1
|
Sun Z, Du X, Li X, Xu X. EnT mediated alkoxy radical generation: the construction of 1,6-amino alcohols using bifunctional oxime esters. Chem Commun (Camb) 2024; 60:13766-13769. [PMID: 39498662 DOI: 10.1039/d4cc05299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The generation of long-chain alkoxy radicals via visible light-induced energy transfer (EnT) has been accomplished through the design of a new class of bifunctional oxime esters derived from iminophenylacetic acid. The 1,5-hydrogen atom abstraction (HAT) of the alkoxy radicals, followed by alkylamination of alkenes, enables the construction of a 1,6-linkage across a double bond to obtain the valuable 1,6-amino alcohols.
Collapse
Affiliation(s)
- Zetian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaohua Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
2
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Ju M, Lee S, Marvich HM, Lin S. Accessing Alkoxy Radicals via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J Am Chem Soc 2024; 146:19696-19703. [PMID: 39012345 PMCID: PMC11366976 DOI: 10.1021/jacs.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Alkoxy radicals are versatile reactive intermediates in organic synthesis. Here, we leverage the principle of frustrated radical pair to provide convenient access to these highly reactive species directly from tertiary alcohols via oxoammonium-mediated oxidation of the corresponding alkoxides. This approach enabled various synthetically useful transformations including β-scission, radical cyclization, and remote C-H functionalization, giving rise to versatile alkoxyamines that can be further elaborated to various functionalities.
Collapse
Affiliation(s)
- Minsoo Ju
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sukwoo Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Halle M Marvich
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
He T, Liang C, Jiang P, Liang H, Liao S, Huang S. Radical Ring-Opening Fluorosulfonylation of Methylenecyclobutanols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:5577-5581. [PMID: 38912598 DOI: 10.1021/acs.orglett.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A visible-light-mediated catalyst- and additive-free method for radical ring-opening fluorosulfonylation of methylenecyclobutanols is reported. Sulfuryl chlorofluoride acts as a FSO2 radical precursor as well as an electron acceptor to form electron donor-acceptor complexes with various methylenecyclobutanol substrates. This method shows fully regioselective and (E)-stereoselective ring-opening processes, providing a variety of FSO2-functionalized γ,δ-unsaturated carbonyls in 38-77% yields. A selection of product diversifications has been studied to demonstrate the versatility of these sulfonyl fluoride products.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
5
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
6
|
Cui Y, Zhou L, Wu J, Wei C, Wang W, Chen H. Lewis Acid-Promoted Oxidative Cleavage of Carbon-Carbon Bonds: Synthesis of N-Arylated Lactam-Type Iminosugars. J Org Chem 2024; 89:3383-3389. [PMID: 38364205 DOI: 10.1021/acs.joc.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In this paper, a mild strategy for the oxidative cleavage of carbon-carbon bonds catalyzed by Lewis acid was developed in air condition at room temperature. Under such conditions, the bis-carbonyl compounds 3 were directly afforded from the reaction of D-ribose tosylate 1 and aniline in excellent yields through the oxidative cleavage of the key intermediate iminium-ion A and its tautomer enamine B. A series of N-arylated lactam-type iminosugars 5 were then successfully obtained by removing the isopropylidene group from 3 with the aid of the condensation agent DCC. Additionally, reduction of A and the removal of the isopropylidene group could provide N-arylated iminosugars 4. This strategy enables the oxidative cleavage of carbon-carbon bonds under mild conditions and facilitates the synthesis of the novel iminosugars with potent biological activity.
Collapse
Affiliation(s)
- Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001, P. R. China
| | - Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
7
|
He K, Mei Y, Jin N, Liu Y, Pan F. Visible light-promoted difluoromethylthiolation of cycloalkanols by C-C bond cleavage. Org Biomol Chem 2024; 22:1782-1787. [PMID: 38329275 DOI: 10.1039/d3ob02078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A mild and general methodology for the difluoromethylthiolation of cycloalkanols has been developed by employing N-difluoromethylthiophthalimide as the SCF2H radical source, in combination with an acridinium-derived organo-photosensitizer, under redox-neutral conditions. This reaction protocol demonstrates high efficiency, scalability, and mild reaction conditions, thus presenting a green approach for the rapid synthesis of distal difluoromethylthiolated alkyl ketones that are challenging to be synthesized through alternative means.
