1
|
Gu MM, Li Q, Zhang Y, Wu HW, Shao YL, Han HP, Liao ZX. Chemical constituents of Rubia tibetica Hook. f. from Tibetan medicine and cytotoxic activity evaluation. Fitoterapia 2024; 175:105961. [PMID: 38626855 DOI: 10.1016/j.fitote.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Two unprecedented quinone compounds Rubiaxylm A (1) and Rubiaxylm B (2), along with fifteen known anthraquinones (3-17) were isolated and characterized from the roots of Rubia tibetica in Tibetan medicine. Their structures were identified through comprehensive analyses of 1D/2D NMR as well as HR-ESIMS data. Furthermore, all separated compounds were evaluated for their cytotoxic activity on A549, Caco-2, MDA-MB-231 and Skov-3 cell lines. In particular, compound 2 effectively inhibited MDA-MB-231 cells with an IC50 value of 8.15 ± 0.20 μM. Subsequently, the anti-tumor mechanism of 2 was investigated by flow cytometry, JC-1 staining, cell scratching and cell colony. These results indicated that compound 2 could inhibit the proliferation of MDA-MB-231 cells by arresting cells in the G1 phase.
Collapse
Affiliation(s)
- Min-Min Gu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yuan-Ling Shao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Ping Han
- The Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal university, Xining 810008, China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
2
|
Liu Y, Cao G, Chen L, Li K, Lin X, Xu X, Le Z, Yang G. Synthesis of 3,3′‐Disubstituted Isobenzofuran‐1(3
H
)‐Ones via Cs
0.5
H
2.5
PW
12
O
40
‐Catalyzed Difunctionalization of Carbonyls. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu‐Feng Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| | - Gang‐Ming Cao
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| | - Lei Chen
- School of Earth Sciences East China University of Technology Nanchang 330013 People's Republic of China
| | - Ke Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| | - Xiao‐Ling Lin
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| | - Xin‐Xin Xu
- Department of Chemistry College of Science Northeastern University Shenyang Liaoning 110819 People's Republic of China
| | - Zhang‐Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| | - Guo‐Ping Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 People's Republic of China
| |
Collapse
|
3
|
Satham L, Suresh A, Namboothiri INN. Synthesis of Sulfonyloxindoles via Functional Group Exchange Between 3‐Sulfonylphthalide and Isatylidenemalononitrile. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alati Suresh
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400 076 India
| | | |
Collapse
|
4
|
Akhtar MS, Yang W, Kim SH, Lee YR. Organic‐Inorganic Dual Catalytic System for the Regioselective Construction of Diverse Quinone Derivatives
via
Benzannulation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Won‐Guen Yang
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
5
|
Sicignano M, Schettini R, Pierri G, Marino ML, Izzo I, De Riccardis F, Bernardi L, Sala GD. An Entry to Enantioenriched 3,3-Disubstituted Phthalides through Asymmetric Phase-Transfer-Catalyzed γ-Alkylation. J Org Chem 2020; 85:7476-7484. [PMID: 32403930 PMCID: PMC8007094 DOI: 10.1021/acs.joc.0c00880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 12/04/2022]
Abstract
A novel asymmetric phase-transfer-catalyzed γ-alkylation of phthalide 3-carboxylic esters has been developed, giving access to 3,3-disubstituted phthalide derivatives, which present a chiral quaternary γ-carbon in good to excellent yields and good enantioselectivities (74-88% ee). The enantiomeric purity could be substantially enhanced to 94-95% ee by recrystallization. Both electron-withdrawing and electron-releasing substituents are well tolerated on the phthalide core as well as on the aromatic moiety of the alkylating agent. This methodology, enabling the introduction of an unfunctionalized group at the phthalide γ-position, fully complements previously reported organocatalytic strategies involving functionalized electrophiles, thus expanding the scope of accessible 3,3-disubstituted products. The high synthetic value of this asymmetric reaction has been proven by the formal synthesis of the naturally occurring alkaloid (+)-(9S,13R)-13-hydroxyisocyclocelabenzine.
