1
|
Zhang ZF, Su MD. Mechanistic Insights into the Reactivity and Activation Barrier Origins for CO 2 Capture by Heavy Group-14 Imine Analogues. Inorg Chem 2024; 63:19687-19700. [PMID: 39385624 DOI: 10.1021/acs.inorgchem.4c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Using M06-2X-D3/def2-TZVP, the [2 + 2] cycloaddition reactions of carbon dioxide with the heavy imine analogues G14=N-Rea (G14 = Group 14 element) were investigated. The theoretical evidence reveals that the nature of the doubly bonded G14=N moiety in heavy imine analogues, G14=N-Rea (L1L2G14=N-L3), is characterized by the electron-sharing interaction between triplet L1L2G14 and triplet N-L3 fragments. Based on our theoretical studies, except for the carbon-based imine, all four heavy imine analogues with Si=N, Ge=N, Sn=N, and Pb=N groups can easily engage in [2 + 2] cycloaddition reactions with CO2. Energy decomposition analysis-natural orbitals for chemical valence analyses and the FMO theory strongly suggest that in the CO2 capture reaction by heavy imine analogues G14=N-Rea, the primary bonding interaction is the occupied p-π orbital (G14=N-Rea) → vacant p-π* orbital (CO2) interaction, instead of the empty p-π* orbital (G14=N-Rea) ← filled p-π orbital (CO2) interaction. The activation barrier of the CO2 capture reactions by G14=N-Rea molecules is primarily determined by the deformation energy of CO2. Shaik's valence bond state correlation diagram model, used to rationalize the computed results, indicates that the singlet-triplet energy splitting of G14=N-Rea is a key factor in determining the reaction barrier for the current CO2 capture reactions.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Zafar M, Subramaniyan V, Tibika F, Tulchinsky Y. Cationic ligands - from monodentate to pincer systems. Chem Commun (Camb) 2024; 60:9871-9906. [PMID: 38920056 DOI: 10.1039/d4cc01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
For a long time, the small group of cationic ligands stood out as obscure systems within the general landscape of coordinative chemistry. However, this situation has started to change rapidly during the last decade, with more and more examples of metal-coordinated cationic species being reported. The growing interest in these systems is not only of purely academic nature, but also driven by accumulating evidence of their high catalytic utility. Overcoming the inherently poor coordinating ability of cationic species often required additional structural stabilization. In numerous cases this was realized by functionalizing them with a pair of chelating side-arms, effectively constructing a pincer-type scaffold. This comprehensive review aims to encompass all cationic ligands possessing such pincer architecture reported to date. Herein every cationic species that has ever been embedded in a pincer framework is described in terms of its electronic structure, followed by an in-depth discussion of its donor/acceptor properties, based on computational studies (DFT) and available experimental data (IR, NMR or CV). We then elaborate on how the positive charge of these ligands affects the spectroscopic and redox properties, as well as the reactivity, of their complexes, compared to those of the structurally related neutral ligands. Among other systems discussed, this review also surveys our own contribution to this field, namely, the introduction of sulfonium-based pincer ligands and their complexes, recently reported by our group.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
3
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Stigler S, Fujimori S, Kostenko A, Inoue S. Tetryliumylidene ions in synthesis and catalysis. Chem Sci 2024; 15:4275-4291. [PMID: 38516066 PMCID: PMC10952068 DOI: 10.1039/d3sc06452b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024] Open
Abstract
Tetryliumylidene ions ([R-E:]+), recognised for their intriguing electronic properties, have attracted considerable interest. These positively charged species, with two vacant p-orbitals and a lone pair at the E(ii) centre (E = Si, Ge, Sn, Pb), can be viewed as the combination of tetrylenes (R2E:) and tetrylium ions ([R3E]+), which makes them potent Lewis ambiphiles. Such electronic features highlight the potential of tetryliumylidenes for single-site small molecule activation and transition metal-free catalysis. The effective utilisation of the electrophilicity and nucleophilicity of tetryliumylidenes is expected to stem from appropriate ligand choice. For most of the isolated tetryliumylidenes, electron donor- and/or kinetic stabilisation is necessary. This minireview highlights the developments in tetryliumylidene syntheses and the progress of research towards their reactivity and applications in catalytic reactions.
