1
|
Yoshina R, Hirano J, Nishimoto E, Sakamoto Y, Tajima K, Minabe S, Uyanik M, Ishihara K, Ikai T, Yashima E, Omine T, Ishiwari F, Saeki A, Kim J, Oh J, Kim D, Liu G, Yasuda T, Shinokubo H, Fukui N. Inner-Bond-Cleavage Approach to Figure-Eight Macrocycles from Planar Aromatic Hydrocarbons. J Am Chem Soc 2024; 146:29383-29390. [PMID: 39315432 PMCID: PMC11528406 DOI: 10.1021/jacs.4c07985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Figure-eight-shaped nonplanar π-systems adopt distinctive chiral D2-symmetric structures, which are ideal for realizing efficient circularly polarized luminescence (CPL). However, the short-step and enantioselective synthesis of figure-eight π-systems represents a considerable challenge for the conventional bottom-up synthetic strategy. Herein, we report that the oxidative cleavage of the internal double bond of a commercially available polycyclic aromatic hydrocarbon, i.e., dibenzo[g,p]chrysene (DBC), catalytically affords a figure-eight electron-accepting macrocycle, i.e., cyclobisbiphenylenecarbonyl (CBBC), with high scalability (up to 3.3 g) and excellent enantioselectivity (94% ee). This inner-bond-cleavage approach also applies to larger PAHs, affording highly distorted molecular frameworks that comprise two figure-eight subunits. Furthermore, we demonstrate that the peripheral functionalization of CBBC with carbazole afforded donor-acceptor-type emitter, which shows thermally activated delayed fluorescence and emits CPL with a g value of 1.0 × 10-2. This g value is ten times higher than those of previously reported chiral TADF-active emitters for circularly polarized organic light-emitting diodes. These results demonstrate that oxidative inner-bond cleavage is a powerful synthetic strategy for creating innovative materials that incorporate molecules with figure-eight structures.
Collapse
Affiliation(s)
- Reiji Yoshina
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Junichiro Hirano
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Emiko Nishimoto
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuki Sakamoto
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shunsuke Minabe
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Muhammet Uyanik
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Kazuaki Ishihara
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Takuya Omine
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinseok Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Department
of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic
of Korea
| | - Dongho Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Guanting Liu
- Institute
for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuma Yasuda
- Institute
for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Ma Y, Han Y, Hou X, Wu S, Chi C. Facile Synthesis and Global Aromaticity of Aza-Superbenzene and Aza-Supernaphthalene at Different Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202407990. [PMID: 38958027 DOI: 10.1002/anie.202407990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
All-benzenoid polycyclic aromatic hydrocarbons or macrocycles usually display localized aromaticity. On the other hand, incorporation of quinoidal units into the skeleton could lead to effective electron delocalization and global (anti)aromaticity. In this work, fully π-conjugated macrocycle 1 and bismacrocycle 2 containing both para-quinodimethane and triphenylamine units are efficiently synthesized mainly through intermolecular Friedel-Crafts alkylation reaction. They can be considered as a tetraazasuperbenzene and a hexaazasupernaphthalene, respectively, due to their similar geometry and electronic structures to the benzene and naphthalene. X-ray crystallographic analyses reveal a largely planar geometry for both 1 and 2 and variable-temperature NMR measurements disclose slow dynamic processes owing to restricted ring flipping of the phenyl rings. 1 and 2 can be easily oxidized into higher-oxidation-state species. NMR and theoretical calculations indicate that 12+ and 14+ show global anti-aromaticity and aromaticity, respectively, with a dominant 32π and 30π conjugation pathway, while for the bismacrocycle 2, its dication 22+, tetracation 24+ and hexacation 26+ exhibit global aromaticity, antiaromaticity, and aromaticity with a 54π, 52π and 50π conjugation pathway along the outermost backbone, respectively.
Collapse
Affiliation(s)
- Yunhan Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
3
|
Günther K, Kono H, Shudo H, Shimizu D, Isoda R, Nakamura M, Yagi A, Amaike K, Itami K. Water-Soluble Aromatic Nanobelt with Unique Cellular Internalization. Angew Chem Int Ed Engl 2024:e202414645. [PMID: 39344475 DOI: 10.1002/anie.202414645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
A water-soluble aromatic nanobelt was synthesized, and its cellular uptake behavior in HeLa cells was investigated. The late-stage functionalization of the parent methylene-bridged [6]cycloparaphenylene ([6]MCPP) provided an easily accessible alkyne-functionalized nanobelt in a single reaction step. The alkyne-substituted [6]MCPP was subjected to Cu-catalyzed azide-alkyne cycloaddition by using a dye-attached azide to obtain a water-soluble aromatic nanobelt. Cell-imaging experiments on the synthesized nanobelt in HeLa cells revealed stop-and-go cellular uptake dynamics. Similar experiments with control molecules and theoretical studies indicated that the unique dynamics of the nanobelt was derived from the belt-shaped structure.
Collapse
Affiliation(s)
- Konstantin Günther
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Hideya Kono
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Daisuke Shimizu
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Reika Isoda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kazuma Amaike
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Molecule Creation Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Hara M, Toriumi N, Uchiyama M, Nozaki K. Synthesis, Structure, and Optical Property of [6]Cyclo-1,2-naphthylene. Chemistry 2024:e202402323. [PMID: 39305152 DOI: 10.1002/chem.202402323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 11/01/2024]
Abstract
A one-pot procedure with cobalt-mediated oxidation of 2,2'-dilithio-1,1'-binaphthyl by ferrocenium salts afforded the chiral cyclic hexamer of naphthylene, [6]cyclo-1,2-naphthylene (1). The molecular structure of 1 was determined by single crystal X-ray crystallography and NMR analyses, revealing its cyclic structure with an approximate D3 symmetry. Compound 1 exhibits blue emission at 383 nm with high photoluminescence quantum yield of 97 %, which can be attributed to its rigid twelve-membered ring structure. Optical resolution of 1 by chiral HPLC allowed for the evaluation of its chiroptical properties. Each enantiomer exhibits circular dichroism with complex Cotton effects, which are grouped into three positive or three negative couplets. Circularly polarized luminescence is observed at 383 nm with an anisotropy factor |glum| on the order of 10-4. The high photoluminescence quantum yield and the CPL properties of 1 indicate its potential application as a CPL emitter.
Collapse
Affiliation(s)
- Masaki Hara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Wu HL, Zhang MY, Zhou T, Zhang LP, Qi QY, Yang GY, Yang B, Li ZT. Six-Cyclic Crown Ether-Type Pillar[5]Arene: Enhanced Binding Ability to Bispyridinium Derivatives. Chem Asian J 2024; 19:e202400554. [PMID: 38956446 DOI: 10.1002/asia.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1 : 1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9 : 1).
