1
|
Harris LD, Aponte RAL, Jiao W, Cameron SA, Weymouth-Wilson A, Furneaux RH, Compton BJ, Luxenburger A. An efficient regioconvergent synthesis of 3-aza-obeticholic acid. Steroids 2024; 212:109517. [PMID: 39322098 DOI: 10.1016/j.steroids.2024.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Bile acids (BAs) are steroidal molecules that play important roles in nutrient absorption, distribution, and excretion. They also act on specific receptors implicated in various metabolic and inflammatory diseases demonstrating their importance as potential drug candidates. Accordingly, there has been a concerted effort to develop new BA derivatives to probe structure-activity relationships with the goal of discovering BA analogues with enhanced pharmacological properties. Among the many steroidal derivatisations reported, the formation of endocyclic azasteroids appeals due to their potential to deliver altered biological responses with minimal change to the steroidal superstructure. Here, we report the synthesis of 3-aza-obeticholic acid (6) via a regioconvergent route. Ammoniolysis of lactones, formed from an m-CPBA-mediated Baeyer-Villiger reaction on a 3-keto-OCA derivative, furnished protected intermediate amido-alcohols which were separately elaborated to amino-alcohols via Hofmann degradation with BAIB. Upon individual N-Boc-protection, these underwent annulation to the 3-aza-A-ring when subjected to either mesylation or a Dess-Martin oxidation/hydrogenation sequence. Global deprotection of the 3-aza-intermediate delivered 3-aza-OCA in ten steps and an overall yield of up to 19%.
Collapse
Affiliation(s)
- Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Roselis A Landaeta Aponte
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | | | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand.
| |
Collapse
|
2
|
Ahmad A, Maruyama T, Nii T, Mori T, Katayama Y, Kishimura A. Facile preparation of hexagonal nanosheets via polyion complex formation from α-helical polypeptides and polyphosphate-based molecules. Chem Commun (Camb) 2023; 59:1657-1660. [PMID: 36688812 DOI: 10.1039/d2cc05137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The polyion complex-based supramolecular self-assembly of hexagonal nanosheets was achieved via the complexation of a PEGylated block catiomer with ATP and other polyphosphate-containing small molecules. The formation of hexagonal nanosheets required the presence of a polyethylene glycol block and α-helix formation in the catiomer block, which was induced by complexation with the polyphosphate moiety.
Collapse
Affiliation(s)
- Asmariah Ahmad
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tomoki Maruyama
- Graduate school of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taiwan, 32023, Republic of China
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Nishimura T, Hatatani Y, Ando M, Sasaki Y, Akiyoshi K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem Sci 2022; 13:5243-5251. [PMID: 35655565 PMCID: PMC9093194 DOI: 10.1039/d2sc01674e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nanodiscs have attracted considerable attention as structural scaffolds for membrane-protein research and as biomaterials in e.g. drug-delivery systems. However, conventional disc-fabrication methods are usually laborious, and disc fabrication via the self-assembly of amphiphiles is difficult. Herein, we report the formation of polymer nanodiscs based on the self-assembly of amphiphilic graft copolymers by adjusting the persistence length of the main chain. Amphiphilic graft copolymers with a series of different main-chain persistence lengths were prepared and these formed, depending on the persistence length, either rods, discs, or vesicles. Notably, polymer nanodiscs were formed upon heating a chilled polymer solution without the need for any additives, and the thus obtained nanodiscs were used to solubilize a membrane protein during cell-free protein synthesis. Given the simplicity of this disc-fabrication method and the ability of these discs to solubilize membrane proteins, this study considerably expands the fundamental and practical scope of graft-copolymer nanodiscs and demonstrates their utility as tools for studying the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
| | - Yusuke Hatatani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
4
|
Macroscopically oriented polymeric soft materials: synthesis and functions. Polym J 2019. [DOI: 10.1038/s41428-019-0185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Systematic Characterization of DMPC/DHPC Self-Assemblies and Their Phase Behaviors in Aqueous Solution. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assemblies composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) form several kinds of structures, such as vesicle, micelle, and bicelle. Their morphological properties have been studied widely, but their interfacial membrane properties have not been adequately investigated. Herein, we report a systematic characterization of DMPC/DHPC assemblies at 20 °C. To investigate the phase behavior, optical density OD500, size (by dynamic light scattering), membrane fluidity 1/PDPH (using 1,6-diphenyl-1,3,5-hexatriene), and membrane polarity GP340 (using 6-dodecanoyl-N,N-dimethyl-2-naphthylamine) were measured as a function of molar ratio of DHPC (XDHPC). Based on structural properties (OD500 and size), large and small assemblies were categorized into Region (i) (XDHPC < 0.4) and Region (ii) (XDHPC ≥ 0.4), respectively. The DMPC/DHPC assemblies with 0.33 ≤ XDHPC ≤ 0.67 (Region (ii-1)) showed gel-phase-like interfacial membrane properties, whereas DHPC-rich assemblies (XDHPC ≥ 0.77) showed disordered membrane properties (Region (ii-2)). Considering the structural and interfacial membrane properties, the DMPC/DHPC assemblies in Regions (i), (ii-1), and (ii-2) can be determined to be vesicle, bicelle, and micelle, respectively.