Collapse
Affiliation(s)
- Sebastian Stigler
- TUM School of Natural Sciences, Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
6
|
Chen H, Chen Y, Li T, Wang D, Xu L, Tan G. Synthesis and Reactivity of N-Heterocyclic Carbene Coordinated Formal Germanimidoyl-Phosphinidenes. Inorg Chem 2023; 62:20906-20912. [PMID: 38095884 DOI: 10.1021/acs.inorgchem.3c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Treatment of N-heterocyclic carbene (NHC) ligated germylidenylphosphinidene MsFluidtBu-GeP(NHCiPr) (where MsFluidtBu is a bulky hydrindacene substituent, and NHCiPr is 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) with mesityl azide and 4-tertbutylphenyl azide afforded NHC coordinated formal germanimidoyl-phosphinidenes, which represent the first compounds bearing both Ge═N double bond and phosphinidene functionalities. Studies of the chemical properties revealed that the reactions preferred to occur at the Ge═N double bond, which underwent [2 + 2] cycloadditions with CO2 and ethyl isocyanate, and coordinated with coinage metals through the nitrogen atom.
Collapse
Affiliation(s)
- Haonan Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Zhu L, Kinjo R. Reactions of main group compounds with azides forming organic nitrogen-containing species. Chem Soc Rev 2023; 52:5563-5606. [PMID: 37519098 DOI: 10.1039/d3cs00290j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Since the seminal discovery of phenyl azide by Grieß in 1864, a variety of organic azides (R-N3) have been developed and extensively studied. The amenability of azides to a number of reactions has expanded their utility as building blocks not only in organic synthesis but also in bioorthogonal chemistry and materials science. Over the decades, it has been demonstrated that the reactions of main group compounds with azides lead to diverse N-containing main group molecules. In view of the pronounced progress in this area, this review summarizes the reactions of main group compounds with azides, emphatically introducing their reaction patterns and mechanisms. The reactions of forming inorganic nitrogen species are not included in this review.
Collapse
Affiliation(s)
- Lizhao Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| |
Collapse
|
8
|
Li T, Zhang L, He Y, Chen Y, Wang D, Liu J, Tan G. A germanimidoyl chloride: synthesis, characterization and reactivity. Chem Commun (Camb) 2023; 59:1533-1536. [PMID: 36661338 DOI: 10.1039/d2cc05970c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first germanimidoyl chloride MsFluindtBu-Ge(Cl)NMes (2, where MsFluindtBu is a bulky hydrindacene skeleton) was synthesized through the reaction of MsFluindtBu-GeCl (1) and mesityl azide (MesN3). In contrast, treatment of 1 with a less bulky azide ArN3 (Ar = 4-tBuC6H4) produced a germatetrazole chloride MsFluindtBu-Ge(Cl)N4Ar2 (3), and a salt [MsFluindtBu-GeN4Ar2]+[BArF4]- (4; ArF = 3,5-(CF3)2C6H3) followed by chloride abstraction with NaBArF4, both bearing a five-membered GeN4 ring. Functionalization of 2 with Ar'Li (Ar' = 3,5-tBu2C6H3) or MeLi furnished a germanimine MsFluindtBu-Ge(Ar')NMes (5) or an amide lithium salt MsFluindtBu-Ge(Me)2-N(Mes)Li(thf) (6).
Collapse
Affiliation(s)
- Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuhao He
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jingjing Liu
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Nougué R, Takahashi S, Dajnak A, Maerten E, Baceiredo A, Saffon‐Merceron N, Branchadell V, Kato T. Labile Base-Stabilized Silyliumylidene Ions. Non-Metallic Species Capable of Activating Multiple Small Molecules. Chemistry 2022; 28:e202202037. [PMID: 36074891 PMCID: PMC10092131 DOI: 10.1002/chem.202202037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Several base-stabilized silyliumylidene ions (2 and 3) with different ligands were synthesized. Their behaviour appeared strongly dependent on the nature of ligand. Indeed, in contrast to the poorly reactive silyliumylidene ions 3 c,d stabilized by strongly donating ligands (DMAP, NHC), the silylene- and sulfide-supported one (2-H and 3 a) exhibits higher reactivity toward various small molecules. Furthermore, their capability to successively activate multiple small molecules was clearly demonstrated by processes involving successive reactions with silane/formamide, CO2 and H2 . Moreover, HBPin adduct of 3 a (8-C) catalyzes the hydroboration of pyridine. Of particular interest, silylene-supported silyliumylidene complex 2-H is one of the rare species able to activate two H2 molecules.