Collapse
Affiliation(s)
- Huai-Li Wu
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Meng-Yang Zhang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Ting Zhou
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Le-Ping Zhang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guan-Yu Yang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University Department, 100 Kexue Street, Zhengzhou, 450001, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
6
|
Lingas R, Charistos ND, Muñoz-Castro A. Borospherene in the Nanohoop: Complexation and Aromaticity of Neutral and Dioxidized Cycloparaphenylene Supramolecules with B40 and C60 Fullerenes. Chemistry 2024; 30:e202402027. [PMID: 38923129 DOI: 10.1002/chem.202402027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular complexes of carbon nanohoops with fullerenes play a key role for the design of novel nanomaterials with technological applications. Herein we investigate with density functional theory (DFT) methods the capability of neutral and dioxidized cycloparaphenylenes (CPPs) to encapsulate all-boron fullerene B40. Our results show that [9]CPP and [10]CPP are feasible host candidates to encapsulate B40 displaying comparable complexation energies with the all-carbon analog [10]CPP⊃C60. Upon dioxidation the host-guest interactions are not affected, whereas the positive charge is delocalized on the CPPs leading to global aromatic character of the hosts. Consequently, the dicationic complexes [n]CPP2+⊃B40 and [10]CPP2+⊃C60 display augmented global shielding cones that strongly shield the guests, as manifested by large upfield shifts in 11B-NMR and 13C-NMR signals. Hence, CPP complexes with carbon fullerenes can be extended borospherene B40 host-guest complexes, as well as to doubly oxidized species stabilized by global host aromaticity, expanding our understanding of carbon nanohoop complexes to boron-based fullerenes.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Nickolas D Charistos
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
7
|
Kingsbury CJ, Senge MO. Quantifying near-symmetric molecular distortion using symmetry-coordinate structural decomposition. Chem Sci 2024:d4sc01670j. [PMID: 39129773 PMCID: PMC11310747 DOI: 10.1039/d4sc01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
We imagine molecules to be perfect, but rigidified units can be designed to bend from their ideal shape, discarding their symmetric elements as they progress through vibrations and larger, more permanent distortions. The shape of molecules is either simulated or measured by crystallography and strongly affects chemical properties but, beyond an image or tabulation of atom-to-atom distances, little is often discussed of the accessed conformation. We have simplified the process of shape quantification across multiple molecular types with a new web-accessible program - SCSD - through which a molecular subunit possessing near-symmetry can be dissected into symmetry coordinates with ease. This parameterization allows a common set of numbers for comparing and understanding molecular shape, and is a simple method for database analysis; this program is available at https://www.kingsbury.id.au/scsd.
Collapse
Affiliation(s)
- Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich Lichtenberg-Str. 2a 85748 Garching Germany
| |
Collapse
|
8
|
Fan G, Zhang Z, Wang G, Shao L, Hua B, Huang F. Construction of hydrocarbon belts based on macrocyclic arenes. Chem Sci 2024; 15:10713-10723. [PMID: 39027271 PMCID: PMC11253164 DOI: 10.1039/d4sc02576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024] Open
Abstract
Hydrocarbon belts have garnered significant attention due to their intriguing structures, unique properties, and potential applications in supramolecular chemistry and materials science. However, their highly inherently strained structures pose challenges in their synthesis, and the resulting tedious synthesis strategies hinder their large-scale applications. Utilizing unstrained macrocyclic arenes as precursors presents an efficient strategy, allowing for a strain-induction step that mitigates the energy barrier associated with building strain in the formation of these belts. Accessible unstrained macrocyclic precursors play a pivotal role in enabling efficient and large-scale syntheses of highly strained belts, facilitating their broader practical applications. This review provides an overview of the recent advancements in the construction of hydrocarbon belts using accessible macrocyclic arenes as building blocks. The synthetic strategies for these partially and fully conjugated hydrocarbon belts are discussed, along with their unique properties. We hope that this review will inspire the development of novel nanocarbon molecules, opening pathways for emerging areas and applications.
Collapse
Affiliation(s)
- Guangtan Fan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310058 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| | - Zhi Zhang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310058 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| | - Guangguo Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310058 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310058 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310058 P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 P. R. China
| |
Collapse
|
9
|
Kaneda T, Kato K, Ohtani S, Ogoshi T. Pillar[5]arenes decorated with six-membered-ring aromatics at all the substitution positions. Chem Sci 2024; 15:10651-10658. [PMID: 38994425 PMCID: PMC11234882 DOI: 10.1039/d4sc01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Macrocyclic molecules have characteristic properties different from linear ones, such as high symmetry and guest-inclusion ability. To bring drastic changes to these properties, direct introduction of many substituents is a challenging but effective tool. Herein, we attain direct installation of ten six-membered-ring aromatic π-units into both rims of a pillar[5]arene. In contrast to previous pillar[n]arenes with less hindered five-membered-ring units, which showed conformational complexity and crushed crystal structures, the per-phenyl-substituted pillar[5]arene has a cylinder-shaped crystal structure with a dichloromethane inside the cavity and is obtained as a single pair of D 5-symmetric enantiomers. The average dihedral angles between the core and peripheral benzene rings sharply increase from 38° to 66°. These differences indicate the importance of local steric repulsion on both rims for determining the structures and properties of macrocycles.
Collapse
Affiliation(s)
- Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
10
|
Fan Y, He J, Guo S, Jiang H. Host-Guest Chemistry in Binary and Ternary Complexes Utilizing π-Conjugated Carbon Nanorings. Chempluschem 2024; 89:e202300536. [PMID: 38123532 DOI: 10.1002/cplu.202300536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
The carbon nanorings, possessing a radial π system, have garnered significant attention primarily due to their size-dependent photophysical properties and the presence of a unique curved π-conjugated cavity. This is evidenced by the rapid proliferation of publications. Furthermore, the integration of building blocks into CPP skeletons can confer [n]CPPs with novel and exceptional photophysical and electronic characteristics, as well as chiral properties and host-guest interactions, thereby augmenting the diversity of [n]CPPs. Notably, the curved π surface structures and concave cavity of carbon nanorings enable them to host aromatic or non-aromatic guests with a complementarily curved surface, resulting in interesting binary or ternary complexes. This review provides a comprehensive treatment of literature reports on binary and ternary complexes, focusing on both their host-guest interactions and properties. It is important to note that the scope of this review is limited to host-guest chemistry in binary and ternary complexes based on π-conjugated carbon nanorings.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
11
|
Dong S, Han Y, Tong Z, Wang J, Zhang Y, Li A, Gopalakrishna TY, Tian H, Chi C. Facile synthesis and characterization of aza-bridged all-benzenoid quinoidal figure-eight and cage molecules. Chem Sci 2024; 15:9087-9095. [PMID: 38903229 PMCID: PMC11186326 DOI: 10.1039/d3sc02707d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Synthesis of conjugated compounds with unusual shape-persistent structures remains a challenge. Herein, utilizing thermodynamically reversible intermolecular Friedel-Crafts alkylation, a dynamic covalent chemistry (DCC) reaction, we facilely synthesized a figure-eight shaped macrocycle FEM and cage molecules CATPA/CACz. X-ray crystallographic analysis confirmed the chemical geometries of tetracation FEM4+(PF6 -)4 and hexacation CACz6+(SbF6 -)6. FEM and CATPA displayed higher photoluminescence quantum yield in solid states compared to that in solution, whereas CACz gave the reverse result. DFT calculations showed that fluorescence-related frontier molecular orbital profiles are mainly localized on their arms consisting of a p-quinodimethane (p-QDM) unit and two benzene rings of triphenylamine or carbazole. Owing to their space-confined structures, variable-temperature 1H NMR measurements showed that FEM, CATPA and FEM4+ have intramolecular restricted motion of phenyl rings on their chromophore arms. Accordingly, FEM and CATPA with flexible triphenylamine subunits displayed aggregation-induced emission behavior (AIE), whereas CACz with a rigid carbazole subunits structure showed no AIE behavior.
