1
|
Giugliano G, Gajo M, Marforio TD, Zerbetto F, Mattioli EJ, Calvaresi M. Identification of Potential Drug Targets of Calix[4]arene by Reverse Docking. Chemistry 2024; 30:e202400871. [PMID: 38777795 DOI: 10.1002/chem.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.
Collapse
Affiliation(s)
- Giulia Giugliano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Margherita Gajo
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| |
Collapse
|
2
|
Chen J, Tabaie EZ, Hickey BL, Gao Z, Raz AAP, Li Z, Wilson EH, Hooley RJ, Zhong W. Selective Molecular Recognition and Indicator Displacement Sensing of Neurotransmitters in Cellular Environments. ACS Sens 2023; 8:3195-3204. [PMID: 37477362 DOI: 10.1021/acssensors.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Flexible, water-soluble hosts are capable of selective molecular recognition in cellular environments and can detect neurotransmitters such as choline in cells. Both cationic and anionic water-soluble self-folded deep cavitands can recognize suitable styrylpyridinium dyes in cellular interiors. The dyes selectively accumulate in nucleotide-rich regions of the cell nucleus and cytoplasm. The hosts bind the dyes and promote their relocation to the outer cell membrane: the lipophilic cavitands predominantly reside in membrane environments but are still capable of binding suitable targets in other cellular organelles. Incubating the cells with structurally similar biomarkers such as choline, cholamine, betaine, or butyrylcholine illustrates the selective recognition. Choline and butyrylcholine can be bound by the hosts, but minimal binding is seen with betaine or cholamine. Varying the dye allows control of the optical detection method, and both "turn-on" sensing and "turn-off" sensing are possible.
Collapse
|
3
|
Xia S, Jiang Y, Guo X, Wang Y, Xu W. Effects of p-sulfonatocalixarene and p-sulfonatocalixarene/sulfobetaine surfactant complex on the activities of bromelain and polyphenol oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Hodson L, Visagie KJ, Smith MP, Loots L, Kuter D, Snayer TM, Arnott GE. Facile synthesis of a C4-symmetrical inherently chiral calix[4]arene. Chem Commun (Camb) 2021; 57:11045-11048. [PMID: 34617530 DOI: 10.1039/d1cc04607a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inherently chiral calix[4]arenes with C4-symmetry are extremely rare and difficult to synthesise, severely hampering any effort to expand on their potential as chiral supramolecular catalysts and building blocks. Herein we report a reaction of a tetracarbamate calix[4]arene with NBS which results in a high yield of an inherently chiral calix[4]arenes with C4-symmetry. Furthermore, employing a chiral N-Boc proline moiety allows for separation of the diastereomers formed, thus obtaining the pure enantiomers after hydrolysis. The enantiomers could be assigned based on the CD spectra and DFT calculated values.
Collapse
Affiliation(s)
- Luke Hodson
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Kevin J Visagie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Michael-Phillip Smith
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - David Kuter
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Trégen M Snayer
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
5
|
Beatty MA, Hof F. Host-guest binding in water, salty water, and biofluids: general lessons for synthetic, bio-targeted molecular recognition. Chem Soc Rev 2021; 50:4812-4832. [PMID: 33651047 DOI: 10.1039/d0cs00495b] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic molecular recognition systems are increasingly being used to solve applied problems in the life sciences, and bio-targeted host-guest chemistry has rapidly arisen as a major field of fundamental research. This tutorial review presents a set of fundamental lessons on how host-guest molecular recognition can be programmed in water. The review uses informative examples of aqueous host-guest chemistry organized around generalizable themes and lessons, building towards lessons focused on molecular recognition in salty solutions and biological fluids. It includes selected examples of macrocyclic host systems that work well, as well as common pitfalls and how to avoid them. The review closes with a survey of the most important and inspirational recent advances, which involve host-guest chemistry in living cells and organisms.