Collapse
Affiliation(s)
- Kehan He
- School of Science, Xichang University, Xichang 615000, P. R. China.
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Na Jin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Yutao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| |
Collapse
|
8
|
Jha N, Mondal S, Kapur M. Site-selective ring opening of bicyclo[n.1.0]alkanols: an Fe(II)-catalyzed 1,6-conjugate addition to p-quinone methides. Chem Commun (Camb) 2023; 59:12491-12494. [PMID: 37786391 DOI: 10.1039/d3cc04135b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein, we report an efficient synthetic strategy for an Fe(ii)-catalyzed site-selective ring opening of bicyclo[n.1.0]alkanols and their concomitant 1,6-conjugate addition to p-quinone methides. Access to tertiary carbon centers with appendaged carbocycles of distinct sizes and functional groups are achieved, under a substrate-controlled bond scission of the fused cyclopropanols. Synthetic derivatizations further enhance the utility of the protocol.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Subhadip Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
9
|
He Z, Wang Z, Gao Z, Qian H, Ding W, Jin H, Liu Y, Zhou B. Aryl boronic acid-controlled divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols enabled by nickel catalysis. Org Biomol Chem 2023; 21:6493-6497. [PMID: 37529886 DOI: 10.1039/d3ob00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In this work, we wish to present a nickel-catalyzed divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols. The key to control these two different reaction pathways is to choose appropriate boronic acid, where the use of phenylboronic acid and pyrimidin-5-ylboronic acid enables a ring-contraction and ring-opening reaction/isomerization, respectively. Both cyclopropyl aryl methanones and 1-aryl butan-1-ones could be selectively obtained.
Collapse
Affiliation(s)
- Zhichang He
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhengwen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wangqiannan Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
11
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Photoinduced β-fragmentation of aliphatic alcohol derivatives for forging C-C bonds. Nat Commun 2022; 13:7450. [PMID: 36460657 PMCID: PMC9718844 DOI: 10.1038/s41467-022-35249-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Alcohols are ubiquitous in chemistry and are native functionalities in many natural products and bioactive molecules. As such, a strategy that utilizes hydroxy-containing compounds to develop bond disconnection and bond formation process would achieve molecular diversity. Herein we utilize bench-stable N-alkoxyphthalimides prepared from alcohols to couple with glycine derivatives via radical process under visible light irradiation, providing a variety of unnatural amino acid (UAA) and peptide derivatives. The approach allows to rapidly deconstruct molecular complexity via β-fragmentation such as saclareolide, β-pinene and camphor and provides products with unique scaffolds, which show inhibition toward the pathogenic fungi growth.
Collapse
|
13
|
Zhang WM, Feng KW, Hu RG, Guo YJ, Li Y. Visible-light-induced iron redox-catalyzed selective transformation of biomass into formic acid. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Yao J, Hu D, Zhang JQ, Zhang Y, Ma X, Liu J, Wang J, Ni B, Ren H. Ring-Opening Selenation of Cyclopropanol for the Selective Synthesis of β-Hydroxy-Substituted Selenylated Ketones. J Org Chem 2022; 87:14685-14694. [DOI: 10.1021/acs.joc.2c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Yao
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yili Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Xinyi Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiang Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
15
|
Wang Z, Chen X, Hu Y, Li H, Yang YF, Liu Y, Jin H, Zhou B. Deconstructive isomerization of azetidinols via C-C bond cleavage enabled by N-heterocyclic carbene (NHC) catalysis. Chem Commun (Camb) 2022; 58:9294-9297. [PMID: 35904428 DOI: 10.1039/d2cc03104c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe an N-heterocyclic carbene (NHC)-catalyzed deconstructive isomerization of azetidinols via an inert C-C bond cleavage. It provides a direct and supplementary pathway to access α-amino ketone and oxazol-2-one derivatives in moderate to good yields. DFT calculation supports the proposed mechanism in which NHC undergoes a concerted proton transfer and ring-opening process. This reaction features non-metal catalysis, simple reaction operation, excellent regioselectivity and gram-scale synthesis.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xue Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunayuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
16
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
17
|
Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism. J Am Chem Soc 2022; 144:13895-13902. [PMID: 35861667 DOI: 10.1021/jacs.2c05520] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selective cleavage and functionalization of C-C bonds in alcohols is gaining increasing interest in organic synthesis and biomass conversion. In particular, the development of redox-neutral catalytic methods with cheap catalysts and clean energy is of utmost interest. In this work, we report a versatile redox-neutral method for the ring-opening functionalization of cycloalkanols by electrophotochemical (EPC) cerium (Ce) catalysis. The EPC-Ce-enabled catalysis allows for cycloalkanols with different ring sizes to be cleaved while tolerating a broad range of functional groups. Notably, in the presence of chloride as a counteranion and electrolyte, this protocol selectively leads to the formation of C-CN, C-C, C-S, or C-oxime bonds instead of a C-halide bond after β-scission. A preliminary mechanistic investigation indicates that the redox-active Ce catalyst can be tuned by electro-oxidation and photo-reduction, thus avoiding the use of an external oxidant. Spectroscopic characterizations (cyclic voltammetry, UV-vis, electron paramagnetic resonance, and X-ray absorption fine structure) suggest a Ce(III)/Ce(IV) catalytic pathway for this transformation, in which a Ce(IV)-alkoxide is involved.
