse industrially important natural products.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Feng CY, Li SS, Taguchi G, Wu Q, Yin DD, Gu ZY, Wu J, Xu WZ, Liu C, Wang LS. Enzymatic basis for stepwise C-glycosylation in the formation of flavonoid di-C-glycosides in sacred lotus (Nelumbo nucifera Gaertn.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:351-365. [PMID: 33486798 DOI: 10.1111/tpj.15168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Lotus plumule, the embryo of the seed of the sacred lotus (Nelumbo nucifera), contains a high accumulation of secondary metabolites including flavonoids and possesses important pharmaceutical value. Flavonoid C-glycosides, which accumulate exclusively in lotus plumule, have attracted considerable attention in recent decades due to their unique chemical structure and special bioactivities. As well as mono-C-glycosides, lotus plumule also accumulates various kinds of di-C-glycosides by mechanisms which are as yet unclear. In this study we identified two C-glycosyltransferase (CGT) genes by mining sacred lotus genome data and provide in vitro and in planta evidence that these two enzymes (NnCGT1 and NnCGT2, also designated as UGT708N1 and UGT708N2, respectively) exhibit CGT activity. Recombinant UGT708N1 and UGT708N2 can C-glycosylate 2-hydroxyflavanones and 2-hydroxynaringenin C-glucoside, forming flavone mono-C-glycosides and di-C-glycosides, respectively, after dehydration. In addition, the above reactions were successfully catalysed by cell-free extracts from tobacco leaves transiently expressing NnCGT1 or NnCGT2. Finally, enzyme assays using cell-free extracts of lotus plumule suggested that flavone di-C-glycosides (vicenin-1, vicenin-3, schaftoside and isoschaftoside) are biosynthesized through sequentially C-glucosylating and C-arabinosylating/C-xylosylating 2-hydroxynaringenin. Taken together, our results provide novel insights into the biosynthesis of flavonoid di-C-glycosides by proposing a new biosynthetic pathway for flavone C-glycosides in N. nucifera and identifying a novel uridine diphosphate-glycosyltransferase (UGT708N2) that specifically catalyses the second glycsosylation, C-arabinosylating and C-xylosylating 2-hydroxynaringenin C-glucoside.
Collapse
Affiliation(s)
- Cheng-Yong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan-Shan Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567, Japan
| | - Qian Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan-Dan Yin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhao-Yu Gu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jie Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen-Zhong Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Dai L, Hu Y, Chen C, Ma L, Guo R. Flavonoid
C
‐Glycosyltransferases: Function, Evolutionary Relationship, Catalytic Mechanism and Protein Engineering. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Longhai Dai
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Yumei Hu
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Chun‐Chi Chen
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Lixin Ma
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| | - Rey‐Ting Guo
- School of Life Sciences, Hubei University Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources Hubei Key Laboratory of Industrial Biotechnology 430062 Wuhan China
| |
Collapse
|
30
|
Jin Y, Aobulikasimu N, Zhang Z, Liu C, Cao B, Lin B, Guan P, Mu Y, Jiang Y, Han L, Huang X. Amycolasporins and Dibenzoyls from Lichen-Associated Amycolatopsis hippodromi and Their Antibacterial and Anti-inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2020; 83:3545-3553. [PMID: 33216556 DOI: 10.1021/acs.jnatprod.0c00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eleven metabolites, six echinosporins (1-6), four dibenzoyls (7-10), and an aromatic compound (11), were isolated from the fermentation broth of lichen-associated Amycolatopsis hippodromi. The structures of the new compounds (1-5, 8-11) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra. Amycolasporins A-C (1-3) demonstrated antibacterial activities against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli with MIC values of 25 or 100 μg/mL. Amycolasporin C (3) and the known dibenzoyl (7) attenuated the production of NO due to the suppression of the expression of nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Ying Jin
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Nuerbiye Aobulikasimu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zengguang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Chengbin Liu
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Bixuan Cao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
31
|
Liu H, Chen S, Zhang X, Dong C, Chen Y, Liu Z, Tan H, Zhang W. Structural elucidation, total synthesis, and cytotoxic activity of effphenol A. Org Biomol Chem 2020; 18:9035-9038. [PMID: 33135037 DOI: 10.1039/d0ob01985b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly substituted phenol derivative, effphenol A (1), was isolated from the deep-sea-derived fungus Trichobotrys effuse FS524. Its complete structural assignment was established through a combination of spectroscopic analysis together with single-crystal X-ray diffraction experiments and further unequivocally confirmed by a biomimetic total synthesis. Structurally, effphenol A possesses a poly-substituted 6-5/6/6 tetracyclic ring system, which represents the first case of such a skeleton found in nature. Furthermore, the cytotoxic activity of effphenol A (1) toward four human cancer cell lines was assayed.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Shanchong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiao Zhang
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Chunmao Dong
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. and Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Haibo Tan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. and Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
32
|
Dissection of the general two-step di- C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proc Natl Acad Sci U S A 2020; 117:30816-30823. [PMID: 33199630 DOI: 10.1073/pnas.2012745117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di-C-glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two C-glycosyltransferases (CGTs), i.e., CGTa for C-glucosylation of the 2-hydroxyflavanone aglycone and CGTb for C-arabinosylation of the mono-C-glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including Scutellaria baicalensis, Glycyrrhiza uralensis, Oryza sativa ssp. japonica, and Zea mays, and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.