Collapse
Affiliation(s)
- Shaoqiang Dong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Zekun Tong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Jinfeng Wang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Yishan Zhang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | | | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| |
Collapse
|
12
|
Tanaka Y, Tajima K, Kusumoto R, Kobori Y, Fukui N, Shinokubo H. End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion. J Am Chem Soc 2024; 146:16332-16339. [PMID: 38813992 PMCID: PMC11177258 DOI: 10.1021/jacs.4c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryota Kusumoto
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi ,Saitama332-0012, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi ,Saitama332-0012, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
13
|
Han Y, Guo WC, Du XS, Chen CF. Synthesis and properties of an O-doped aromatic belt. Chem Commun (Camb) 2024; 60:5719-5722. [PMID: 38742271 DOI: 10.1039/d4cc01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A new macrocyclic arene, dibenzofuran[3]arene, was synthesized, which could be conveniently transformed to an O-doped aromatic belt with a rigid ring-shaped structure and deep cavity. Moreover, the O-doped aromatic belt also showed a high HOMO energy and a narrow HOMO-LUMO gap experimentally and theoretically.
Collapse
Affiliation(s)
- Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Yang J, Mao LL, Xiao H, Zhang G, Zhang S, Kang L, Lin Z, Tung CH, Wu LZ, Cong H. A Conjugated Phenylene Nanocage with a Guest-Adaptive Deformable Cavity. Angew Chem Int Ed Engl 2024; 63:e202403062. [PMID: 38421901 DOI: 10.1002/anie.202403062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
The highly strained, phenylene-derived organic cages are typically regarded as very rigid entities, yet their deformation potential and supramolecular properties remain underexplored. Herein, we report a pliable conjugated phenylene nanocage by synergistically merging rigid and flexible building blocks. The anisotropic cage molecule contains branched phenylene chains capped by a calix[6]arene moiety, the delicate conformational changes of which endow the cage with a remarkably deformable cavity. When complexing with fullerene guests, the cage showcases excellent guest-adaptivity, with its cavity volume capable of swelling by as much as 85 %.
Collapse
Affiliation(s)
- Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Kang
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheshuai Lin
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Guo S, Liu L, Li X, Liu G, Fan Y, He J, Lian Z, Yang H, Chen X, Jiang H. Highly Luminescent Chiral Carbon Nanohoops via Symmetry Breaking with a Triptycene Unit: Bright Circularly Polarized Luminescence and Size-Dependent Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308429. [PMID: 37988709 DOI: 10.1002/smll.202308429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chiral carbon nanohoops with both high fluorescence quantum yield and large luminescence dissymmetry factor are essential to the development of circularly polarized luminescence (CPL) materials. Herein, the rational design and synthesis of a series of highly fluorescent chiral carbon nanohoops TP-[8-13]CPPs via symmetry breaking with a chiral triptycene motif is reported. Theoretical calculations revealed that breaking the symmetry of nanohoops causes a unique size-dependent localization in the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular obtitals (LUMOs) as the increasing of sizes, which is sharply different from those of [n]cycloparaphenylenes. Photophysical investigations demonstrated that TP-[n]CPPs display size-dependent emissions with high fluorescence quantum yields up to 92.9% for TP-[13]CPP, which is the highest value among the reported chiral conjugated carbon nanohoops. The high fluorescence quantum yields are presumably attributed to both the unique acyclic, and radial conjugations and high radiative transition rates, which are further supported by theoretical investigations. Chiroptical studies revealed that chiral TP-[n]CPPs exhibit bright CPL with CPL brightness up to 100.5 M-1 cm-1 for TP-[11]CPP due to the high fluorescence quantum yield. Importantly, the investigations revealed the intrigued size-dependent properties of TP-[n]CPPs with regards to (chir)optical properties, which follow a nice linear relationship versus 1/n. Such a nice linear relationship is not observed in other reported conjugated nanohoops including CPPs.
Collapse
Affiliation(s)
- Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Huiji Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
16
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
17
|
Kayahara E, Mizuhata Y, Yamago S. Enhanced host-guest interaction between [10]cycloparaphenylene ([10]CPP) and [5]CPP by cationic charges. Beilstein J Org Chem 2024; 20:436-444. [PMID: 38410777 PMCID: PMC10896225 DOI: 10.3762/bjoc.20.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
A dication of [5]cycloparaphenylene ([5]CPP2+) was selectively encapsulated by neutral [10]CPP to form the shortest double-layer carbon nanotube, [10]CPP⊃[5]CPP2+. While the same host-guest complex consisted of neutral CPPs, [10]CPP⊃[5]CPP, was already reported, the cationic complex showed an about 20 times higher association constant in (CDCl2)2 at 25 °C (103 mol L-1). Electrochemical and photophysical analyses and theoretical calculations suggested the partial electron transfer from [10]CPP to [5]CPP2+ in the complex, and this charge-transfer (CT) interaction is most likely the origin of the higher association constant of the dicationic complex than the neutral one.
Collapse
Affiliation(s)
- Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | | | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| |
Collapse
|
18
|
Wang Y, Huang S, Zhang Z, Yan X. Synthesis and Photophysical Properties of Silole-Fused Cycloparaphenylenes. J Org Chem 2024; 89:681-686. [PMID: 38065576 DOI: 10.1021/acs.joc.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the introduction of a silole unit into cycloparaphenylenes (CPPs), and two compounds [12]Si3CPP and [16]Si4CPP are obtained by a platinum- and gold-mediated cyclooligomerization strategy. Their optical and electronic properties are studied by UV-vis absorption and fluorescence spectra, which show red shifts and higher photoluminescence quantum yields (PLQYs) compared with the corresponding CPPs.