Collapse
Affiliation(s)
- Zhaoliang Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jianye Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Chenyu Tan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jiajun Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Wu M, Yan C, Zhuang D, Yan R. Metal-Free C-S Bond Formation in Elemental Sulfur and Cyclobutanol Derivatives: The Synthesis of Substituted Thiophenes. Org Lett 2022; 24:5309-5313. [PMID: 35838239 DOI: 10.1021/acs.orglett.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general approach for the metal-free synthesis of thiophenes by tert-cyclobutanols and elemental sulfur has been developed. This protocol provides a strategy for constructing multisubstituted thiophene derivatives via C-S bond formation under air. This reaction shows good functionality tolerance under the reaction conditions, and the mechanism is validated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Mingzhong Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering, Ankang University, Ankang 725000, P. R. China
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
19
|
Zhao L, Zhong Q, Tian J, Luo M, Yang C, Guo L, Xia W. Electrochemical Synthesis of β-Functionalized Ketones via Ring-Opening of Cycloalkanols. Org Lett 2022; 24:4421-4426. [PMID: 35686882 DOI: 10.1021/acs.orglett.2c01649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electrochemical deconstructive functionalization of cycloalkanols with nucleophiles has been studied, which allows functionalization to occur exclusively at the β-position of ketones. The substrate scope includes a wide range of cycloalkanols as well as diverse N, O, C, and P-centered nucleophiles, providing ready access to β-functionalized ketones as products. Mechanistic studies support the generation of α,β-unsaturated ketones as key intermediates followed by Michael addition with nucleophiles.
Collapse
Affiliation(s)
- Lulu Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qiwen Zhong
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium-Catalyzed Stagewise Strain-Release-Driven C-C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200052. [PMID: 35332648 DOI: 10.1002/anie.202200052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed chemoselective coupling of readily available bicyclo[1.1.1]pentanyl alcohols (BCP-OH) with various halides is reported, which offers expedient approaches to a wide range of cyclobutanone and β,γ-enone skeletons via single or double C-C activation. The chemistry shows a broad substrate scope in terms of both the range of BCP-OH and halides including a series of natural product derivatives. Moreover, dependency of reaction chemodivergence on base additive has been investigated through experimental and density functional theory (DFT) studies, which is expected to significantly enrich the reaction modes and increase the synthetic potential of BCP-OH in preparing more complex molecules.