Collapse
|
33
|
Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides. Nat Commun 2020; 11:5162. [PMID: 33056984 PMCID: PMC7558026 DOI: 10.1038/s41467-020-18990-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive natural C-glycosides are rare and chemical C-glycosylation faces challenges while enzymatic C-glycosylation catalyzed by C-glycosyltransferases provides an alternative way. However, only a small number of C-glycosyltransferases have been found, and most of the discovered C-glycosyltransferases prefer to glycosylate phenols with an acyl side chain. Here, a promiscuous C-glycosyltransferase, AbCGT, which is capable of C-glycosylating scaffolds lacking acyl groups, is identified from Aloe barbadensis. Based on the substrate promiscuity of AbCGT, 16 C-glycosides with inhibitory activity against sodium-dependent glucose transporters 2 are chemo-enzymatically synthesized. The C-glycoside 46a shows hypoglycemic activity in diabetic mice and is biosynthesized with a cumulative yield on the 3.95 g L‒1 scale. In addition, the key residues involved in the catalytic selectivity of AbCGT are explored. These findings suggest that AbCGT is a powerful tool in the synthesis of lead compounds for drug discovery and an example for engineering the catalytic selectivity of C-glycosyltransferases. C-glycosides are of pharmaceutical interest due to their stability against in vivo hydrolysis, however their enzymatic synthesis faces challenges. Here, the authors report a C-glycosyltransferase from Aloe barbadensis catalysing the C-glycosylation of drug-like acceptors to generate bioactive C-glycosides.
Collapse
|
34
|
Ding YN, Shi WY, Liu C, Zheng N, Li M, An Y, Zhang Z, Wang CT, Zhang BS, Liang YM. Palladium-Catalyzed ortho-C-H Glycosylation/ ipso-Alkenylation of Aryl Iodides. J Org Chem 2020; 85:11280-11296. [PMID: 32786633 DOI: 10.1021/acs.joc.0c01392] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This report describes the first example of palladium-catalyzed ortho-C-H glycosylation/ipso-alkenylation of aryl iodides, and the easily accessible glycosyl chlorides are used as a glycosylation reagent. The reaction is compatible with the functional groups of the substrates, and a series of C-aryl glycosides have been synthesized in good to excellent yield and with excellent diastereoselectivity. It is found that a cheap 5-norbornene-2-carbonitrile as a transient mediator can effectively promote this reaction. In addition, ipso-arylation and cyanation were also realized by the strategy.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ce Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Yang S, Zhou Q, Zhang B, Zhang L, Yang D, Yang H, Du G, Lu Y. Screening, Characterization and Evaluation of Mangiferin Polymorphs. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:187-200. [PMID: 32613339 PMCID: PMC7367950 DOI: 10.1007/s13659-020-00247-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Mangiferin is a compound with many pharmacological activities and exists in many natural products. Anhydrous and hydrate of mangiferin have been reported separately in two literatures, but the polymorphism of this compound has not been realized until this paper. In this study, polymorph screening of mangiferin has been carried out and five forms have been obtained including three new forms never reported. Several solid state characterization methods, such as powder X-ray diffraction, differential scanning calorimetry and thermogravimetry, are used to identify and characterize all of mangiferin forms. The comparison of the crystallographic data and hirshfeld surface analysis were first reported for mangiferin anhydrous and hydrate. Furthermore, the studies on stability, transformation and solubility have been undertaken, the results prompt that form V can be used as the dominant polymorph for the development of innovative pharmaceuticals.
