1
|
Zheng H, Cao F, Zhao L, Jiang R, Zhao P, Zhang Y, Wei Y, Meng S, Li K, Jia S, Li L, Wang J. Atomistic and dynamic structural characterizations in low-dimensional materials: recent applications of in situ transmission electron microscopy. Microscopy (Oxf) 2019; 68:423-433. [PMID: 31746339 DOI: 10.1093/jmicro/dfz038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/14/2022] Open
Abstract
In situ transmission electron microscopy has achieved remarkable advances for atomic-scale dynamic analysis in low-dimensional materials and become an indispensable tool in view of linking a material's microstructure to its properties and performance. Here, accompanied with some cutting-edge researches worldwide, we briefly review our recent progress in dynamic atomistic characterization of low-dimensional materials under external mechanical stress, thermal excitations and electrical field. The electron beam irradiation effects in metals and metal oxides are also discussed. We conclude by discussing the likely future developments in this area.
Collapse
Affiliation(s)
- He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Fan Cao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.,Hubei Key Lab of Ferro- and Piezo-electric Materials and Devices, Faculty of Physics & Electronic Sciences, Hubei University, Wuhan 430062, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Renhui Jiang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Peili Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Zhang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanjie Wei
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuang Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kaixuan Li
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Luying Li
- Center for Nanoscale Characterization and Devices, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Evans RC, Nilsson ZN, Sambur JB. High-Throughput Single-Nanoparticle-Level Imaging of Electrochemical Ion Insertion Reactions. Anal Chem 2019; 91:14983-14991. [PMID: 31682115 DOI: 10.1021/acs.analchem.9b03487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticle electrodes are attractive for electrochemical energy storage applications because their nanoscale dimensions decrease ion transport distances and generally increase ion insertion/extraction efficiency. However, nanoparticles vary in size, shape, defect density, and surface composition, which warrants their investigation at the single-nanoparticle level. Here we demonstrate a nondestructive high-throughput electro-optical imaging approach to quantitatively measure electrochemical ion insertion reactions at the single-nanoparticle level. Electro-optical measurements relate the optical density change of a nanoparticle to redox changes of elements in the particle under working electrochemical conditions. We benchmarked this technique by studying Li-ion insertion in hexagonal tungsten oxide (h-WO3) nanorods during chronoamperometry and cyclic voltammetry. Interestingly, the optically detected current response revealed underlying processes that are hidden in the conventional electrochemical current measurements. This imaging technique may be applied to 13 nm particles and a wide range of electrochemical systems such as electrochromic smart windows, batteries, solid oxide fuel cells, and sensors.
Collapse
|
3
|
Affiliation(s)
- Guangmin Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guangwu Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Liu D, Shadike Z, Lin R, Qian K, Li H, Li K, Wang S, Yu Q, Liu M, Ganapathy S, Qin X, Yang QH, Wagemaker M, Kang F, Yang XQ, Li B. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806620. [PMID: 31099081 DOI: 10.1002/adma.201806620] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Indexed: 05/18/2023]
Abstract
The increasing demands of energy storage require the significant improvement of current Li-ion battery electrode materials and the development of advanced electrode materials. Thus, it is necessary to gain an in-depth understanding of the reaction processes, degradation mechanism, and thermal decomposition mechanisms under realistic operation conditions. This understanding can be obtained by in situ/operando characterization techniques, which provide information on the structure evolution, redox mechanism, solid-electrolyte interphase (SEI) formation, side reactions, and Li-ion transport properties under operating conditions. Here, the recent developments in the in situ/operando techniques employed for the investigation of the structural stability, dynamic properties, chemical environment changes, and morphological evolution are described and summarized. The experimental approaches reviewed here include X-ray, electron, neutron, optical, and scanning probes. The experimental methods and operating principles, especially the in situ cell designs, are described in detail. Representative studies of the in situ/operando techniques are summarized, and finally the major current challenges and future opportunities are discussed. Several important battery challenges are likely to benefit from these in situ/operando techniques, including the inhomogeneous reactions of high-energy-density cathodes, the development of safe and reversible Li metal plating, and the development of stable SEI.