Collapse
Affiliation(s)
- Raphaël Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Shintaro Takahashi
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Aymeric Dajnak
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Eddy Maerten
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599) UPS, and CNRS, ICT UAR2599118 route de NarbonneF-31062ToulouseFrance
| | - Vicenç Branchadell
- Departament de QuímicaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse,CNRS118 route de NarbonneF-31062ToulouseFrance
| |
Collapse
|
10
|
Zhao Z, Tan J, Chen T, Hussain Z, Li Y, Wu Y, Stephan DW. Ambiphilic Behavior of Ge(II)-Pseudohalides in Inter- and Intramolecular Frustrated Lewis Pair Alkyne Addition Reactions. Inorg Chem 2022; 61:18670-18677. [DOI: 10.1021/acs.inorgchem.2c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Jingjie Tan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Ting Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Zahid Hussain
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Douglas W. Stephan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S3H6, Ontario, Canada
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China
| |
Collapse
|
11
|
Nag E, Francis M, Battuluri S, Sinu BB, Roy S. Isolation of Elusive Phosphinidene‐Chlorotetrylenes: The Heavier Cyanogen Chloride Analogues. Chemistry 2022; 28:e202201242. [DOI: 10.1002/chem.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ekta Nag
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Maria Francis
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sridhar Battuluri
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Bhavya Bini Sinu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
12
|
Hadlington TJ, Keil PM. Protonation of Hydrido‐Tetrylenes: H2 Elimination vs. Tetrylium Cation Formation. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Philip Maximillian Keil
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenberg Str 4 85748 Garching GERMANY
| |
Collapse
|
13
|
Fischer M, Roy MMD, Wales LL, Ellwanger MA, Heilmann A, Aldridge S. Structural Snapshots in Reversible Phosphinidene Transfer: Synthetic, Structural, and Reaction Chemistry of a Sn═P Double Bond. J Am Chem Soc 2022; 144:8908-8913. [PMID: 35536684 PMCID: PMC9136930 DOI: 10.1021/jacs.2c03302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of amido-substituted stannylenes with phospha-Wittig reagents (Me3PPR) results in release of hexamethyldisilazane and tethering of the resulting -CH2PMe2PR fragment to the tin center to give P-donor stabilized stannylenes featuring four-membered Sn,C,P,P heterocycles. Through systematic increases in steric loading, the structures of these systems in the solid state can be tuned, leading to successive P-P bond lengthening and Sn-P contraction and, in the most encumbered case, to complete P-to-Sn transfer of the phosphinidene fragment. The resulting stannaphosphene features a polar Sn═P double bond as determined by structural and computational studies. The reversibility of phosphinidene transfer can be established by solution phase measurements and reactivity studies.
Collapse
Affiliation(s)
- Malte Fischer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Matthew M D Roy
- Department of Chemistry, Catalysis Research Center and Institute for Silicon Chemistry, Technische Universität München, 85748 Garching bei München, Germany
| | - Lewis L Wales
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
14
|
Widemann M, Jeggle S, Auer M, Eichele K, Schubert H, Sindlinger CP, Wesemann L. Hydridotetrylene [Ar*EH] (E = Ge, Sn, Pb) coordination at tantalum, tungsten, and zirconium. Chem Sci 2022; 13:3999-4009. [PMID: 35440987 PMCID: PMC8985505 DOI: 10.1039/d2sc00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
In a reaction of tantalocene trihydride with the low valent aryl tin cation [Ar*Sn(C6H6)][Al(OC{CF3}3)4] (1a) the hydridostannylene complex [Cp2TaH2–Sn(H)Ar*][Al(OC{CF3}3)4] (2) was synthesized. Hydride bridged adducts [Cp2WH2EAr*][Al(OC{CF3}3)4] (E = Sn 3a, Pb 3b) were isolated as products of the reaction between Cp2WH2 and cations [Ar*E(C6H6)][Al(OC{CF3}3)4] (E = Sn 1a, Pb 1b). The tin adduct 3a exhibits a proton migration to give the hydridostannylene complex [Cp2W(H)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