Collapse
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yinan Ai
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Chunying Duan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yue Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
21
|
Yan H, Smith GS, Chen FE. Recent advances using cyclopropanols and cyclobutanols in ring-opening asymmetric synthesis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium‐Catalyzed Stagewise Strain‐Release‐Driven C−C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yinan Ai
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Chunying Duan
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yue Ma
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
23
|
Salaverri N, Carli B, Gratal PB, Marzo L, Alemán J. Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noelia Salaverri
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Benedetta Carli
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Patricia B. Gratal
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leyre Marzo
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA) Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
24
|
Zhang Q, Yuan W, Shi Y, Pan F. Organophotocatalytic ring opening/remote trifluoromethylselenolation of cycloalkanols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zheng TY, Zhou YQ, Yu N, Li YL, Wei T, Peng L, Ling Y, Jiang K, Wei Y. Deconstructive Insertion of Oximes into Coumarins: Modular Synthesis of Dihydrobenzofuran-Fused Pyridones. Org Lett 2022; 24:2282-2287. [PMID: 35319216 DOI: 10.1021/acs.orglett.2c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of a copper catalyst, a series of oximes undergo deconstructive insertion into coumarins to afford structurally interesting dihydrobenzofuran-fused pyridones in moderate to good yields with good functional group compatibility. The reaction likely involves a radical relay annulation, leading to the ring opening of the lactone moiety of the coumarins, and simultaneous formation of three new bonds. The investigation of photoluminescent properties reveals that several obtained compounds may have potential as fluorescent materials.
Collapse
Affiliation(s)
- Ting-Yu Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tao Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lan Peng
- Basic Department, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yu Ling
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
26
|
Chen Y, Zhang G, Guo C, Lan P, Banwell MG, He Y. Silver‐Promoted Radical Ring‐Opening
/
Pyridylation of Cyclobutanols with
N
‐Methoxypyridinium Salts. Chemistry 2022; 28:e202104627. [DOI: 10.1002/chem.202104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Chen
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Guang‐Yi Zhang
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Chan Guo
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Yu‐Tao He
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| |
Collapse
|
27
|
Feng T, Liu C, Wu Z, Wu X, Zhu C. Redox-neutral manganese-catalyzed synthesis of 1-pyrrolines. Chem Sci 2022; 13:2669-2673. [PMID: 35340851 PMCID: PMC8890122 DOI: 10.1039/d2sc00015f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
This report describes a manganese-catalyzed radical [3 + 2] cyclization of cyclopropanols and oxime ethers, leading to valuable multi-functional 1-pyrrolines. In this redox-neutral process, the oxime ethers function as internal oxidants and H-donors. The reaction involves sequential rupture of C-C, C-H and N-O bonds and proceeds under mild conditions. This intermolecular protocol provides an efficient approach for the synthesis of structurally diverse 1-pyrrolines.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Canxiang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
28
|
Wong THF, Ma D, Di Sanza R, Melchiorre P. Photoredox Organocatalysis for the Enantioselective Synthesis of 1,7-Dicarbonyl Compounds. Org Lett 2022; 24:1695-1699. [PMID: 35199526 DOI: 10.1021/acs.orglett.2c00326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe an asymmetric organocatalytic method to synthesize 1,7-dicarbonyl compounds containing a β-stereocenter. The chemistry relies on the formation of γ-keto radicals, generated upon oxidative ring opening of cyclobutanols mastered by an organic photoredox catalyst. These nonstabilized primary radicals are stereoselectively intercepted by an iminium ion intermediate, formed upon activation of aliphatic and aromatic enals by a chiral secondary amine catalyst. This organocatalytic photoredox method served to prepare scaffolds found in natural products and drug molecules.
Collapse
Affiliation(s)
- Thomas Hin-Fung Wong
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Dengke Ma
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Riccardo Di Sanza
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA - Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
29
|
Xue T, Zhang Z, Zeng R. Photoinduced Ligand-to-Metal Charge Transfer (LMCT) of Fe Alkoxide Enabled C-C Bond Cleavage and Amination of Unstrained Cyclic Alcohols. Org Lett 2022; 24:977-982. [PMID: 35029409 DOI: 10.1021/acs.orglett.1c04365] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report an alkoxy radical process for the C-C bond cleavage and functionalization of unstrained tertiary and secondary cyclic alcohols. In the absence of a chlorine atom, the readily available iron catalysts [Fe(OBu-t)3 or Fe(acac)3/t-BuONa] facilitate alkoxy radical formation via the direct ligand-to-metal charge transfer of Fe alkoxide and further enable the ring opening and amination of cyclic alcohols. The remote amino carbonyl compounds could be obtained with a broad scope in up to excellent yields under the mildly redox-neutral system. Light-driven electron transfer, alkoxy radical formation, and subsequent C-C bond cleavage via β-scission were the keys to the transformation.