Collapse
Affiliation(s)
- Dongqing Liu
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zulipiya Shadike
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ruoqian Lin
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kun Qian
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Nano Energy Materials Laboratory (NEM), Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Hai Li
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Kaikai Li
- Interdisciplinary Division of Aeronautical and Aviation Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Shuwei Wang
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qipeng Yu
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ming Liu
- Department of Radiation Science and Technology Delft University of Technology Mekelweg 15, Delft, 2629JB, The Netherlands
| | - Swapna Ganapathy
- Department of Radiation Science and Technology Delft University of Technology Mekelweg 15, Delft, 2629JB, The Netherlands
| | - Xianying Qin
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Marnix Wagemaker
- Department of Radiation Science and Technology Delft University of Technology Mekelweg 15, Delft, 2629JB, The Netherlands
| | - Feiyu Kang
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Nano Energy Materials Laboratory (NEM), Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Baohua Li
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Materials and Devices Testing Center, Graduate School at Shenzhen, Tsinghua University and Shenzhen Geim Graphene Center, Shenzhen, 518055, China
| |
Collapse
|
5
|
Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proc Natl Acad Sci U S A 2019; 116:12666-12671. [PMID: 31160443 PMCID: PMC6600953 DOI: 10.1073/pnas.1822007116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
“Smart” windows reduce electricity consumption associated with cooling buildings by blocking thermal radiation from the sun, or heat, from entering buildings. However, state-of-the-art smart windows require 7 to 12 min to modulate between transparent and dark states. Nanomaterials have the potential to tint faster and more efficiently than bulk materials, but it is unclear how structural differences among nanoparticles influences their optical modulation behavior. Here, we identify champion particles that tint the fastest and block the most radiation by watching single nanoparticles in a model smart window device. In addition, we observed that interfaces between particles contribute to long-term device degradation. These findings allow us to propose a new nanoparticle-based window design that optimizes tinting rates and promotes long-term stability. Nanomaterials have tremendous potential to increase electrochromic smart window efficiency, speed, and durability. However, nanoparticles vary in size, shape, and surface defects, and it is unknown how nanoparticle heterogeneity contributes to particle-dependent electrochromic properties. Here, we use single-nanoparticle-level electro-optical imaging to measure structure–function relationships in electrochromic tungsten oxide nanorods. Single nanorods exhibit a particle-dependent waiting time for tinting (from 100 ms to 10 s) due to Li-ion insertion at optically inactive surface sites. Longer nanorods tint darker than shorter nanorods and exhibit a Li-ion gradient that increases from the nanorod ends to the middle. The particle-dependent ion-insertion kinetics contribute to variable tinting rates and magnitudes across large-area smart windows. Next, we quantified how particle–particle interactions impact tinting dynamics and reversibility as the nanorod building blocks are assembled into a thin film. Interestingly, single particles tint 4 times faster and cycle 20 times more reversibly than thin films made of the same particles. These findings allow us to propose a nanostructured electrode architecture that optimizes optical modulation rates and reversibility across large-area smart windows.
Collapse
|
6
|
Lattice-contraction triggered synchronous electrochromic actuator. Nat Commun 2018; 9:4798. [PMID: 30442958 PMCID: PMC6237766 DOI: 10.1038/s41467-018-07241-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 10/19/2018] [Indexed: 11/08/2022] Open
Abstract
Materials with synchronous capabilities of color change and actuation have prospects for application in biomimetic dual-stealth camouflage and artificial intelligence. However, color/shape dual-responsive devices involve stimuli that are difficult to control such as gas, light or magnetism, and the devices show poor coordination. Here, a flexible composite film with electrochromic/actuating (238° bending angle) dual-responsive phenomena, excellent reversibility, high synchronization, and fast response speed (< 5 s) utilizes a single active component, W18O49 nanowires. From in situ synchrotron X-ray diffraction, first principles calculations/numerical simulations, and a series of control experiments, the actuating mechanism for macroscopic deformation is elucidated as pseudocapacitance-based reversible lattice contraction/recovery of W18O49 nanowires (i.e. nanostructure change at the atomic level) during lithium ion intercalation/de-intercalation. In addition, we demonstrate the W18O49 nanowires in a solid-state ionic polymer-metal composite actuator that operates stably in air with a significant pseudocapacitive actuation. Materials that exhibit synchronous color change and actuation may benefit biomimetic camouflage, but stimuli can be difficult to control. Here the authors report a composite with electricity-driven electrochromic and actuating capabilities for use in a solid-state ionic polymer-metal composite actuator.
