1
|
Sun N, Jia Y, Bai S, Yang Y, Dai L, Li J. Spatial mapping and quantitative evaluation of protein corona on PEGylated mesoporous silica particles by super-resolution fluorescence microscopy. J Colloid Interface Sci 2024; 653:351-358. [PMID: 37717435 DOI: 10.1016/j.jcis.2023.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Nanoparticles (NPs) adsorb serum proteins when exposed to biological fluids, forming a dynamic protein corona that has a profound impact on their overall biological profile and fate. Polyethylene glycol (PEG) modification is the most widely used strategy to mitigate and inhibit protein corona formation. Nevertheless, the accurate mapping and quantification of PEG inhibition effects on protein corona formation have scarcely been reported. Herein, we demonstrate the direct observation and quantification of protein corona adsorbed onto PEGylated mesoporous silica particles by direct stochastic optical reconstruction microscopy (dSTORM). The variation tendency of protein penetration depth in terms of PEG molecular weights and incubated time is investigated for the first time. The maximum penetration depths present slight increase with the prolonged incubation time, while they tend to remarkably decrease with increased chain length of modified PEG. Moreover, the co-localization of preformed protein corona with lysosomes and the destination of adsorbed protein are demonstrated. Our method provides important technical characterization information and in-depth understanding of protein corona adsorbed onto PEGylated mesoporous silica particles. This shines new light on the behaviors of silica materials in cells and may promote their practical applications in biomedicine.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
3
|
Kato H, Nakamura A. Novel Colloidal Dispersing Concept in Aqueous Media for Preparation by Wet-Jet Milling Dispersing Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:80. [PMID: 36615991 PMCID: PMC9824523 DOI: 10.3390/nano13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Dispersing particles in a liquid phase is significant for producing various functional nano/bio applications. The wet-jet milling method has been gaining attention as an attractive dispersing method in the preparation of soft material suspensions. This is because the main driving force of dispersion by the wet-jet milling method is the shear force, which is weaker than that it is in the ultrasonication dispersing method. In the wet-jet milling method, the pressure of the narrow channel which the liquid is passes through and the number of passes are used as the control parameters for dispersing the particles. However, the values of the pressure depend on the size (diameter and length) of the narrow channel, thus, it is not a commonly used dispersing parameter in dispersing by wet-jet milling to set the dispersing condition by various wet-jet milling instruments. In addition, wet-jet milling users must optimize the dispersing conditions such as the pressure and number of passes in the narrow channel, therefore, a simple prediction/optimization method of the dispersing size by the wet-jet milling method is desired. In this study, we established a novel colloidal dispersing concept, the dispersing energy input based on a calorimetric idea, for particle suspension preparation using the wet-jet milling method. The dispersing energy input by wet-jet milling was quantitatively calculated under various conditions during the dispersing by wet-jet milling, and then, the dispersing size of the particles was easily predicted/optimized. We demonstrated the usability of the concept by preparing aqueous suspensions of calcium carbonate (CaCO3) particles with various surfactants using the wet-jet milling method. Based on the established concept, in a case study on dispersing CaCO3, we found that changes in the micelle sizes of the surfactants played a role in wet-jet milling. The novel idea of the representation of energy input makes it possible to estimate the appropriate condition of the dispersing process by wet-jet milling to control the size of particles.
Collapse
|
4
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Sun N, Jia Y, Wang C, Xia J, Dai L, Li J. Dopamine-Mediated Biomineralization of Calcium Phosphate as a Strategy to Facilely Synthesize Functionalized Hybrids. J Phys Chem Lett 2021; 12:10235-10241. [PMID: 34647744 DOI: 10.1021/acs.jpclett.1c02748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic-inorganic hybrid materials have been considered to be promising carriers or immobilization matrixes for biomolecules due to their high efficiency and significantly enhanced activities and stabilities of biomolecules. Here, the well-defined dopamine/calcium phosphate organic-inorganic hybrids (DACaPMFs) are fabricated via one-pot dopamine-mediated biomineralization, and their structure and properties are also characterized. Direct stochastic optical reconstruction microscopy (dSTORM) is first used to probe the distribution of organic components in these hybrids. Combined with spectroscopic data, the direct observation of dopamine in the hybrids helps to understand the formation of a physical chemistry mechanism of the biomineralization. The obtained DACaPMFs with multiple-level pores allow the loading of doxorubicin with a high loading efficiency and a pH-responsive property. Furthermore, thrombin is entrapped by the hybrids to prove the controlled release. It is expected that such organic-inorganic hybrid materials may hold great promise for application in drug delivery as well as scaffold materials in bone tissue engineering and hemostatic material.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiarui Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chen J, Webb J, Shariati K, Guo S, Montclare JK, McArt S, Ma M. Pollen-inspired enzymatic microparticles to reduce organophosphate toxicity in managed pollinators. NATURE FOOD 2021; 2:339-347. [PMID: 37117728 DOI: 10.1038/s43016-021-00282-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/20/2021] [Indexed: 04/30/2023]