Collapse
Affiliation(s)
- Ting Xue
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zongnan Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
30
|
|
31
|
Xiong Y, Zhang X, Guo HM, Wu X. Photoredox/Persistent Radical Cation Dual Catalysis for Alkoxy Radical Generation from Alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo00528j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we present a mild and general strategy for the direct generation of alkoxy radical from simple aliphatic alcohols enabled by visible-light-induced photoredox/persistent radical cation dual catalysis. The...
Collapse
|
32
|
Liu J, Li L, Bu X, Yuan Y, Wang X, Sun R, Zhou MD, Wang H. Mn( iii)-Catalyzed cascade cyclization reaction of o-acyl aromatic isocyanides with boronic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00271j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Mn(iii)-catalyzed cascade cyclization of o-acyl aromatic isocyanides with boronic acids was examined to give a series of 3-hydroxyindolenines in single-step. This cascade process involved a transmetalation/nucleophilic addition/intramolecular cyclization sequence.
Collapse
Affiliation(s)
- Jingya Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China
| | - Yu Yuan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
33
|
Zou JP, Li CK, Shoberu A. Silver-Catalyzed Radical Ring-Opening of Cycloalkanols for the Synthesis of distal acylphosphine oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel silver-catalyzed ring-opening approach for the regioselective synthesis of distal acylphosphine oxides is described. A variety of distal acylphosphine oxides were prepared from the reaction of tertiary cycloalkanols (4...
Collapse
|
34
|
Li XS, Kong X, Wang CT, Niu ZJ, Wei WX, Liu HC, Zhang Z, Li Y, Liang YM. Lewis-Acid-Catalyzed Tandem Cyclization by Ring Expansion of Tertiary Cycloalkanols with Propargyl Alcohols. Org Lett 2021; 23:9457-9462. [PMID: 34859669 DOI: 10.1021/acs.orglett.1c03621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method for the efficient synthesis of hexahydro-1H-fluorene and octahydrobenzo[a]azulene derivatives through a ring-expansion strategy is reported. With an appropriate combination of thulium(III) trifluoromethanesulfonate and 13X molecular sieves, a range of unsaturated polycyclic compounds were obtained in good yields. Mechanism studies reveal that the reaction is more likely to undergo Meyer-Schuster rearrangement, ring expansion, and Friedel-Crafts-type pathways, which provide a conceptually different strategy for the ring opening of tertiary cycloalkanols.
Collapse
Affiliation(s)
- Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Cao K, Zhang ZM, Zhang J, Chen F. Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. Org Lett 2021; 23:9520-9525. [PMID: 34851121 DOI: 10.1021/acs.orglett.1c03739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition-metal-catalyzed activations of carbon-carbons bonds of small strained rings have widespread applications in synthetic and medicinal chemistry. However, coupling reactions of cyclobutanols involving β-carbon elimination to construct C(sp3)-C(sp3) bonds have scarcely been developed. Here, we demonstrate a highly enantioselective Pd-catalyzed intermolecular C(sp3)-C(sp3) coupling reaction of a broad range of cyclobutanol derivatives and unactivated alkenes, allowing convenient access to a series of chiral benzene-fused cyclic compounds in a highly regio-, chemo-, and enantioselective manner.
Collapse
Affiliation(s)
- Kangning Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fener Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
36
|
Wang M, Wen J, Huang Y, Hu P. Selective Degradation of Styrene-Related Plastics Catalyzed by Iron under Visible Light*. CHEMSUSCHEM 2021; 14:5049-5056. [PMID: 34510789 DOI: 10.1002/cssc.202101762] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene-related plastics under gentle conditions through multiple oxidation of sp3 C-H bonds and sp3 C-C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics.
Collapse
Affiliation(s)
- Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinglan Wen
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
37
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
38
|
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| |
Collapse
|
39
|
Dai YM, Liu M, Zeng QQ, Li X, Wang BQ, Hu P, Zhao KQ, Song F, Shi ZJ. Skeleton Reorganization of Substituted Benzocyclobutenols through Rh-Catalyzed C-C Bond Cleavage Manipulated by Hydrogen Transfer. Org Lett 2021; 23:7597-7602. [PMID: 34533966 DOI: 10.1021/acs.orglett.1c02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although transition-metal-catalyzed C-C bond activation has been investigated extensively, C-C bond cleavage manipulated by hydrogen transfer has been unexplored. In this work, we disclose a skeleton reorganization of alkene-tethered benzocyclobutenols through Rh-catalyzed C-C bond cleavage coupled with intra- and intermolecular hydrogen transfer. The reaction pathway was well-tuned by the catalytic systems. As a result, divergent benzofurans bearing 4-β-hydroxy or 4-β-keto moieties were synthesized under pH- and redox-neutral conditions.