Collapse
Affiliation(s)
- Shiying Yang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi Zhou
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Baoxi Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dezhi Yang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Haiguang Yang
- Beijing Key Laboratory of Drug Targets and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
36
|
Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity. Biochem Soc Trans 2020; 48:1583-1598. [DOI: 10.1042/bst20191140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
A prominent attribute of chemical structure in microbial and plant natural products is aromatic C-glycosylation. In plants, various flavonoid natural products have a β-C-d-glucosyl moiety attached to their core structure. Natural product C-glycosides have attracted significant attention for their own unique bioactivity as well as for representing non-hydrolysable analogs of the canonical O-glycosides. The biosynthesis of natural product C-glycosides is accomplished by sugar nucleotide-dependent (Leloir) glycosyltransferases. Here, we provide an overview on the C-glycosyltransferases of microbial, plant and insect origin that have been biochemically characterized. Despite sharing basic evolutionary relationships, as evidenced by their common membership to glycosyltransferase family GT-1 and conserved GT-B structural fold, the known C-glycosyltransferases are diverse in the structural features that govern their reactivity, selectivity and specificity. Bifunctional glycosyltransferases can form C- and O-glycosides dependent on the structure of the aglycon acceptor. Recent crystal structures of plant C-glycosyltransferases and di-C-glycosyltransferases complement earlier structural studies of bacterial enzymes and provide important molecular insight into the enzymatic discrimination between C- and O-glycosylation. Studies of enzyme structure and mechanism converge on the view of a single displacement (SN2)-like mechanism of enzymatic C-glycosyl transfer, largely analogous to O-glycosyl transfer. The distinction between reactions at the O- or C-acceptor atom is achieved through the precise positioning of the acceptor relative to the donor substrate in the binding pocket. Nonetheless, C-glycosyltransferases may differ in the catalytic strategy applied to induce nucleophilic reactivity at the acceptor carbon. Evidence from the mutagenesis of C-glycosyltransferases may become useful in engineering these enzymes for tailored reactivity.
Collapse
|
37
|
Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC. Enhancing flavonoid production by promiscuous activity of prenyltransferase, BrPT2 from Boesenbergia rotunda. PeerJ 2020; 8:e9094. [PMID: 32391211 PMCID: PMC7197402 DOI: 10.7717/peerj.9094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Hughes RR, Shaaban KA, Ponomareva LV, Horn J, Zhang C, Zhan CG, Voss SR, Leggas M, Thorson JS. OleD Loki as a Catalyst for Hydroxamate Glycosylation. Chembiochem 2020; 21:952-957. [PMID: 31621997 PMCID: PMC7124993 DOI: 10.1002/cbic.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jamie Horn
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chunhui Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
39
|
Pathway-specific enzymes from bamboo and crop leaves biosynthesize anti-nociceptive C-glycosylated flavones. Commun Biol 2020; 3:110. [PMID: 32144397 PMCID: PMC7060329 DOI: 10.1038/s42003-020-0834-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
C-glycosylated flavones (CGFs) are promising candidates as anti-nociceptive compounds. The leaves of bamboo and related crops in the grass family are a largely unexploited bioresource with a wide array of CGFs. We report here pathway-specific enzymes including C-glycosyltransferases (CGTs) and P450 hydroxylases from cereal crops and bamboo species accumulating abundant CGFs. Mining of CGTs and engineering of P450s that decorate the flavonoid skeleton allowed the production of desired CGFs (with yield of 20–40 mg/L) in an Escherichia coli cell factory. We further explored the antinociceptive activity of major CGFs in mice models and identified isoorientin as the most potent, with both neuroanalgesic and anti-inflammatory effects superior to clinical drugs such as rotundine and aspirin. Our discovery of the pain-alleviating flavonoids elicited from bamboo and crop leaves establishes this previously underutilized source, and sheds light on the pathway and pharmacological mechanisms of the compounds. Yuwei Sun, Zhuo Chen, Jingya Yang et al. identify bamboo as a rich source of C-glycosylated flavonoids that reduces pain and inflammation. They identify isoorientin as the most potent C-glycosylated flavonoid, superior to aspirin, and report new enzymes that synthesize pain-alleviating C-glycosylated flavonoids.