Collapse
|
6
|
Li Q, Han X. Self-Assembled Rough Endoplasmic Reticulum-Like Proto-Organelles. iScience 2018; 8:138-147. [PMID: 30312864 PMCID: PMC6180236 DOI: 10.1016/j.isci.2018.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/22/2022] Open
Abstract
Nature has evolved elaborate, dynamic organelle morphologies for optimal organelle functions. Among them, cisternae stacks are the universal structure for most organelles. However, compared with the well-studied spherical cell/organelle membrane mimic, the fabrication of the ubiquitously present cisternal organelle-like membrane structures for organelle mimic remains a challenging task. Herein, rough endoplasmic reticulum (RER)-like helicoidal cisternae stacks were assembled to mimic the enzyme crowded environment in spatially confined RER cisternae. RER-like single helicoid, multiple helicoids, and secondary helix are all observed. Membrane electrostatics drives their formation and controls the percentages, which indicates the possible role of membrane electrostatics in RER shaping. The organelle-like cisternae stacks can reversibly expand and compress, which provides modulated crowded or de-crowded enzyme environment for biochemical reactions. This work provides advanced membrane models, and novel mechanisms for organelle shaping and helicoids formation, and holds great potential in biomimetics, cell biology, and advanced materials design.
Collapse
Affiliation(s)
- Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China.
| |
Collapse
|
7
|
Uchida N, Nishizawa Horimoto N, Yamada K, Hikima T, Ishida Y. Kinetically Stable Bicelles with Dilution Tolerance, Size Tunability, and Thermoresponsiveness for Drug Delivery Applications. Chembiochem 2018; 19:1922-1926. [PMID: 29969169 DOI: 10.1002/cbic.201800304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/10/2022]
Abstract
Mixtures of a phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, DPPC) and a sodium-cholate-derived surfactant (SC-C5 ) at room temperature formed phospholipid bilayer fragments that were edge-stabilized by SC-C5 : so-called "bicelles". Because the bilayer melting point of DPPC (41 °C) is above room temperature and because SC-C5 has an exceptionally low critical micelle concentration (<0.5 mm), the bicelles are kinetically frozen at room temperature. Consequently, they exist even when the mixture is diluted to a concentration of 0.04 wt %. In addition, the lateral size of the bicelles can be fine-tuned by altering the molar ratio of DPPC to SC-C5 . On heating to ≈37 °C, the bicelles transformed into micelles composed of DPPC and SC-C5 . By taking advantage of the dilution tolerance, size tunability, and thermoresponsiveness, we demonstrated in vitro drug delivery based on use of the bicelles as carriers, which suggests their potential utility in transdermal drug delivery.
Collapse
Affiliation(s)
- Noriyuki Uchida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kuniyo Yamada
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Material Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Szewczyk SM, Zhao Y, Sakai HA, Dube P, Newhouse TR. α,β-Dehydrogenation of esters with free O H and N H functionalities via allyl-palladium catalysis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Li Q, Han X. Self-Assembled "Breathing" Grana-Like Cisternae Stacks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707482. [PMID: 29707837 DOI: 10.1002/adma.201707482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Membranes in cells display elaborate, dynamic morphologies intimately tied to defined cellular functions. Cisternae stacks are a common membrane morphology in cells widely found in organelles. However, compared with the well-studied spherical cell membrane mimics, cisternae stacks as organelle membrane mimics are greatly neglected because of the difficulty of fabricating this unique structure. Herein, the grana-like cisternae stacks are assembled via the reorganization of stacked microsized bicelles to mimic grana functions. The cisternae stacks are connected by fusion regions between adjacent cisternae. The number of cisternae can be controlled from ≈4 to 15 by the variation of ethanol volume percentage. Under the stimulation of solvent or negatively charged nanoparticles, the cisternae stacks can reversibly compress and expand, similar to the "breathing" property of natural grana. During the "breathing" process, nanoparticles are reversibly captured and released. Frequency resonance energy transfer is realized on the cisternae stacks trapped with two kinds of quantum dots. The cisternae stacks provide advanced membrane model for cell biotechnology, and clues for the shaping of organelles composed of cisternae. The ability of the cisternae stacks to capture materials enables them to possibly be applied in biomimetics and the design of advanced functional materials.