Collapse
Affiliation(s)
- Marina Sicignano
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rosaria Schettini
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Pierri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Leda Marino
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Irene Izzo
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco De Riccardis
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luca Bernardi
- Department
of Industrial Chemistry “Toso Montanari” & INSTM
RU Bologna, Alma Mater Studiorum University
of Bologna, Viale del
Risorgimento 4, 40136 Bologna, Italy
| | - Giorgio Della Sala
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
6
|
Nicolaou KC, Das D, Lu Y, Rout S, Pitsinos EN, Lyssikatos J, Schammel A, Sandoval J, Hammond M, Aujay M, Gavrilyuk J. Total Synthesis and Biological Evaluation of Tiancimycins A and B, Yangpumicin A, and Related Anthraquinone-Fused Enediyne Antitumor Antibiotics. J Am Chem Soc 2020; 142:2549-2561. [DOI: 10.1021/jacs.9b12522] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Dipendu Das
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yong Lu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Subhrajit Rout
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emmanuel N. Pitsinos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 153 10 Agia Paraskevi, Greece
| | - Joseph Lyssikatos
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Alexander Schammel
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Joseph Sandoval
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Mikhail Hammond
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Monette Aujay
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Julia Gavrilyuk
- Abbvie Stemcentrx, LLC, 450 East Jamie Court, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Wang D, Lu B, Song YL, Sun HM, Shen Q. Fe(III)-catalyzed oxidative coupling of alkylnitriles with aromatic carboxylic acids: Facile access to cyanomethyl esters. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Nicolaou KC, Rigol S. Total Synthesis in Search of Potent Antibody-Drug Conjugate Payloads. From the Fundamentals to the Translational. Acc Chem Res 2019; 52:127-139. [PMID: 30575399 DOI: 10.1021/acs.accounts.8b00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emergence and evolution of antibody-drug conjugates (ADCs) as targeted cancer therapies in recent years is a living example of the "magic bullet" concept of Paul Ehrlich, introduced by him more than a century ago. Consisting of three components, the antibody serving as the delivery system, the payload drug that kills the cancer cell, and the chemical linker through which the payload is attached to the antibody, ADCs represent a currently hotly pursued paradigm of targeted cancer therapies. While the needed monoclonal antibody falls in the domains of biology and biochemistry, the potent payload and the linker belong to the realm of chemistry. Naturally occurring molecules and their derivatives endowed with high cytotoxic properties have proven to be useful payloads for the first approved ADCs (i.e., Mylotarg, Adcetris, Kadcyla, and Besponsa). The latest approaches and intensifying activities in this new paradigm of cancer therapy demands a variety of payloads with different mechanisms of action in order to address the medical needs for the various types of cancers, challenging synthetic organic chemists to enrich the library of potential payloads. Total synthesis of natural and designed molecules not only provides a powerful avenue to replicate rare naturally occurring compounds in the laboratory but also offers a unique opportunity to rationally design and synthesize analogues thereof for biological evaluation and optimization of ADC payloads. In this Account, we describe our efforts in this area highlighting a number of total synthesis endeavors through which we rendered scarce naturally occurring molecules readily available for biological evaluations and, most importantly, employed the developed synthetic strategies and methods to construct, otherwise unavailable or difficult to reach, designed analogues of these molecules. Specifically, we summarize the total syntheses of natural and designed molecules of the calicheamicin, uncialamycin, tubulysin, trioxacarcin, epothilone, shishijimicin, namenamicin, thailanstatin, and disorazole families of compounds and demonstrate how these studies led to the discovery of analogues of higher potencies, yet some of them possessing lower complexities than their parent compounds as potential ADC payloads. The highlighted examples showcase the continuing impact of total synthesis of natural products and their analogues on modern medicine, including the so-called biologics and should prove useful and inspirational in advancing both the fields of total synthesis and biomedical research and the drug discovery and development process.
Collapse
Affiliation(s)
- Kyriacos C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Rigol
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Sk MR, Chakraborty S, Mal D. Studies directed toward total synthesis of rhodocomatulins: A regioselective synthesis of brominated hydroxyanthraquinones by anionic annulations. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1401637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumen Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Dipakranjan Mal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
10
|
Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MA. Anthraquinones: An Overview. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00011-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Nicolaou KC, Rigol S. The Evolution and Impact of Total Synthesis on Chemistry, Biology and Medicine. Isr J Chem 2016. [DOI: 10.1002/ijch.201600087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kyriacos C. Nicolaou
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston Texas 77005 USA
| | - Stephan Rigol
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
12
|
Nicolaou KC, Wang Y, Lu M, Mandal D, Pattanayak MR, Yu R, Shah AA, Chen JS, Zhang H, Crawford JJ, Pasunoori L, Poudel YB, Chowdari NS, Pan C, Nazeer A, Gangwar S, Vite G, Pitsinos EN. Streamlined Total Synthesis of Uncialamycin and Its Application to the Synthesis of Designed Analogues for Biological Investigations. J Am Chem Soc 2016; 138:8235-46. [DOI: 10.1021/jacs.6b04339] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. C. Nicolaou
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanping Wang
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Min Lu
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debashis Mandal
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Manas R. Pattanayak
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ruocheng Yu
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Akshay A. Shah
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Jason S. Chen
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hongjun Zhang
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - James J. Crawford
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Laxman Pasunoori
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yam B. Poudel
- Bristol-Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Naidu S. Chowdari
- Bristol-Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Chin Pan
- Bristol-Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Ayesha Nazeer
- Bristol-Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Sanjeev Gangwar
- Bristol-Myers Squibb Research & Development, 700 Bay Road, Redwood City, California 94063, United States
| | - Gregory Vite
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543-4000, United States
| | - Emmanuel N. Pitsinos
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience & Nanotechnology, National Centre of Scientific Research “Demokritos”, Agia Paraskevi GR-15310, Greece
| |
Collapse
|
13
|
Wolf‐Preis in Chemie: K. C. Nicolaou und S. L. Schreiber / Preise der Israel Chemical Society: R. Klajn, R. Tenne und M. Kol / Pittcon‐2016‐Preise: S. A. Asher, D. R. Walt, J. Popp, S. Mukamel und R. J. White. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Wolf Prize in Chemistry: K. C. Nicolaou and S. L. Schreiber / Israel Chemical Society Awards: R. Klajn, R. Tenne, and M. Kol / Pittcon 2016 Award Winners: S. A. Asher, D. R. Walt, J. Popp, S. Mukamel, and R. J. White. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/anie.201601464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Yang Y. Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/ortho-Cyanation Cascade. Angew Chem Int Ed Engl 2016; 55:345-9. [PMID: 26509757 PMCID: PMC4754675 DOI: 10.1002/anie.201508294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/29/2022]
Abstract
A copper-catalyzed borylation/ortho-cyanation/allyl group transfer cascade was developed. Initiated by an unconventional copper-catalyzed electrophilic dearomatization, this process features regio- and stereospecific 1,3-transposition of the allyl fragment enabled by an aromatization-driven Cope rearrangement. This method provides an effective means for the construction of adjacent tertiary and quaternary stereocenters with excellent diastereocontrol.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA).
| |
Collapse
|
16
|
Yang Y. Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/ortho
-Cyanation Cascade. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|