Collapse
Affiliation(s)
- Yedong Wang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shiqing Huang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zengyu Zhang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
19
|
Chen Y, Sun L, Sun M, Zheng Y. Carbon nanobelts with zigzag and armchair edge and interlocked carbon nanobelts for chirality. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123286. [PMID: 37633098 DOI: 10.1016/j.saa.2023.123286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
This paper presents a theoretical study on the optical properties of carbon nanobelts with zigzag and armchair edges, as well as interlocked carbon nanobelts for chirality. The results demonstrate that two photon absorption (TPA) and electronic circular dichroism (ECD) techniques can effectively differentiate carbon nanoribbons with different boundaries, revealing their relationship and distinguishing features. The findings from this research contribute to a better comprehension of carbon nanoribbons, mechanically interlocked molecules, and chirality.
Collapse
Affiliation(s)
- Yu Chen
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Lichun Sun
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Youjin Zheng
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China.
| |
Collapse
|
20
|
Murugan G, Julietraja K, Alsinai A. Computation of Neighborhood M-Polynomial of Cycloparaphenylene and Its Variants. ACS OMEGA 2023; 8:49165-49174. [PMID: 38162762 PMCID: PMC10753576 DOI: 10.1021/acsomega.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
In the domains of materials and chemical and physical sciences, a significant aspiration is to design and synthesize extensively conjugated macrocycles possessing precisely defined structures. This objective bears substantial promise across a wide range of scientific and technological fields. These molecules offer a unique blend of structural complexity and electronic properties that make them particularly intriguing for both theoretical and practical reasons. Cycloparaphenylene (CPP) radial π-conjugated macrocycles is a specific example of a conjugated macrocycle that has garnered significant attention in the field of chemistry and materials science. It consists of a series of benzene rings linked together in a cyclic arrangement, forming a one-dimensional structure. CPP systems have been on the rise due to their novel and captivating characteristics, encompassing properties, such as electronic properties, heightened electrical conductivity, optoelectronic traits, and mechanical properties. Given the potential applications of CPP, it becomes essential to analyze this structure from a theoretical standpoint. Molecular descriptors play a crucial role in the theoretical analysis of such structures. Research on molecular descriptors has unequivocally demonstrated their significant correlation with the diverse properties of chemical compounds. This article illustrates the neighborhood sum M-polynomial-based descriptors' calculation using edge-partition techniques for CPP and its sidewalls consisting of pyrene and hexabenzocoronene units. The examination of these neighborhood sum M-polynomial-based descriptors for these structures has the potential to establish a foundational framework for delving deeper into CPP and its associated properties.
Collapse
Affiliation(s)
- Govindhan Murugan
- Department
of Mathematics, Chennai Institute of Technology, Chennai 600069, India
| | - Konsalraj Julietraja
- Department
of Mathematics, School of Engineering, Presidency
University, Bengaluru 560064, India
| | - Ammar Alsinai
- Department
of Mathematics, Ibb University, Ibb 70270, Yemen
| |
Collapse
|
21
|
Fujihara H, Naito M, Yashima T, Okada Y, Kobayashi N, Miyagawa S, Takaya H, Tokunaga Y. Synthesis of Cross-Chain Bridging Cryptands and Induction of Molecular Chirality. Org Lett 2023; 25:8959-8964. [PMID: 37871274 DOI: 10.1021/acs.orglett.3c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, we synthesized two cryptands featuring entangled tri- and tetra(ethylene glycol) linkers. The cryptand bearing short linkers was chiral without any asymmetric carbon atoms. After chiral high-performance liquid chromatography was used to separate the enantiomers, the absolute configuration of each cryptand was determined through single-crystal X-ray and circular dichroism analyses. The racemization of the cryptand possessing long linkers proceeded at room temperature.
Collapse
Affiliation(s)
- Hiroki Fujihara
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Takafumi Yashima
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yusuke Okada
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Hikaru Takaya
- Department of Life Science, Faculty of Life & Environmental Sciences, Teikyo University of Science, Main Buld #15-05, 2-2-1 Senjyusakuragi, Adachi-ku, Tokyo 120-0045, Japan
- Division of Photo-Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
22
|
Shudo H, Kuwayama M, Segawa Y, Yagi A, Itami K. Half-substituted fluorocycloparaphenylenes with high symmetry: synthesis, properties and derivatization to densely substituted carbon nanorings. Chem Commun (Camb) 2023; 59:13494-13497. [PMID: 37882201 DOI: 10.1039/d3cc04887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Fluorinated cycloparaphenylenes (FCPPs) have attracted attention as electron-accepting CPPs as well as strained fluoroarenes. Herein, we report the synthesis and properties of novel FCPPs; F16[8]CPP and F12[6]CPP. Furthermore, the derivatization of F16[8]CPP afforded a new carbon nanoring where sixteen pyrrole rings are densely substituted on the CPP framework.
Collapse
Affiliation(s)
- Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Motonobu Kuwayama
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yasutomo Segawa
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
23
|
Ishibashi H, Rondelli M, Shudo H, Maekawa T, Ito H, Mizukami K, Kimizuka N, Yagi A, Itami K. Noncovalent Modification of Cycloparaphenylene by Catenane Formation Using an Active Metal Template Strategy. Angew Chem Int Ed Engl 2023; 62:e202310613. [PMID: 37608514 DOI: 10.1002/anie.202310613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2'-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C-H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.
Collapse
Affiliation(s)
- Hisayasu Ishibashi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Manuel Rondelli
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Takehisa Maekawa
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kiichi Mizukami
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
24
|
Fan Y, Fan S, Liu L, Guo S, He J, Li X, Lian Z, Guo W, Chen X, Wang Y, Jiang H. Efficient manipulation of Förster resonance energy transfer through host-guest interaction enables tunable white-light emission and devices in heterotopic bisnanohoops. Chem Sci 2023; 14:11121-11130. [PMID: 37860654 PMCID: PMC10583698 DOI: 10.1039/d3sc04358d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, we synthesized and reported the heterotopic bisnanohoops P5-[8,10]CPPs containing cycloparaphenylenes (CPPs) and a pillar[5]arene unit, which act not only as energy donors but also as a host for binding energy acceptors. We demonstrated that a series of elegant FRET systems could be constructed successfully through self-assembly between donors P5-[8,10]CPPs and acceptors with different emissions via host-guest interaction. These FRET systems further allow us to finely adjust the donors P5-[8,10]CPPs and acceptors (BODIPY-Br and Rh-Br) for achieving multiple color-tunable emissions, particularly white-light emission. More importantly, these host-guest complexes were successfully utilized in the fabrication of white-light fluorescent films and further integrated with a 365 nm LED lamp to create white LED devices. The findings highlight a new application of carbon nanorings in white-light emission materials, beyond the common recognition of π-conjugated molecules.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Weijie Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
25
|
Kamin AA, Clayton TD, Otteson CE, Gannon PM, Krajewski S, Kaminsky W, Jasti R, Xiao DJ. Synthesis and metalation of polycatechol nanohoops derived from fluorocycloparaphenylenes. Chem Sci 2023; 14:9724-9732. [PMID: 37736630 PMCID: PMC10510647 DOI: 10.1039/d3sc03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Due to their unique topology and distinct physical properties, cycloparaphenylenes (CPPs) are attractive building blocks for new materials synthesis. While both noncovalent interactions and irreversible covalent bonds have been used to link CPP monomers into extended materials, a coordination chemistry approach remains less explored. Here we show that nucleophilic aromatic substitution reactions can be leveraged to rapidly introduce donor groups (-OR, -SR) onto polyfluorinated CPP rings. Demethylation of methoxide-substituted CPPs produces polycatechol nanohoop ligands that are readily metalated to produce well-defined, multimetallic CPP complexes. As catechols are recurring motifs throughout coordination chemistry and dynamic covalent chemistry, the polycatechol nanohoops reported here open the door to new strategies for the bottom-up synthesis of atomically precise CPP-based materials.