Abstract
Pollinators support the production of the leading food crops worldwide. Organophosphates are a heavily used group of insecticides that pollinators can be exposed to, especially during crop pollination. Exposure to lethal or sublethal doses can impair fitness of wild and managed bees, risking pollination quality and food security. Here we report a low-cost, scalable in vivo detoxification strategy for organophosphate insecticides involving encapsulation of phosphotriesterase (OPT) in pollen-inspired microparticles (PIMs). We developed uniform and consumable PIMs capable of loading OPT at 90% efficiency and protecting OPT from degradation in the pH of a bee gut. Microcolonies of Bombus impatiens fed malathion-contaminated pollen patties demonstrated 100% survival when fed OPT-PIMs but 0% survival with OPT alone, or with plain sucrose within five and four days, respectively. Thus, the detrimental effects of malathion were eliminated when bees consumed OPT-PIMs. This design presents a versatile treatment that can be integrated into supplemental feeds such as pollen patties or dietary syrup for managed pollinators to reduce risk of organophosphate insecticides.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - James Webb
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Shengbo Guo
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Jin-Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Scott McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Ji Y, Yang X, Yang D, Zhang R. PU14, a Novel Matrix Protein, Participates in Pearl Oyster, Pinctada Fucata, Shell Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:189-200. [PMID: 33689053 PMCID: PMC8032588 DOI: 10.1007/s10126-020-10014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Biomineralization is a widespread biological process, involved in the formation of shells, teeth, and bones. Shell matrix proteins have been widely studied for their importance during shell formation. In 2015, our group identified 72 unique shell matrix proteins in Pinctada fucata, among which PU14 is a matrix protein detected in the soluble fraction that solely exists in the prismatic layer. However, the function of PU14 is still unclear. In this study, the full-length cDNA sequence of PU14 was obtained and functional analyses of PU14 protein during shell formation were performed. The deduced protein has a molecular mass of 77.8 kDa and an isoelectric point of 11.34. The primary protein structure contains Gln-rich and random repeat units, which are typical characteristics of matrix protein and indicate its potential function during shell formation. In vivo and in vitro experiments indicated PU14 has prismatic layer functions during shell formation. The tissue expression patterns showed that PU14 was mainly expressed in the mantle tissue, which is consistent with prismatic layer formation. Notching experiments suggested that PU14 responded to repair and regenerate the injured shell. After inhibiting gene expression by injecting PU14-specific double-stranded RNA, the inner surface of the prismatic layer changed significantly and became rougher. Further, in vitro experiments showed that recombinant protein rPU14 impacted calcite crystal morphology. Taken together, characterization and functional analyses of a novel matrix protein, PU14, provide new insights about basic matrix proteins and their functions during shell formation.
Collapse
Affiliation(s)
- Yinghui Ji
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Yang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Zhe Jiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, 314006, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
10
|
Zhang X, Sun T, Ni XL. Fluorescence visualization of cucurbit[8]uril-triggered dynamic host–guest assemblies. Org Chem Front 2021. [DOI: 10.1039/d0qo00649a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dynamic assemblies of π-conjugated bispyridinium guests with cucurbit[8]uril in aqueous solution could be distinguished by real-time naked-eye observation of the resulting quantitative fluorescence emissions.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang
- China
| | - Tao Sun
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang
- China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang
- China
| |
Collapse
|
11
|
Yao Q, Wang C, Fu M, Dai L, Li J, Gao Y. Dynamic Detection of Active Enzyme Instructed Supramolecular Assemblies In Situ via Super-Resolution Microscopy. ACS NANO 2020; 14:4882-4889. [PMID: 32233450 DOI: 10.1021/acsnano.0c00883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by the self-assembly phenomena in nature, the instructed self-assembly of exogenous small molecules in a biological environment has become a prevalent process to control cell fate. Despite mounting examples of versatile bioactivities, the underlying mechanism remains less understood, which is in large hindered by the difficulties in the identification of those dynamic assemblies in situ. Here, with direct stochastic optical reconstruction microscopy, we are able to elucidate the dynamic morphology transformation of the enzyme-instructed supramolecular assemblies in situ inside cancer cells with a resolution below 50 nm. It indicates that the assembling molecules endure drastically different pathways between cell lines with different phosphatase activities and distribution. In HeLa cells, the direct formation of intracellular supramolecular nanofibers showed slight cytotoxicity, which was due to the possible cellular secretory pathway to excrete those exogenous molecules assemblies. In contrast, in Saos-2 cells with active phosphatase on the cell surface, assemblies with granular morphology first formed on the cell membranes, followed by a transformation into nanofibers and accumulation in cells, which induced Saos-2 cell death eventually. Overall, we provided a convenient method to reveal the in situ dynamic nanomorphology transformation of the supramolecular assemblies in a biological environment, in order to decipher their diverse biological activities.