Collapse
|
40
|
Zhang M, Li FD, Li K, Wang ZL, Wang YX, He JB, Su HF, Zhang ZY, Chi CB, Shi XM, Yun CH, Zhang ZY, Liu ZM, Zhang LR, Yang DH, Ma M, Qiao X, Ye M. Functional Characterization and Structural Basis of an Efficient Di- C-glycosyltransferase from Glycyrrhiza glabra. J Am Chem Soc 2020; 142:3506-3512. [PMID: 31986016 DOI: 10.1021/jacs.9b12211] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Yu-Xi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Jun-Bin He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Zhong-Yi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Chang-Biao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics & Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Zhi-Yong Zhang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Liang-Ren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Dong-Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| |
Collapse
|
41
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|
42
|
Xu YL, Kong JQ. OcUGT1-Catalyzing Glycodiversification of Steroids through Glucosylation and Transglucosylation Actions. Molecules 2020; 25:E475. [PMID: 31979165 PMCID: PMC7036888 DOI: 10.3390/molecules25030475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Steroidal glycosides are important sources of innovative drugs. The increased diversification of steroidal glycosides will expand the probability of discovering active molecules. It is an efficient approach to diversify steroidal glycosides by using steroidal glycosyltransferases. OcUGT1, a uridine diphosphate-d-glucose (UDP-Glc)-dependent glycosyltransferase from Ornithogalum caudatum, is a multifunctional enzyme, and its glycodiversification potential towards steroids has never been fully explored. Herein, the glycodiversification capability of OcUGT1 towards 25 steroids through glucosylation and transglucosylation reactions were explored. Firstly, each of 25 compounds was glucosylated with UDP-Glc. Under the action of OcUGT1, five steroids (testosterone, deoxycorticosterone, hydrocortisone, estradiol, and 4-androstenediol) were glucosylated to form corresponding mono-glucosides and biosides. Next, OcUGT1-mediated transglucosylation activity of these compounds with another sugar donor ortho-nitrophenyl-β-d-glucopyranoside (oNPGlc) was investigated. Results revealed that the same five steroids could be glucosylated to generate mono-glucosides and biosides by OcUGT1 through transglucosylation reactions. These data indicated that OcUGT1-assisted glycodiversification of steroids could be achieved through glucosylation and transglucosylation reactions. These results provide a way to diversify steroidal glycosides, which lays the foundation for the increase of the probability of obtaining active lead compounds.
Collapse
Affiliation(s)
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China;
| |
Collapse
|
43
|
Hu Y, Xue J, Min J, Qin L, Zhang J, Dai L. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. J Biotechnol 2020; 309:107-112. [PMID: 31926981 DOI: 10.1016/j.jbiotec.2020.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rh2, a rare protopanaxadiol (PPD)-type triterpene saponin isolated from Panax ginseng, exhibits notable anticancer and immune-system-enhancing activities. Glycosylation catalyzed by uridine diphosphate-dependent glucosyltransferase (UGT) is the final biosynthetic step of ginsenoside Rh2. In this study, UGT73C5 isolated from Arabidopsis thaliana was demonstrated to selectively transfer a glucosyl moiety to the C3 hydroxyl group of PPD to synthesize ginsenoside Rh2. UGT73C5 was coupled with sucrose synthase (SuSy) from A. thaliana to regenerate costly uridine diphosphate glucose (UDPG) from cheap sucrose and catalytic amounts of uridine diphosphate (UDP). The UGT73C5/SuSy ratio, temperature, pH, cofactor UDP, and PPD concentrations for UGT73C5-SuSy coupled reactions were optimized. Through the stepwise addition of PPD, the maximal ginsenoside Rh2 production was 3.2 mg mL-1, which was the highest yield reported to date. These promising results provided an efficient and cost-effective approach to semisynthesize the highly valuable ginsenoside Rh2.