Collapse
Affiliation(s)
- Ya-Mei Dai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Qin-Qiong Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Xiaoting Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Feijie Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
40
|
Kinouchi H, Sugimoto K, Yamaoka Y, Takikawa H, Takasu K. Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds. J Org Chem 2021; 86:12615-12622. [PMID: 34474562 DOI: 10.1021/acs.joc.1c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of aryl-fused bicyclo[4.2.0]octanols with an oxidant such as phenyliodine diacetate (PIDA) or hypochlorous acid gave dihydrofuran-containing polycyclic aromatic compounds by selective β-cleavage of the cyclobutanol moiety. Mechanistic studies suggest that the oxygen atom of the hydrofuran ring is incorporated from the hydroxy group of the substrate via intramolecular addition. The oxidative transformation should serve as a new method to prepare functionalized polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Hayate Kinouchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Sugimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Sun QX, Chen H, Liu S, Wang XQ, Duan XH, Guo LN. Iron-Catalyzed Thiolation and Selenylation of Cycloalkyl Hydroperoxides via C-C Bond Cleavage. J Org Chem 2021; 86:11987-11997. [PMID: 34374284 DOI: 10.1021/acs.joc.1c01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cheap iron-catalyzed C-C bond cleavage/thiolation and selenylation of cycloalkyl hydroperoxides are presented. This redox-neutral protocol provides efficient access to diverse distal keto-functionalized thioethers and selenium compounds. Remarkably, only some amounts of disulfides are required for this transformation.
Collapse
Affiliation(s)
- Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao-Qiang Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
42
|
Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. Electrophotochemical Ring-Opening Bromination of tert-Cycloalkanols. J Org Chem 2021; 86:16177-16186. [PMID: 34461014 DOI: 10.1021/acs.joc.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electrophotochemical ring-opening bromination of unstrained tert-cycloalkanols has been developed. This electrophotochemical method enables the oxidative transformation of cycloalkanols with 5- to 7-membered rings into synthetically useful ω-bromoketones without the use of chemical oxidants or transition-metal catalysts. Alkoxy radical species would be key intermediates in the present transformation, which generate through homolysis of the O-Br bond in hypobromite intermediates under visible light irradiation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroyuki Toguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shin Watanabe
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Fumiaki Iwasaki
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
43
|
Hu Y, Luo H, Tu X, Xue H, Jin H, Liu Y, Zhou B. Selective cine-arylation of tert-cyclobutanols with indoles enabled by nickel catalysis. Chem Commun (Camb) 2021; 57:4686-4689. [PMID: 33977975 DOI: 10.1039/d1cc01233a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous literature, tert-cyclobutanols are widely studied for C-C bond activation exclusively leading to the formation of ordinary γ-substituted ketones. Herein, we first report a nickel-catalyzed cine-arylation of tert-cyclobutanols with indoles to access β-aryl ketones with an unusual site-selectivity at the C3-position of tert-cyclobutanols. The reaction features earth-abundant nickel catalysis, excellent regioselectivity, high atom-economy, and broad substrate scope.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Honggen Luo
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangtu Tu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Han Xue
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yunkui Liu
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Bingwei Zhou
- College of Chemical Engineering Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
44
|
Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Oxidative α-C-C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O 2 at Room Temperature via Iron Photocatalysis. Org Lett 2021; 23:2915-2920. [PMID: 33769053 DOI: 10.1021/acs.orglett.1c00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The selective α-C-C bond cleavage of unfunctionalized secondary (2°) and tertiary alcohols (3°) is essential for valorization of macromolecules and biopolymers. We developed a blue-light-driven iron catalysis for aerobic oxidation of 2° and 3° alcohols to acids via α-C-C bond cleavages at room temperature. The first example of oxygenation of the simple tertiary alcohols was reported. The iron catalyst and blue light play critical roles to enable the formation of highly reactive O radicals from alcohols and the consequent two α-C-C bond cleavages.