Collapse
Affiliation(s)
- Ashlyn A Kamin
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Tara D Clayton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Claire E Otteson
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Sebastian Krajewski
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Dianne J Xiao
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| |
Collapse
|
26
|
Mateos-Martín J, Dhbaibi K, Melle-Franco M, Mateo-Alonso A. Modulating Strain in Twisted Pyrene-Fused Azaacenes. Chemistry 2023:e202302002. [PMID: 37682106 DOI: 10.1002/chem.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
The design and synthesis of strained aromatics provide an additional insight into the relationship between structure and properties. In the last years, several approaches to twist pyrene-fused azaacenes have been developed that allow to introduce twists of different sizes. Herein, we describe the synthesis of a new set of twisted dibenzotetraazahexacenes constituted by fused pyrene and quinoxaline residues that have been distorted by introducing increasingly larger substituents on the quinoxaline residues. Their twisted structure has been demonstrated by single-crystal X-ray diffraction. Furthermore, absorption, fluorescence, electrochemical and theoretical studies shine light on the effects of the substituents and twists on the optoelectronic and redox properties.
Collapse
Affiliation(s)
- Javier Mateos-Martín
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Kais Dhbaibi
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Lingas R, Charistos ND, Muñoz-Castro A. Charge delocalization and aromaticity of doubly reduced double-walled carbon nanohoops. Phys Chem Chem Phys 2023. [PMID: 37448229 DOI: 10.1039/d3cp01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Cycloparaphenylenes (CPPs) exhibit selective host capabilities, featuring the ability to incorporate smaller CPPs to form double-walled host-guest complexes. Moreover, CPPs can also be stabilized by global aromaticity under twofold oxidation or reduction, involving electronic conjugation along with the overall structural backbone. Herein we explore the structural modifications, bonding, electron delocalization and magnetic properties of doubly reduced double-walled CPP complexes with DFT methods, in the isolated and aggregate [n + 5]CPP⊃[n]CPP2- (n = 5-8) species. Our results show that the hosts undergo structural, bonding and delocalization deformations towards quinoidal configurations and exhibit global long-ranged shielding cones similar to global aromatic free dianionic CPPs, accounting for charge delocalization on the outer nanohoops, whereas the guests preserve local aromatic benzenoid configurations, resulting in global and local aromatic circuits within the host-guest aggregate. This observation suggests that in multi-layered related species electronic delocalization will be retained at the outer structural surface. The aromaticity of the hosts is manifested in the strong upfield shifts of the guests 1H-NMR signals. Hence, CPP complexes can be extended to doubly reduced species stabilized by global host aromaticity expanding our understanding of doubled-walled nanotubes at the nanoscale regime.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
28
|
Du K, Wang Y. Infinitenes as the Most Stable Form of Cycloarenes: The Interplay among π Delocalization, Strain, and π-π Stacking. J Am Chem Soc 2023; 145:10763-10778. [PMID: 37092900 DOI: 10.1021/jacs.3c01644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The recent successful preparation of infinitene has sparked widespread attention due to its aesthetic appeal and synthetic challenge. Spectroscopic measurements and follow-up computational investigations suggest that infinitene holds fundamental significance and potential applications in chiroptics, optoelectronics, asymmetric synthesis, and supramolecular chemistry. However, unlike other looped polyarenes enriched with sizes and shapes, the infinitene molecule seems, so far, the only known example of this fascinating new form of nanocarbons, whose further exploitation would be considerably limited because of the lack of molecular diversity. Here, we introduce a whole new family of generalized infinitenes with different sizes and topologies. Three types of infinitene structures are rationally designed by joining two units of coronene, kekulene, or their extended analogs. The constructed molecules of varying sizes, each with a large number of possible topoisomers, are systematically studied by DFT calculations. Comprehensive analysis using a simple energy decomposition model uncovers that the stability of infinitenes is governed by the interplay among π delocalization, steric strain, and π-π stacking. While the first two factors are crucial to the stability of smaller infinitenes, the latter is the primary stabilizing interaction for larger infinitenes. Most importantly, we show that larger-sized infinitenes are actually the energetically most favorable form among all known looped polyarenes; their substantial thermodynamic stability surpassing that of circulenes, various carbon nanobelts, and kekulene-like macrocycles renders them promising targets for synthesis. The simulated 1H NMR, UV-vis, and circular dichroism spectra along with optical rotations for the most stable infinitene species may help their identification in future synthetic efforts.
Collapse
Affiliation(s)
- Ke Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
29
|
Anjalikrishna PK, Gadre SR, Suresh CH. Electrostatic Potential for Exploring Electron Delocalization in Infinitenes, Circulenes, and Nanobelts. J Org Chem 2023; 88:4123-4133. [PMID: 36952587 DOI: 10.1021/acs.joc.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The π-conjugation, aromaticity, and stability of the newly synthesized 12-infinitene and of other infinitenes comprising 8-, 10-, 14-, and 16-arene rings are investigated using density functional theory. The π-electron delocalization and aromatic character rooted in infinitenes are quantified in terms of molecular electrostatic potential (MESP) topology. Structurally, the infinitene bears a close resemblance of its helically twisted structure to the infinity symbol. The MESP topology shows that infinitene possesses an infinity-shaped delocalization of the electron density that streams over the fused benzenoid rings. The parameter ∑i=13Δλi, derived from the eigenvalues (λi) corresponding to the MESP minima, is used for quantifying the aromatic character of arene rings of infinitene. The structure, stability, and MESP topology features of 8-, 10-, 12-, 14-, and 16-infinitenes are also compared with the corresponding isomeric circulenes and carbon nanobelts. Further, the strain in all such systems is evaluated by considering the respective isomeric planar benzenoid hydrocarbons as reference systems. The 12-infinitene turns out to be the most aromatic and the least strained among all the systems examined.