Collapse
Affiliation(s)
- Yumei Hu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xue
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lujiao Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Juankun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
44
|
Mashima K, Hatano M, Suzuki H, Shimosaka M, Taguchi G. Identification and Characterization of Apigenin 6-C-Glucosyltransferase Involved in Biosynthesis of Isosaponarin in Wasabi (Eutrema japonicum). PLANT & CELL PHYSIOLOGY 2019; 60:2733-2743. [PMID: 31418788 DOI: 10.1093/pcp/pcz164] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Wasabi (Eutrema japonicum) is a perennial plant native to Japan that is used as a spice because it contains isothiocyanates. It also contains an isosaponarin, 4'-O-glucosyl-6-C-glucosyl apigenin, in its leaves, which has received increasing attention in recent years for its bioactivity, such as its promotion of type-I collagen production. However, its biosynthetic enzymes have not been clarified. In this study, we partially purified a C-glucosyltransferase (CGT) involved in isosaponarin biosynthesis from wasabi leaves and identified the gene coding for it (WjGT1). The encoded protein was similar to UGT84 enzymes and was named UGT84A57. The recombinant enzyme of WjGT1 expressed in Escherichia coli showed C-glucosylation activity toward the 6-position of flavones such as apigenin and luteolin. The enzyme also showed significant activity toward flavonols, but trace or no activity toward flavone 4'-O-glucosides, suggesting that isosaponarin biosynthesis in wasabi plants would proceed by 6-C-glucosylation of apigenin, followed by its 4'-O-glucosylation. Interestingly, the enzyme showed no activity against sinapic acid or p-coumaric acid, which are usually the main substrates of UGT84 enzymes. The accumulation of WjGT1 transcripts was observed mainly in the leaves and flowers of wasabi, in which C-glucosylflavones were accumulated. Molecular phylogenetic analysis suggested that WjGT1 acquired C-glycosylation activity independently from other reported CGTs after the differentiation of the family Brassicaceae.
Collapse
Affiliation(s)
- Kyoko Mashima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan
| | - Mayu Hatano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, 386-8567 Japan
| |
Collapse
|
45
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
46
|
Ma B, Liu X, Lu Y, Ma X, Wu X, Wang X, Jia M, Su P, Tong Y, Guan H, Jiang Z, Gao J, Huang L, Gao W. A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook. f. PHYTOCHEMISTRY 2019; 166:112062. [PMID: 31299395 DOI: 10.1016/j.phytochem.2019.112062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Tripterygium wilfordii Hook. f. is a perennial woody vine member of the Celastraceae family. As a traditional Chinese medicine, it contains complex chemical components and exerts various pharmacological activities. In the present study, we identified a glucosyltransferase, TwUGT1, that can catalyze the synthesis of an abietane-type diterpene glucoside, namely, triptophenolide14-O-beta-D-glucopyranoside, and investigated the pharmacological activity of triptophenolide glucoside in diverse cancer cells. Triptophenolide glucoside exhibited significant inhibitory effects on U87-MG, U251, C6, MCF-7, HeLa, K562, and RBL-2H3 cells as determined by pharmacological analysis. The triptophenolide glucoside content of T. wilfordii was analyzed using Agilent Technologies 6490 Triple Quad LC/MS. The glucosyltransferase TwUGT1 belongs to subfamily 88 and group E in family 1. Molecular docking and site-directed mutagenesis of TwUGT1 revealed that the His30, Asp132, Phe134, Thr154, Ala370, Leu376, Gly382, His387, Glu395 and Gln412 residues play crucial roles in the catalytic activity of triptophenolide 14-O-glucosyltransferase. In addition, TwUGT1 was also capable of glucosylating phenolic hydroxyl groups, such as those in liquiritigenin, pinocembrin, 4-methylumbelliferone, phloretin, and rhapontigenin.