Collapse
Affiliation(s)
- Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
10
|
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Phys Chem Chem Phys 2018; 19:20991-21002. [PMID: 28745755 DOI: 10.1039/c7cp03994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide ion (Ln3+) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy3+ and parallel alignment of those containing Tm3+. Moreover, samples with chelated Yb3+ were more alignable than the Tm3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Isabettini S, Liebi M, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Mastering the magnetic susceptibility of magnetically responsive bicelles with 3β-amino-5-cholestene and complexed lanthanide ions. Phys Chem Chem Phys 2018; 19:10820-10824. [PMID: 28401210 DOI: 10.1039/c7cp01025g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The magnetic susceptibility of lanthanide-chelating bicelles was selectively enhanced by introducing 3β-amino-5-cholestene (aminocholesterol, Chol-NH2) in the bilayer. Unprecedented magnetic alignment of the bicelles was achieved without altering their size. An aminocholesterol conjugate (Chol-C2OC2-NH2), in combination with different lanthanide ions, offers the possibility of fine-tuning the bicelle's magnetic susceptibility.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sato K, Ji W, Palmer LC, Weber B, Barz M, Stupp SI. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion. J Am Chem Soc 2017. [PMID: 28639790 PMCID: PMC5553714 DOI: 10.1021/jacs.7b03878] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Controlling the number
of monomers in a supramolecular polymer
has been a great challenge in programmable self-assembly of organic
molecules. One approach has been to make use of frustrated growth
of the supramolecular assembly by tuning the balance of attractive
and repulsive intermolecular forces. We report here on the use of
covalent bond formation among monomers, compensating for intermolecular
electrostatic repulsion, as a mechanism to control the length of a
supramolecular nanofiber formed by self-assembly of peptide amphiphiles.
Circular dichroism spectroscopy in combination with dynamic light
scattering, size-exclusion chromatography, and transmittance electron
microscope analyses revealed that hydrogen bonds between peptides
were reinforced by covalent bond formation, enabling the fiber elongation.
To examine these materials for their potential biomedical applications,
cytotoxicity of nanofibers against C2C12 premyoblast cells was tested.
We demonstrated that cell viability increased with an increase in
fiber length, presumably because of the suppressed disruption of cell
membranes by the fiber end-caps.
Collapse
Affiliation(s)
| | - Wei Ji
- Prometheus, Division of Skeletal Tissue Engineering, and ∥Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven , Leuven 3000, Belgium
| | | | - Benjamin Weber
- Institut für Organische Chemie, Johannes Gutenberg-Universtität Mainz , Mainz 55099, Germany
| | - Matthias Barz
- Institut für Organische Chemie, Johannes Gutenberg-Universtität Mainz , Mainz 55099, Germany
| | | |
Collapse
|
13
|
Sugikawa K, Takamatsu Y, Yasuhara K, Ueda M, Ikeda A. Reversible Vesicle-to-Disk Transitions of Liposomes Induced by the Self-Assembly of Water-Soluble Porphyrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1023-1029. [PMID: 28054781 DOI: 10.1021/acs.langmuir.6b02723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structural control of lipid membranes is important for mechanisms underlying biological functions and for creating high-functionality soft materials. We demonstrate the reversible control of vesicle structures (liposomes) using supramolecular assemblies. Specifically, water-soluble anionic porphyrin molecules interact with positively charged lipid membrane surfaces to form one-dimensional self-assembled structures (J-aggregates) under acidic conditions. Cryogenic transmission electron microscopy revealed that porphyrin J-aggregates on the membrane surface induced an extensive structural change from vesicles to layered disks. Neutralization of the solution deformed the porphyrin J-aggregates, thereby reforming nanosized liposomes from the layered disks.
Collapse
Affiliation(s)
- Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Yutaro Takamatsu
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology , Nara 630-0192, Japan
| | - Masafumi Ueda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
14
|
Matsui R, Uchida N, Ohtani M, Yamada K, Shigeta A, Kawamura I, Aida T, Ishida Y. Magnetically Alignable Bicelles with Unprecedented Stability Using Tunable Surfactants Derived from Cholic Acid. Chemphyschem 2016; 17:3916-3922. [DOI: 10.1002/cphc.201600897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Noriyuki Uchida
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masataka Ohtani
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| | - Arisu Shigeta
- Graduate School of Engineering; Yokohama National University; Tokiwadai 79-5, Hodogaya-ku Yokohama 240-8501 Japan
| | - Izuru Kawamura
- Graduate School of Engineering; Yokohama National University; Tokiwadai 79-5, Hodogaya-ku Yokohama 240-8501 Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| |
Collapse
|
15
|
Myllymäki TTT, Nonappa, Yang H, Liljeström V, Kostiainen MA, Malho JM, Zhu XX, Ikkala O. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres. SOFT MATTER 2016; 12:7159-65. [PMID: 27491728 PMCID: PMC5322467 DOI: 10.1039/c6sm01329e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.
Collapse
Affiliation(s)
- Teemu T. T. Myllymäki
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Nonappa
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Hongjun Yang
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Ville Liljeström
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Mauri A. Kostiainen
- Department of Biotechnology and Chemical Technology , Aalto University , P.O. Box 16100 , FI-00076 AALTO , Finland
| | - Jani-Markus Malho
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - X. X. Zhu
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Olli Ikkala
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| |
Collapse
|