Collapse
Affiliation(s)
- Meagan A Beatty
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3V6 Canada.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3V6 Canada.
| |
Collapse
|
6
|
Two coordination polymers based on p-tert-butylcalix[4]arene as efficient luminescent sensor for Fe3+ and MnO4− ions. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Synthesis and Glycosidase Inhibition Properties of Calix[8]arene-Based Iminosugar Click Clusters. Pharmaceuticals (Basel) 2020; 13:ph13110366. [PMID: 33167387 PMCID: PMC7694328 DOI: 10.3390/ph13110366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
A set of 6- to 24-valent clusters was constructed with terminal deoxynojirimycin (DNJ) inhibitory heads through C6 or C9 linkers by way of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions between mono- or trivalent azido-armed iminosugars and calix[8]arene scaffolds differing in their valency and their rigidity but not in their size. The power of multivalency to upgrade the inhibition potency of the weak DNJ inhibitor (monovalent DNJ Ki being at 322 and 188 µM for C6 or C9 linkers, respectively) was evaluated on the model glycosidase Jack Bean α-mannosidase (JBα-man). Although for the clusters with the shorter C6 linker the rigidity of the scaffold was essential, these parameters had no influence for clusters with C9 chains: all of them showed rather good relative affinity enhancements per inhibitory epitopes between 70 and 160 highlighting the sound combination of the calix[8]arene core and the long alkyl arms. Preliminary docking studies were performed to get insights into the preferred binding modes.
Collapse
|
8
|
Wang J, Liu D, Guo X, Yan C. Ammonium and imidazolium-based amphiphilic tetramethoxy resorcinarenes: Adsorption, micellization, and protein binding. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
|
10
|
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152:169-190. [PMID: 31071378 DOI: 10.1016/j.addr.2019.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, increasing interest has been attracted towards the application of artificial intelligence (AI) technology for analyzing and interpreting the biological or genetic information, accelerated drug discovery, and identification of the selective small-molecule modulators or rare molecules and prediction of their behavior. Application of the automated workflows and databases for rapid analysis of the huge amounts of data and artificial neural networks (ANNs) for development of the novel hypotheses and treatment strategies, prediction of disease progression, and evaluation of the pharmacological profiles of drug candidates may significantly improve treatment outcomes. Target fishing (TF) by rapid prediction or identification of the biological targets might be of great help for linking targets to the novel compounds. AI and TF methods in association with human expertise may indeed revolutionize the current theranostic strategies, meanwhile, validation approaches are necessary to overcome the potential challenges and ensure higher accuracy. In this review, the significance of AI and TF in the development of drugs and delivery systems and the potential challenging issues have been highlighted.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
11
|
Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci 2019; 269:187-202. [PMID: 31082545 DOI: 10.1016/j.cis.2019.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Calixarene is the third generation of supra-molecular compounds after crown ether and cyclodextrin. Amphiphilic calixarene can be obtained by modulation with both hydrophilic group and hydrophobic alkyl chain. Compared with conventional surfactant, amphiphilic calixarene has much lower critical micelle concentration and is much easier to self-assemble into different morphological aggregates. Calixarene-basedsupra-amphiphile can be designed via noncovalent bonds due to the capability of calixarene to recognize surfactant; the binding of a surfactant with calixarene can decrease the critical micelle concentration of surfactant by several times. The calixarene-surfactant complex can self-aggregate to form spherical micelles, vesicles, and spherical nanoparticles, and the aggregation behavior can be controlled by the structures and the molar ratio of surfactant to calixarene and environmental factors. Calixarene-based amphiphile and supra-amphiphile show low cytotoxicity. They can load drugs and assemble into nanocapsules with drugs. The structure of the calixarene-drug complex can respond to external stimuli, rendering the sustained release of the drug and suggesting its potential application as a drug delivery system. Recently, calixarene has also been found to selectively bind proteins, suggesting its prospect in disease diagnosis and intervention treatment in clinics. This review elaborates on the research progress in the self-assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications of the calixarenes in drug delivery and protein recognition. The prospectives for the studies are also provided in this review.
Collapse
|
12
|
Gaeta C, Talotta C, Neri P. Calix[6]arene-based atropoisomeric pseudo[2]rotaxanes. Beilstein J Org Chem 2018; 14:2112-2124. [PMID: 30202465 PMCID: PMC6122310 DOI: 10.3762/bjoc.14.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Some examples of atropoisomeric pseudorotaxanes in which the isomerism arises by the different conformations adopted by the wheel are reported here. Upon threading hexahexyloxycalix[6]arene 1 with ammonium axles 2+ or 3+, bearing biphenyl or trifluoromethylbenzyl moieties, respectively, two atropoisomeric pseudorotaxanes were formed in which the calix[6]-wheel 1 adopts the 1,2,3-alternate and cone conformations. The interconversion between them cannot be obtained by simple rotation around the ArCH2Ar bonds of the calixarene wheel, which is blocked by the presence of the axle inside its cavity. Therefore, it can only be obtained through a mechanism of de-threading/re-threading of the axle. In all the examined cases, the 1,2,3-alternate and cone atropoisomers are, respectively, the kinetic and the thermodynamic ones.