Collapse
Affiliation(s)
- Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xihong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaochi Ma
- College of Pharmacy, Key Laboratory of Pharmacokinetic and Drug Transport of Liaoning, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, United States
| | - Ping Su
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuru Tong
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongyu Guan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
47
|
Pandey RP, Bashyal P, Parajuli P, Yamaguchi T, Sohng JK. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification. Org Lett 2019; 21:8058-8064. [PMID: 31550168 DOI: 10.1021/acs.orglett.9b03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two promiscuous Bacillus licheniformis glycosyltransferases, YdhE and YojK, exhibited prominent stereospecific but nonregiospecific glycosylation activity of 20 different classes of 59 structurally different natural and non-natural products. Both enzymes transferred various sugars at three nucleophilic groups (OH, NH2, SH) of diverse compounds to produce O-, N-, and S-glycosides. The enzymes also displayed a catalytic reversibility potential for a one-pot transglycosylation, thus bestowing a cost-effective application in biosynthesis of glycodiversified natural products in drug discovery.
Collapse
Affiliation(s)
| | | | | | - Tokutaro Yamaguchi
- Genome-based BioIT Convergence Institute , 70 Sunmoon-ro 221, Tangjeong-myeon , Asan-si , Chungnam 31460 , Republic of Korea
| | | |
Collapse
|
48
|
He J, Zhao P, Hu Z, Liu S, Kuang Y, Zhang M, Li B, Yun C, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous
C
‐Glycosyltransferase from
Trollius chinensis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun‐Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Zhi‐Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Cai‐Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
49
|
He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis. Angew Chem Int Ed Engl 2019; 58:11513-11520. [PMID: 31163097 DOI: 10.1002/anie.201905505] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Herein, the catalytic promiscuity of TcCGT1, a new C-glycosyltransferase (CGT) from the medicinal plant Trollius chinensis is explored. TcCGT1 could efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids and could also catalyze the O-glycosylation of diverse phenolics. The crystal structure of TcCGT1 in complex with uridine diphosphate was determined at 1.85 Å resolution. Molecular docking revealed a new model for the catalytic mechanism of TcCGT1, which is initiated by the spontaneous deprotonation of the substrate. The spacious binding pocket explains the substrate promiscuity, and the binding pose of the substrate determines C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) switched C- to O-glycosylation. TcCGT1 is the first plant CGT with a crystal structure and the first flavone 8-C-glycosyltransferase described. This provides a basis for designing efficient glycosylation biocatalysts.
Collapse
Affiliation(s)
- Jun-Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhi-Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
50
|
Wen H, Chen C, Sun W, Zang Y, Li Q, Wang W, Zeng F, Liu J, Zhou Y, Zhou Q, Wang J, Luo Z, Zhu H, Zhang Y. Phenolic C-Glycosides and Aglycones from Marine-Derived Aspergillus sp. and Their Anti-Inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2019; 82:1098-1106. [PMID: 31012585 DOI: 10.1021/acs.jnatprod.8b00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemical investigation of the secondary metabolites of a marine-derived Aspergillus sp. led to the isolation and characterization of 13 phenolic compounds, including 10 new compounds (1-10). Seven new compounds (1-7) are unusual phenolic C-glycosides, while the other new compounds (8-10) are structurally related aglycones. The chemical structures of these new compounds were elucidated by 1D and 2D NMR and HRESIMS spectroscopic analyses. The absolute configurations of these new C-glycosides were determined by comparison of experimental electronic circular dichroism spectra with those of calculated ones. In addition, the anti-inflammatory activities of these compounds were evaluated, and compound 9 significantly inhibited nitric oxide production with an IC50 value of 6.0 ± 0.5 μM in lipopolysaccharide-induced RAW264.7 cells. Moreover, compound 9 also showed anti-inflammatory activity by inhibiting the NF-κB-activated pathway.
Collapse
Affiliation(s)
- Huiling Wen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
- School of Pharmaceutical Sciences , Gannan Medical University , Ganzhou 341000 , People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yi Zang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Wenxuan Wang
- School of Pharmaceutical Sciences , South-Central University for Nationalities , Wuhan , Hubei 430074 , People's Republic of China
| | - Fanrong Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation and Department of Pharmacology, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|