Collapse
Affiliation(s)
- Puthannur K Anjalikrishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling and Simulation, Savitribai Phule Pune University, Pune 411007, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Kato K, Kaneda T, Ohtani S, Ogoshi T. Per-Arylation of Pillar[ n]arenes: An Effective Tool to Modify the Properties of Macrocycles. J Am Chem Soc 2023; 145:6905-6913. [PMID: 36929722 DOI: 10.1021/jacs.3c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
31
|
Sandoval-Salinas ME, Brémond E, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. Excitation energies of polycylic aromatic hydrocarbons by double-hybrid functionals: Assessing the PBE0-DH and PBE-QIDH models and their range-separated versions. J Chem Phys 2023; 158:044105. [PMID: 36725511 DOI: 10.1063/5.0134946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A family of non-empirical double-hybrid (DH) density functionals, such as Perdew-Burke-Ernzerhof (PBE)0-DH, PBE-QIDH, and their range-separated exchange (RSX) versions RSX-0DH and RSX-QIDH, all using Perdew-Burke-Ernzerhof(PBE) exchange and correlationfunctionals, is applied here to calculate the excitation energies for increasingly longer linear and cyclic acenes as part of their intense benchmarking for excited states of all types. The energies for the two lowest-lying singlet 1La and 1Lb states of linear oligoacenes as well as the triplet 3La and 3Lb states, are calculated and compared with experimental results. These functionals clearly outperform the results obtained from hybrid functionals and favorably compare with other double-hybrid expressions also tested here, such as B2-PLYP, B2GP-PLYP, ωB2-PLYP, and ωB2GP-PLYP. The study is complemented by the computation of adiabatic S0-T1 singlet-triplet energy difference for linear acenes as well as the extension of the study to strained cyclic oligomers, showing how the family of non-empirical expressions robustly leads to competitive results.
Collapse
Affiliation(s)
- M E Sandoval-Salinas
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - E Brémond
- ITODYS, CNRS, Université Paris Cité, F-75006 Paris, France
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - C Adamo
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), UMR8060, PSL Research University, F-75005 Paris, France
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
32
|
George G, Stasyuk OA, Voityuk AA, Stasyuk AJ, Solà M. Aromaticity controls the excited-state properties of host-guest complexes of nanohoops. NANOSCALE 2023; 15:1221-1229. [PMID: 36537223 DOI: 10.1039/d2nr04037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
π-Conjugated organic molecules have exciting applications as materials for batteries, solar cells, light-emitting diodes, etc. Among these systems, antiaromatic compounds are of particular interest because of their smaller HOMO-LUMO energy gap compared to aromatic compounds. A small HOMO-LUMO gap is expected to facilitate charge transfer in the systems. Here we report the ground and excited-state properties of two model nanohoops that are nitrogen-doped analogs of recently synthesized [4]cyclodibenzopentalenes - tetramers of benzene-fused aromatic 1,4-dihydropyrrolo[3,2-b]pyrrole ([4]DHPP) and antiaromatic pyrrolo[3,2-b]pyrrole ([4]PP). Their complexes with C60 fullerene show different behavior upon photoexcitation, depending on the degree of aromaticity. [4]DHPP acts as an electron donor, whereas [4]PP is a stronger electron acceptor than C60. The ultrafast charge separation combined with the slow charge recombination that we found for [4]PP⊃C60 indicates a long lifetime of the charge transfer state.
Collapse
Affiliation(s)
- G George
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - O A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - A A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - A J Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - M Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
33
|
Odajima M, Fukui N, Shinokubo H. Dinaphthooxepine Bisimide Undergoes Oxygen Extrusion Reaction upon Electron Injection at Room Temperature. Org Lett 2023; 25:282-287. [PMID: 36602262 DOI: 10.1021/acs.orglett.2c04173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the synthesis and properties of a dinaphthooxepine bisimide (DNOBI), a nonplanar perylene bisimide (PBI) analogue with an inserted oxygen atom. A DNOBI underwent an oxygen-extrusion reaction smoothly upon electron injection at room temperature, affording PBI in good yield. Studies on the reaction mechanism suggest that the injection of two electrons triggers the isomerization of DNOBI to dinaphthooxanorcaradiene bisimide, which is a key step in inducing the oxygen-extrusion reaction.
Collapse
Affiliation(s)
- Mai Odajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
34
|
Zhu M, Zhou Q, Cheng H, Sha Y, Bregadze VI, Yan H, Sun Z, Li X. Boron-Cluster Embedded Necklace-Shaped Nanohoops. Angew Chem Int Ed Engl 2023; 62:e202213470. [PMID: 36203221 DOI: 10.1002/anie.202213470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 12/30/2022]
Abstract
The combination of carbon-based nanohoops with other functional organic molecular structures should lead to the design of new molecular configurations with interesting properties. Here, necklace-like nanohoops embedded with carborane were synthesized for the first time. The unique deboronization of o-carborane has led to the facile preparation of ionic nanohoop compounds. Nanohoops functionalized by nido-o-carborane show excellent fluorescence emission, with a solution quantum yield of up to 90.0 % in THF and a solid-state quantum efficiency of 87.3 %, which opens an avenue for the applications of the nanohoops in OLEDs and bioimaging.
Collapse
Affiliation(s)
- Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Zhou
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Cheng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Sha
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Vladimir I Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences, Moscow, 119991, Russia
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
35
|
Ono K, Tanaka Y, Sugimoto K, Kinubari S, Kawai H. Endo-Functionalized Cyclic Oligophenylenes: Synthesis and Complexation with a Chiral Phosphoric Acid. ACS OMEGA 2022; 7:45347-45352. [PMID: 36530312 PMCID: PMC9753635 DOI: 10.1021/acsomega.2c05926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The synthesis of endo-functionalized cyclic oligophenylenes in which adjacent benzene rings are perpendicular to one another is described. Annulation precursors, OH- or NH2-functionalized quinquephenyl diboronic acids, and septiphenyl dibromo compounds were systematically prepared by using a diprotected biphenyl-3,4'-diyl diboronic acid as a key compound. Four endo-functionalized cyclic oligophenylenes were synthesized by annulation of the precursors in dilute conditions through Suzuki-Miyaura cross-coupling. X-ray analysis of the macrocycle revealed the unique 1D channel packing structure formed by connecting the nanometer-sized cavity of the macrocycle. Furthermore, NH2-functionalized macrocycles could bind a chiral phosphoric acid in the cavity in CDCl3 solution.