Collapse
|
45
|
Yi D, He L, Qi Z, Zhang Z, Li M, Lu J, Wei J, Du X, Fu Q, Wei S. Copper‐Catalyzed
Aerobic Oxidative Cleavage of Unstrained
Carbon‐Carbon
Bonds of 1,
1‐Disubstituted
Alkenes with Sulfonyl Hydrazides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Linying He
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
- People's Hospital of Xinjin District, Chengdu Sichuan 611430 China
| | - Zhongyu Qi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University Yantai Shandong 264003 China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Xi Du
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
- Central Nervous System Drug Key Laboratory of Sichuan Province Luzhou Sichuan 646000 China
| |
Collapse
|
46
|
Ratsch F, Strache JP, Schlundt W, Neudörfl J, Adler A, Aziz S, Goldfuss B, Schmalz H. Enantioselective Cleavage of Cyclobutanols Through Ir-Catalyzed C-C Bond Activation: Mechanistic and Synthetic Aspects. Chemistry 2021; 27:4640-4652. [PMID: 33314360 PMCID: PMC7986405 DOI: 10.1002/chem.202004843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The Ir-catalyzed conversion of prochiral tert-cyclobutanols to β-methyl-substituted ketones proceeds under comparably mild conditions in toluene (45-110 °C) and is particularly suited for the enantioselective desymmetrization of β-oxy-substituted substrates to give products with a quaternary chirality center with up to 95 % ee using DTBM-SegPhos as a chiral ligand. Deuteration experiments and kinetic isotope effect measurements revealed major mechanistic differences to related RhI -catalyzed transformations. Supported by DFT calculations we propose the initial formation of an IrIII hydride intermediate, which then undergoes a β-C elimination (C-C bond activation) prior to reductive C-H elimination. The computational model also allows the prediction of the stereochemical outcome. The Ir-catalyzed cyclobutanol cleavage is broadly applicable but fails for substrates bearing strongly coordinating groups. The method is of particular value for the stereo-controlled synthesis of substituted chromanes related to the tocopherols and other natural products.
Collapse
Affiliation(s)
- Friederike Ratsch
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Joss Pepe Strache
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Waldemar Schlundt
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | | | - Andreas Adler
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Sarwar Aziz
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | | |
Collapse
|
47
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
48
|
Wang J, Liu X, Wu Z, Li F, Zhang ML, Mi Y, Wei J, Zhou Y, Liu L. Ag-Catalyzed ring-opening of tertiary cycloalkanols for C-H functionalization of cyclic aldimines. Chem Commun (Camb) 2021; 57:1506-1509. [PMID: 33443251 DOI: 10.1039/d0cc07181a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We firstly describe a silver-catalyzed direct C-H functionalization of cyclic aldimines with cyclopropanols and cyclobutanols via a radical-mediated C-C bond cleavage strategy. The desired products were generated in decent yields with wide substrate scope under mild reaction conditions. In addition, a gram-scale reaction and synthetic transformation of the product were performed.
Collapse
Affiliation(s)
- Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Ming-Liang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yiman Mi
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Junhao Wei
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China. and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
49
|
Wang CT, Li M, Ding YN, Wei WX, Zhang Z, Gou XY, Jiao RQ, Wen YT, Liang YM. Alkylation-Terminated Catellani Reactions by Cyclobutanol C-C Cleavage. Org Lett 2021; 23:786-791. [PMID: 33464916 DOI: 10.1021/acs.orglett.0c04018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This report describes the first application of a cyclobutanol ring-opening procedure in the Catellani termination reaction, which includes two β-carbon elimination processes. This tandem reaction features mild conditions, high yields, good functional group tolerance, and a broad substrate scope. Meanwhile, four types of electrophiles (N-benzoyloxyamines, alkyl iodides, aryl bromides, and benzyl chlorides) are quite compatible with this termination reaction for the construction of various types of polysubstituted aromatic hydrocarbons.
Collapse
Affiliation(s)
- Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Ting Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
50
|
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianbo Du
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xiaokun Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xin Wang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Qing An
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xu He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Hui Pan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|