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meifang Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ihli J, Green DC, Lynch C, Holden MA, Lee PA, Zhang S, Robinson IK, Webb SED, Meldrum FC. Super‐Resolution Microscopy Reveals Shape and Distribution of Dislocations in Single‐Crystal Nanocomposites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Ihli
- Paul Scherrer Institut 5232 Villigen PSI Switzerland
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
| | | | - Christophe Lynch
- Central Laser Facility, Science and Technology Facilities CouncilResearch Complex at HarwellRutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mark A. Holden
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- School of Physical Sciences and ComputingUniversity of Central Lancashire Preston PR1 2HE UK
| | | | - Shuheng Zhang
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
| | - Ian K. Robinson
- London Centre for NanotechnologyUniversity College London London WC1H 0AH UK
- Brookhaven National Lab Upton NY 11973 USA
| | - Stephen E. D. Webb
- Central Laser Facility, Science and Technology Facilities CouncilResearch Complex at HarwellRutherford Appleton Laboratory Didcot OX11 0QX UK
| | | |
Collapse
|
13
|
Ihli J, Green DC, Lynch C, Holden MA, Lee PA, Zhang S, Robinson IK, Webb SED, Meldrum FC. Super-Resolution Microscopy Reveals Shape and Distribution of Dislocations in Single-Crystal Nanocomposites. Angew Chem Int Ed Engl 2019; 58:17328-17334. [PMID: 31591809 DOI: 10.1002/anie.201905293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 01/08/2023]
Abstract
With their potential to offer new properties, single crystals containing nanoparticles provide an attractive class of nanocomposite materials. However, to fully profit from these, it is essential that we can characterise their 3D structures, identifying the locations of individual nanoparticles, and the defects present within the host crystals. Using calcite crystals containing quantum dots as a model system, we here use 3D stochastic optical reconstruction microscopy (STORM) to locate the positions of the nanoparticles within the host crystal. The nanoparticles are shown to preferentially associate with dislocations in a manner previously recognised for atomic impurities, rendering these defects visible by STORM. Our images also demonstrate that the types of dislocations formed at the crystal/substrate interface vary according to the nucleation face, and dislocation loops are observed that have entirely different geometries to classic misfit dislocations. This approach offers a rapid, easily accessed, and non-destructive method for visualising the dislocations present within crystals, and gives insight into the mechanisms by which additives become occluded within crystals.
Collapse
Affiliation(s)
- Johannes Ihli
- Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Christophe Lynch
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Mark A Holden
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.,School of Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Phillip A Lee
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Shuheng Zhang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Ian K Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Brookhaven National Lab, Upton, NY, 11973, USA
| | - Stephen E D Webb
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Yang D, Yan Y, Yang X, Liu J, Zheng G, Xie L, Zhang R. A basic protein, N25, from a mollusk modifies calcium carbonate morphology and shell biomineralization. J Biol Chem 2019; 294:8371-8383. [PMID: 30967473 DOI: 10.1074/jbc.ra118.007338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Indexed: 11/06/2022] Open
Abstract
Biomineralization is a widespread biological process in the formation of shells, teeth, or bones. Matrix proteins in biominerals have been widely investigated for their roles in directing biomineralization processes such as crystal morphologies, polymorphs, and orientations. Here, we characterized a basic matrix protein, named mantle protein N25 (N25), identified previously in the Akoya pearl oyster (Pinctada fucata). Unlike some known acidic matrix proteins containing Asp or Glu as possible Ca2+-binding residues, we found that N25 is rich in Pro (12.4%), Ser (12.8%), and Lys (8.8%), suggesting it may perform a different function. We used the recombinant protein purified by refolding from inclusion bodies in a Ca(HCO3)2 supersaturation system and found that it specifically affects calcite morphologies. An X-ray powder diffraction (XRD) assay revealed that N25 could help delay the transformation of vaterites (a metastable calcium carbonate polymorph) to calcite. We also used fluorescence super-resolution imaging to map the distribution of N25 in CaCO3 crystals and transfected a recombinant N25-EGFP vector into HEK-293T cells to mimic the native process in which N25 is secreted by mantle epithelial cells and integrated into mineral structures. Our observations suggest N25 specifically affects crystal morphologies and provide evidence that basic proteins lacking acidic groups can also direct biomineralization. We propose that the attachment of N25 to specific sites on CaCO3 crystals may inhibit some crystal polymorphs or morphological transformation.