Collapse
Affiliation(s)
- Kosuke Ono
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Tanaka
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Sugimoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shigemi Kinubari
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
36
|
Isobe H, Kotani Y, Matsuno T, Fukunaga TM, Ikemoto K. Target-oriented design of helical nanotube molecules for rolled incommensurate bilayers. Commun Chem 2022; 5:152. [PMID: 36697965 PMCID: PMC9814558 DOI: 10.1038/s42004-022-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Incommensurate double-wall carbon nanotubes give rise to unique stereochemistry originating from twisted stacks of hexagon arrays. However, atomic-level studies on such unique systems have rarely been performed, even though syntheses of molecular segments of carbon nanotubes have been extensively explored. The design of cylindrical molecules with chirality, particularly, in pairs provides synthetic challenges, because relationships between diameters specified with chiral indices and structures of arylene panels have not been investigated in a systematic manner. Here we show that a molecular version of incommensurate double-wall carbon nanotubes can be designed through the development of an atlas for the top-down design of cylindrical molecules. A large-bore cylindrical molecule with a diameter of 1.77 nm was synthesized using a readily available pigment and encapsulated a small-bore cylindrical molecule with a diameter of 1.04 nm. The large- and small-bore molecules possessed helicity in atomic arrangements, and their coaxial assembly proceeded in nonstereoselective manner to give both heterohelical and homohelical combinations.
Collapse
Affiliation(s)
- Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yuki Kotani
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiya M Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
37
|
Freixas VM, Tretiak S, Fernandez-Alberti S. Infinitene: Computational Insights from Nonadiabatic Excited State Dynamics. J Phys Chem Lett 2022; 13:8495-8501. [PMID: 36066077 DOI: 10.1021/acs.jpclett.2c02296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Progress in organic synthesis opens exploration of a rich diversity of molecules with interesting new structural topologies. This is the case of a recently synthesized helically twisted figure-eight molecule coined infinitene. The molecule belongs to a numerous family of looped polyarenes, where the degree of π-conjugation is controlled by high strain energies and steric hindrances. A particular balance of these ingredients leads to unusual optoelectronic properties potentially suitable for a range of applications in nanoelectronics and photonics. Due to its recent discovery, the photophysical properties of infinitene remain unexplored. In this Letter, atomistic nonadiabatic excited state molecular dynamics modeling unveils unique features of intramolecular electronic and vibrational energy relaxation and redistribution that take place after molecular photoexcitation. Our results detail relationships between optical and electronic properties providing useful knowledge for future molecular designs related to infinitene.
Collapse
Affiliation(s)
- Victor Manuel Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
38
|
Prabhu S, Murugan G, Therese SK, Arulperumjothi M, Siddiqui MK. Molecular Structural Characterization of Cycloparaphenylene and its Variants. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1942082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. Prabhu
- Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| | - G. Murugan
- Department of Mathematics, Chennai Institute of Technology, Chennai, Tamil Nadu, India
| | - S. Kulandai Therese
- Department of Mathematics, St. Mary’s College, Thoothukudi, Tamil Nadu, India
| | - M. Arulperumjothi
- Department of Mathematics, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | | |
Collapse
|
39
|
Kharlamova MV, Burdanova MG, Paukov MI, Kramberger C. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5898. [PMID: 36079282 PMCID: PMC9457432 DOI: 10.3390/ma15175898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 05/06/2023]
Abstract
The synthesis of high-quality chirality-pure single-walled carbon nanotubes (SWCNTs) is vital for their applications. It is of high importance to modernize the synthesis processes to decrease the synthesis temperature and improve the quality and yield of SWCNTs. This review is dedicated to the chirality-selective synthesis, sorting of SWCNTs, and applications of chirality-pure SWCNTs. The review begins with a description of growth mechanisms of carbon nanotubes. Then, we discuss the synthesis methods of semiconducting and metallic conductivity-type and single-chirality SWCNTs, such as the epitaxial growth method of SWCNT ("cloning") using nanocarbon seeds, the growth method using nanocarbon segments obtained by organic synthesis, and the catalyst-mediated chemical vapor deposition synthesis. Then, we discuss the separation methods of SWCNTs by conductivity type, such as electrophoresis (dielectrophoresis), density gradient ultracentrifugation (DGC), low-speed DGC, ultrahigh DGC, chromatography, two-phase separation, selective solubilization, and selective reaction methods and techniques for single-chirality separation of SWCNTs, including density gradient centrifugation, two-phase separation, and chromatography methods. Finally, the applications of separated SWCNTs, such as field-effect transistors (FETs), sensors, light emitters and photodetectors, transparent electrodes, photovoltaics (solar cells), batteries, bioimaging, and other applications, are presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dubrávská cesta 5807/9, 854 11 Bratislava, Slovakia
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-BC-2, 1060 Vienna, Austria
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Maksim I. Paukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| |
Collapse
|
40
|
Huang T, Gao H, Chen J, Liu H, Wu D, Wang G. A book-like organic based electrode with high areal capacity for high performance flexible lithium/sodium-ion batteries. Chem Commun (Camb) 2022; 58:10158-10161. [PMID: 36000553 DOI: 10.1039/d2cc03297j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By directly bonding the monolayer organic based electrodes together to assemble the book-like multilayer electrode, increased areal capacity and high flexibility can be achieved. The electrodes represent 5.88 mA h cm-2 at 0.7C and 5.24 mA h cm-2 at 0.2C areal capacity in lithium-ion and sodium-ion batteries, respectively.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. .,School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| | - Hong Gao
- School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jun Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Liu
- School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Guoxiu Wang
- School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
41
|
Yoshigoe Y, Tanji Y, Hata Y, Osakada K, Saito S, Kayahara E, Yamago S, Tsuchido Y, Kawai H. Dynamic Au-C σ-Bonds Leading to an Efficient Synthesis of [ n]Cycloparaphenylenes ( n = 9-15) by Self-Assembly. JACS AU 2022; 2:1857-1868. [PMID: 36032535 PMCID: PMC9400051 DOI: 10.1021/jacsau.2c00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmetalation of the digold(I) complex [Au2Cl2(dcpm)] (1) (dcpm = bis(dicyclohexylphosphino)methane) with oligophenylene diboronic acids gave the triangular macrocyclic complexes [Au2(C6H4) x (dcpm)]3 (x = 3, 4, 5) with yields of over 70%. On the other hand, when the other digold(I) complex [Au2Cl2(dppm)] (1') (dppm = bis(diphenylphosphino)methane) was used, only a negligible amount of the triangular complex was obtained. The control experiments revealed that the dcpm ligand accelerated an intermolecular Au(I)-C σ-bond-exchange reaction and that this high reversibility is the origin of the selective formation of the triangular complexes. Structural analyses and theoretical calculations indicate that the dcpm ligand increases the electrophilicity of the Au atom in the complex, thus facilitating the exchange reaction, although the cyclohexyl group is an electron-donating group. Furthermore, the oxidative chlorination of the macrocyclic gold complexes afforded a series of [n]cycloparaphenylenes (n = 9, 12, 15) in 78-88% isolated yields. The reorganization of two different macrocyclic Au complexes gave a mixture of macrocyclic complexes incorporating different oligophenylene linkers, from which a mixture of [n]cycloparaphenylenes with various numbers of phenylene units was obtained in good yields.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yohei Tanji
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Hata
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Saito
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiichi Kayahara
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshitaka Tsuchido
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
42
|
Palomo L, Favereau L, Senthilkumar K, Stępień M, Casado J, Ramírez FJ. Simultaneous Detection of Circularly Polarized Luminescence and Raman Optical Activity in an Organic Molecular Lemniscate. Angew Chem Int Ed Engl 2022; 61:e202206976. [PMID: 35785514 PMCID: PMC9544083 DOI: 10.1002/anie.202206976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Abstract
Circularly polarized luminescence (CPL) and Raman optical activity (ROA) were observed in a single spectroscopic experiment for a purely organic molecule, an event that had so far been limited to lanthanide‐based complexes. The present observation was achieved for [16]cycloparaphenylene lemniscate, a double macrocycle constrained by a rigid 9,9′‐bicarbazole subunit, which introduces a chirality source and allows the molecule to be resolved into two configurationally stable enantiomers. Distortion of oligophenylene loops in this lemniscular structure produces a large magnetic transition dipole moment while maintaining the π‐conjugation‐induced enhancement of the Raman signal, causing the appearance of the CPL/ROA couple. A two‐photon mechanism is proposed to explain the population of the lowest‐energy excited electronic state prior to the simultaneous emission‐scattering event.