Collapse
|
7
|
Chang JH, Cheong JY, Yuk JM, Kim C, Kim SJ, Seo HK, Kim ID, Lee JY. Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO 2 Nanoparticles in Liquid Electrolyte. ACS OMEGA 2017; 2:6329-6336. [PMID: 31457239 PMCID: PMC6645017 DOI: 10.1021/acsomega.7b01046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/22/2017] [Indexed: 05/07/2023]
Abstract
The conversion reaction is important in lithium-ion batteries because it governs the overall battery performance, such as initial Coulombic efficiency, capacity retention, and rate capability. Here, we have demonstrated in situ observation of the complete conversion reaction and agglomeration of nanoparticles (NPs) upon lithiation by using graphene liquid cell transmission electron microscopy. The observation reveals that the Sn NPs are nucleated from the surface of SnO2, followed by merging with each other. We demonstrate that the agglomeration has a stepwise process, including rotation of a NP, formation of necks, and subsequent merging of individual NPs.
Collapse
Affiliation(s)
- Joon Ha Chang
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jun Young Cheong
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jong Min Yuk
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chanhoon Kim
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Sung Joo Kim
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Hyeon Kook Seo
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
- E-mail: (I.-D.K.)
| | - Jeong Yong Lee
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
- E-mail: (J.Y.L.)
| |
Collapse
|
8
|
Li K, Shao Y, Liu S, Zhang Q, Wang H, Li Y, Kaner RB. Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700380. [PMID: 28371336 DOI: 10.1002/smll.201700380] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 05/27/2023]
Abstract
Electrochemical capacitor systems based on Al ions can offer the possibilities of low cost and high safety, together with a three-electron redox-mechanism-based high capacity, and thus are expected to provide a feasible solution to meet ever-increasing energy demands. Here, highly efficient Al-ion intercalation into W18 O49 nanowires (W18 O49 NWs) with wide lattice spacing and layered single-crystal structure for electrochemical storage is demonstrated. Moreover, a freestanding composite film with a hierarchical porous structure is prepared through vacuum-assisted filtration of a mixed dispersion containing W18 O49 NWs and single-walled carbon nanotubes. The as-prepared composite electrode exhibits extremely high areal capacitances of 1.11-2.92 F cm-2 and 459 F cm-3 at 2 mA cm-2 , enhanced electrochemical stability in the Al3+ electrolyte, as well as excellent mechanical properties. An Al-ion-based, flexible, asymmetric electrochemical capacitor is assembled that displays a high volumetric energy density of 19.0 mWh cm-3 at a high power density of 295 mW cm-3 . Finally, the Al-ion-based asymmetric supercapacitor is used as the power source for poly(3-hexylthiophene)-based electrochromic devices, demonstrating their promising capability in flexible electronic devices.
Collapse
Affiliation(s)
- Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuanlong Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Cambridge Graphene Center, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Shiyi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
He Y, Gu M, Xiao H, Luo L, Shao Y, Gao F, Du Y, Mao SX, Wang C. Atomistic Conversion Reaction Mechanism of WO
3
in Secondary Ion Batteries of Li, Na, and Ca. Angew Chem Int Ed Engl 2016; 55:6244-7. [DOI: 10.1002/anie.201601542] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Yang He
- Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA 15261 USA
| | - Meng Gu
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Haiyan Xiao
- School of Physical Electronics University of Electronic Science and Technology of China Chengdu 610054 China
| | - Langli Luo
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Yuyan Shao
- Energy and Environmental Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Fei Gao
- Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Yingge Du
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Scott X. Mao
- Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA 15261 USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
10
|
He Y, Gu M, Xiao H, Luo L, Shao Y, Gao F, Du Y, Mao SX, Wang C. Atomistic Conversion Reaction Mechanism of WO
3
in Secondary Ion Batteries of Li, Na, and Ca. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang He
- Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA 15261 USA
| | - Meng Gu
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Haiyan Xiao
- School of Physical Electronics University of Electronic Science and Technology of China Chengdu 610054 China
| | - Langli Luo
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Yuyan Shao
- Energy and Environmental Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Fei Gao
- Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Yingge Du
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Scott X. Mao
- Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA 15261 USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|