Collapse
Affiliation(s)
- Dong Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Yan
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Yang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guilan Zheng
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China.
| |
Collapse
|
15
|
Negwer I, Best A, Schinnerer M, Schäfer O, Capeloa L, Wagner M, Schmidt M, Mailänder V, Helm M, Barz M, Butt HJ, Koynov K. Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 2018; 9:5306. [PMID: 30546066 PMCID: PMC6294246 DOI: 10.1038/s41467-018-07755-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Nanocarrier-based drug delivery is a promising therapeutic approach that offers unique possibilities for the treatment of various diseases. However, inside the blood stream, nanocarriers' properties may change significantly due to interactions with proteins, aggregation, decomposition or premature loss of cargo. Thus, a method for precise, in situ characterization of drug nanocarriers in blood is needed. Here we show how the fluorescence correlation spectroscopy that is a well-established method for measuring the size, loading efficiency and stability of drug nanocarriers in aqueous solutions can be used to directly characterize drug nanocarriers in flowing blood. As the blood is not transparent for visible light and densely crowded with cells, we label the nanocarriers or their cargo with near-infrared fluorescent dyes and fit the experimental autocorrelation functions with an analytical model accounting for the presence of blood cells. The developed methodology contributes towards quantitative understanding of the in vivo behavior of nanocarrier-based therapeutics.
Collapse
Affiliation(s)
- Inka Negwer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Meike Schinnerer
- Institute of Physical Chemistry, Johannes Gutenberg University, Jakob Welder Weg 11, 55128, Mainz, Germany
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Olga Schäfer
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Leon Capeloa
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Schmidt
- Institute of Physical Chemistry, Johannes Gutenberg University, Jakob Welder Weg 11, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Helm
- Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
16
|
Junbai Li. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Junbai Li. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201808633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Zhang J, Dong C, Sun Y, Yu J. Mechanism of Magnesium's Influence on Calcium Carbonate Crystallization: Kinetically Controlled Multistep Crystallization. CRYSTAL RESEARCH AND TECHNOLOGY 2018. [DOI: 10.1002/crat.201800075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Zhang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources; East China University of Science and Technology; Meilong Road 130 Shanghai 200237 China
| | - Chunhua Dong
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources; East China University of Science and Technology; Meilong Road 130 Shanghai 200237 China
| | - Yuzhu Sun
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources; East China University of Science and Technology; Meilong Road 130 Shanghai 200237 China
| | - Jianguo Yu
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources; East China University of Science and Technology; Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
19
|
Jian YK, Le XX, Zhang YC, Lu W, Wang L, Zheng J, Zhang JW, Huang YJ, Chen T. Shape Memory Hydrogels with Simultaneously Switchable Fluorescence Behavior. Macromol Rapid Commun 2018; 39:e1800130. [DOI: 10.1002/marc.201800130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/15/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yu-kun Jian
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Xiao-xia Le
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Yu-chong Zhang
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Li Wang
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Jing Zheng
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Jia-wei Zhang
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - You-ju Huang
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies; Zhejiang Key Laboratory of Marine Materials and Protective Technologies; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
- School of Chemical Sciences; University of Chinese Academy of Sciences; 19 A Yuquan Rd Shijingshan District Beijing 100049 China
| |
Collapse
|
20
|
Wang X, Jiang X, Zhu S, Liu L, Xia J, Li L. Preparation of optical functional composite films and their application in protein detection. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Yang X, Huang W, Li Y, Wang S. CaCO3 crystallization in 2,3-epoxypropyltrimethylammonium chloride modified gelatin solutions. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Murai K, Kurumisawa K, Nomura Y, Matsumoto M. Regulated Drug Release Abilities of Calcium Carbonate-Gelatin Hybrid Nanocarriers Fabricated via a Self-Organizational Process. ChemMedChem 2017; 12:1595-1599. [DOI: 10.1002/cmdc.201700358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/25/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Kazuki Murai
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology; Tokyo University of Science; 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585 Japan
| | - Kazuya Kurumisawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology; Tokyo University of Science; 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585 Japan
| | - Yoshihiro Nomura
- Scleroprotein and Leather Research Institute, Faculty of Agriculture; Tokyo University of Agriculture and Technology; 3-5-8, Saiwai-cho, Fuchu Tokyo 183-8509 Japan
| | - Mutsuyoshi Matsumoto
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology; Tokyo University of Science; 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585 Japan
| |
Collapse
|
23
|
Kato H, Nakamura A, Shimizu M, Banno H, Kezuka Y, Matsubara K, Hosoi K, Yoshida S, Fujimoto T. Acceleration of dispersing calcium carbonate particle in aqueous media using jet milling method. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Xu L, Chen M, Hao J. Ferrofluids of Thermotropic Liquid Crystals by DNA–Lipid Hybrids. J Phys Chem B 2017; 121:420-425. [DOI: 10.1021/acs.jpcb.6b09595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Xu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
25
|
Wound healing activity of cuttlefish gelatin gels and films enriched by henna (Lawsonia inermis) extract. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
|