Collapse
Affiliation(s)
- Luis Palomo
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| | | | - Kabali Senthilkumar
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Juan Casado
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| | - Francisco J. Ramírez
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| |
Collapse
|
43
|
Abstract
A convergent synthesis of dibenzochrysenes and diindenochrysenes that proceeds from difluorofluorenes and acetoxyenone 15 has been used to prepare 5,6,11,12-tetrabromosemibuckminsterfullerene (31). The synthesis is highly modular and is distinguished by proceeding through an unsymmetrical intermediate. Our work will enable the straightforward preparation of semibuckminsterfullerenes from diindenochrysenes that lack bilateral symmetry using common reagents and nonpyrolytic conditions.
Collapse
Affiliation(s)
- Cody F Dickinson
- Chemistry Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Justin K Yang
- Chemistry Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Marcus A Tius
- Chemistry Department, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
44
|
Fang P, Chen M, Zhang X, Du P. Selective synthesis and (chir)optical properties of binaphthyl-based chiral carbon macrocycles. Chem Commun (Camb) 2022; 58:8278-8281. [PMID: 35790128 DOI: 10.1039/d2cc01242a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the selective synthesis, characterization, and photophysical properties of two novel chiral carbon macrocycles. Non-planar (S)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene was introduced into the scaffold of oligo-paraphenylenes to achieve the chirality in these macrocycles. Their photophysical properties were investigated by steady-state and time-resolved spectroscopies, as well as circular dichroism and circularly polarized luminescence spectroscopies. We demonstrate that the emission maxima of the chiral macrocycles are redshifted compared to chiral binaphthyl units and that macrocycles show chiroptical properties (|glum| > 1.0 × 10-3).
Collapse
Affiliation(s)
- Pengwei Fang
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China.
| | - Muqing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, China.
| | - Xinyu Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China.
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, China.
| |
Collapse
|
45
|
Palomo L, Favereau L, Senthilkumar K, Stępień M, Casado J, Ramirez FJ. Simultaneous Detection of Circularly Polarized Luminescence and Raman Optical Activity in an Organic Molecular Lemniscate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luis Palomo
- Universidad de Malaga Physical Chemistry SPAIN
| | - Ludovic Favereau
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes FRANCE
| | | | - Marcin Stępień
- Uniwersytet Wroclawski Wydzial Chemii Wydzial Chemii POLAND
| | - Juan Casado
- Universidad de Malaga Physical Chemistry SPAIN
| | | |
Collapse
|
46
|
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Perfluorocycloparaphenylenes. Nat Commun 2022; 13:3713. [PMID: 35764634 PMCID: PMC9240036 DOI: 10.1038/s41467-022-31530-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in materials science owing to their high electron affinity and characteristic intermolecular interactions. However, methods to synthesize highly strained perfluoroarenes are limited, which greatly limits their structural diversity. Herein, we report the synthesis and isolation of perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n = 10, 12, 14, 16) in one-pot without noble metals. The molecular structures of PF[n]CPPs (n = 10, 12, 14) were determined by X-ray crystallography to confirm their tubular alignment. Photophysical and electrochemical measurements revealed that PF[n]CPPs (n = 10, 12, 14) exhibited wide HOMO–LUMO gaps, high reduction potentials, and strong phosphorescence at low temperature. PFCPPs are not only useful as electron-accepting organic materials but can also be used for accelerating the creation of topologically unique molecular nanocarbon materials. Synthetic methods for the preparation of perfluorinated aromatic compounds are desirable in materials science. Here, the authors synthesize perfluorocycloparaphenylenes, fully fluorinated carbon nanorings, through a nickel-mediated one-pot method.
Collapse
Affiliation(s)
- Hiroki Shudo
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motonobu Kuwayama
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | | | - Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Nobuhiko Mitoma
- RIKEN Center for Emergent Matter Science, Wako, 351-0198, Japan
| | - Takuya Kuwabara
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan. .,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan.
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
47
|
Lee JB, Kim GH, Jeon JH, Jeong SY, Lee S, Park J, Lee D, Kwon Y, Seo JK, Chun JH, Kang SJ, Choe W, Rohde JU, Hong SY. Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nat Commun 2022; 13:2421. [PMID: 35504905 PMCID: PMC9065069 DOI: 10.1038/s41467-022-30086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Conventional synthetic methods to yield polycyclic heteroarenes have largely relied on metal-mediated arylation reactions requiring pre-functionalised substrates. However, the functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Herein, we report a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts. Mechanistic and electron paramagnetic resonance studies provide evidence for the in situ generation of organic electron donors, while chemical trapping and electrochemical experiments implicate an iodanyl radical intermediate serving as a formal biaryl radical equivalent. This intermediate, formed by one-electron reduction of the cyclic iodonium salt, acts as the key intermediate driving the Minisci-type arylation reaction. The synthetic utility of this radical-based annulative π-extension method is highlighted by the preparation of an N-doped heptacyclic nanographene fragment through fourfold C–H arylation. The functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Here the authors show a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts.
Collapse
Affiliation(s)
- Jae Bin Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gun Ha Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ji Hwan Jeon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seo Yeong Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehyun Park
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doyoung Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jan-Uwe Rohde
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
48
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
49
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
50
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022; 61:e202200800. [DOI: 10.1002/anie.202200800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|