Collapse
Affiliation(s)
- Carmine Gaeta
- Dipartimento di Chimica e Biologia " A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia " A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia " A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy
| |
Collapse
|
13
|
Zhang F, Ma J, Sun Y, Mei Y, Chen X, Wang W, Li H. Construction of a Switchable Nanochannel for Protein Transport via a Pillar[5]arene-Based Host–Guest System. Anal Chem 2018; 90:8270-8275. [DOI: 10.1021/acs.analchem.8b01948] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Junkai Ma
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Yuxiao Mei
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Xue Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Wenqian Wang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| |
Collapse
|
14
|
De Simone NA, Schettini R, Talotta C, Gaeta C, Izzo I, Della Sala G, Neri P. Directing the Cation Recognition Ability of Calix[4]arenes toward Asymmetric Phase-Transfer Catalysis. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicola Alessandro De Simone
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Rosaria Schettini
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Irene Izzo
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 84084 Fisciano (Salerno) Italy
| |
Collapse
|
15
|
Wang HX, Hu SZ, Meng Z, Han Y, Chen CF. Synthesis and Structures of Triptycene-Derived Oxacalixarenes with Expanded Cavities: Tunable and Switchable Complexation towards Bipyridinium Salts. Chem Asian J 2016; 11:2756-2762. [PMID: 27167105 DOI: 10.1002/asia.201600419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/31/2022]
Abstract
New triptycene-derived oxacalixarene H1 was efficiently synthesized by a template cyclization step, and anilino-substituted macrocycle H2 was subsequently afforded through straightforward nucleophilic displacement of the active chlorine atom in H1. Oxacalixarene H1 adopts a fixed boat-like 1,3-alternate conformation and shows moderate complexation abilities towards various bipyridinium salts. However, the affinities of H2 towards the guests were found to be substantially stronger, which could be tentatively attributed to the additional hydrogen-bonding site, π-π stacking site, and especially the increased electron richness of the host. Furthermore, the acid-base switchable complexation process between H1 and the bipyridinium salt was also realized, which could potentially facilitate the construction of high-level stimuli-responsive supramolecular structures based on the newly synthesized oxacalixarene.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Zhen Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheng Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
16
|
Garnett GA, Starke MJ, Shaurya A, Li J, Hof F. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics. Anal Chem 2016; 88:3697-703. [DOI: 10.1021/acs.analchem.5b04508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Graham A.E. Garnett
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Melissa J. Starke
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Alok Shaurya
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Janessa Li
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| |
Collapse
|
17
|
Mallon M, Dutt S, Schrader T, Crowley PB. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin. Chembiochem 2016; 17:774-83. [PMID: 26818656 DOI: 10.1002/cbic.201500477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/11/2022]
Abstract
Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb.
Collapse
Affiliation(s)
- Madeleine Mallon
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Som Dutt
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
18
|
Zhang F, Sun Y, Tian D, Shin WS, Kim JS, Li H. Selective molecular recognition on calixarene-functionalized 3D surfaces. Chem Commun (Camb) 2016; 52:12685-12693. [DOI: 10.1039/c6cc05876k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calixarene based various 3D surface materials with unique signal amplification in molecular recognition are presented, including quantum dots (QDs), metal nanoparticles (NPs), nanotubes, and mesoporous silica.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Weon Sup Shin
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| |
Collapse
|
19
|
D'Acunto M, Tommasone S, Talotta C, Brancatelli G, Geremia S, Valletta E, Marino Merlo F, Macchi B, Gaeta C, Neri P, Spinella A. Installing tungsten Fischer carbene complexes into a calixarene framework. RSC Adv 2016. [DOI: 10.1039/c6ra17326h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first examples of calix[4]arene-based Fischer carbene complexes are here reported. The organometallic calixarene complexes showed a promising cytotoxicity towards human tumor cell lines.
Collapse
|