Sn(H)Ar*][Al(OC{CF3}3)4] 4a. The cationic complex 4a is deprotonated at the tin atom in reaction with base MeNHC at 80 °C to give a hydrido-tungstenostannylene [Cp2W(H)SnAr*] 5a. Reprotonation of metallostannylene 5a with acid [H(Et2O)2][BArF] provides an alternative route to hydridotetrylene coordination. Complex 4a adds hydride to give the dihydrostannyl complex [Cp2W(H)–SnH2Ar*] (7). With styrene 4a shows formation of a hydrostannylation product [Cp2W(H)Sn(CH2CH2Ph)Ar*][Al(OC{CF3}3)4] (8). The lead adduct 3b was deprotonated with MeNHC to give plumbylene 5b [Cp2W(H)PbAr*]. Protonation of 5b with [H(Et2O)2][Al(OC{CF3}3)4] at −40 °C followed by low temperature NMR spectroscopy indicates a hydridoplumbylene intermediate [Cp2W(H)Pb(H)Ar*]+ (4b). Hydrido-tungstenotetrylenes of elements Ge (5c), Sn (5a) and Pb (5b) were also synthesized reacting the salt [Cp2W(H)Li]4 with organotetrylene halides. The metallogermylene [Cp2W(H)GeAr*] (5c) shows an isomerization via 1,2-H-migration to give the hydridogermylene [Cp2WGe(H)Ar*] (9), which is accelerated by addition of AIBN. 9 is at rt photochemically transferred back to 5c under light of a mercury vapor lamp. Zirconocene dihydride [Cp2ZrH2]2 reacts with tin cation 1a to give the trinuclear hydridostannylene adduct 10 [({Cp2Zr}2{μ-H})(μ-H)2μ-Sn(H)Ar*][Al(OC{CF3}3)4]. Deprotonation of 10 was carried out using benzyl potassium to give neutral [({Cp2Zr}2{μ-H})(μ-H)μ-Sn(H)Ar*] (11). 11 was also obtained from the reaction of low valent tin hydride [Ar*SnH]2 with two equivalents of [Cp2ZrH2]2. The trihydride Ar*SnH3 reacts with half of an equivalent of [Cp2ZrH2]2 under evolution of hydrogen and formation of a dihydrostannyl complex 13 [Cp2Zr(μ-H)SnH2Ar*]2 and with further equivalents of Ar*SnH3 to give bis(hydridostannylene) complex [Cp2Zr{Sn(H)Ar*}2]. Low valent cations of tin and lead were used to form hydridotetrylene coordination compounds. The mobility of the hydrogen substituent was investigated in deprotonation equilibria as well as in 1,2-H-shift reactions.![]()
Collapse
Affiliation(s)
- Max Widemann
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Sebastian Jeggle
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Maximilian Auer
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, RWTH Aachen University Landoltweg 1a D-52074 Aachen Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
15
|
Helling C, Ganesamoorthy C, Wölper C, Schulz S. Geminal C-Cl and Si-Cl bond activation of chloromethanes and chlorosilanes by gallanediyl LGa. Dalton Trans 2022; 51:2050-2058. [PMID: 35040458 DOI: 10.1039/d1dt04192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of relatively inert E-X σ-bonds by low-valent main group metal complexes is receiving increasing interest. We here confirm the promising potential of gallanediyl LGa (L = HC[C(Me)N(Dip)]2, Dip = 2,6-i-Pr2C6H3) to activate E-Cl (E = C, Si) σ-bonds of group 14 element compounds. Equimolar reactions of LGa with chloromethanes and chlorosilanes EHxCl4-x (E = C, x = 0-2; E = Si, x = 0, 1) occurred with E-Cl bond insertion and formation of gallylmethanes and -silanes L(Cl)GaEHxCl3-x (E = C, x = 2 (1), 1 (2), 0 (3); E = Si, x = 1 (4)). In contrast, consecutive insertion into a geminal E-Cl bond was observed with two equivalents of LGa, yielding digallyl complexes [L(Cl)Ga]2EHxCl2-x (E = C, x = 2 (5); E = Si, x = 1 (6), 0 (7)). Compounds 1-7 were characterized by heteronuclear NMR (1H, 13C, 29Si (4, 6)), IR spectroscopy and elemental analysis, and their solid-state structures were determined by single-crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Christoph Helling
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Chelladurai Ganesamoorthy
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Christoph Wölper
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Stephan Schulz
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany. .,Center for NanoIntegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
16
|
Schorpp M, Tamim R, Krossing I. Oxidative addition, reduction and reductive coupling: the versatile reactivity of subvalent gallium cations. Dalton Trans 2021; 50:15103-15110. [PMID: 34611680 DOI: 10.1039/d1dt02682h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inspired by the successful oxidative addition of a P-H bond to univalent Ga[Al(ORF)4] that gives the unprecedented dicationic gallium hydride complex [H-Ga(PPh3)3][Al(ORF)4]2 (ORF = OC(CF3)3), the oxidative addition of E-Cl containing substrates was investigated. The reductive coupling of three PPh2Cl to the catenated phosphorus cation [P3Ph6]+ hinted towards a formal two-electron-three-halide reduction (2e--3X- reduction). Similarly, from SbCl3, a cationic formal SbI compound and from RhCl3, [RhI(HMB)(COD)]+ and [RhI(COD)2]+ (HMB = C6Me6, COD = 1,5-cyclooctadiene) are formed as [Al(ORF)4]- salts when reacted with Ga+. Thus, Ga[Al(ORF)4] allows for a one-pot 2e--3X- reduction with the concomitant introduction of a weakly coordinating anion (WCA).
Collapse
Affiliation(s)
- Marcel Schorpp
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i. Br., Germany.
| | - Razan Tamim
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i. Br., Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg i. Br., Germany.
| |
Collapse
|
17
|
Hu C, Zhang J, Yang H, Guo L, Cui C. Synthesis of Cationic Silaamidinate Germylenes and Stannylenes and the Catalytic Application for Hydroboration of Pyridines. Inorg Chem 2021; 60:14038-14046. [PMID: 34505507 DOI: 10.1021/acs.inorgchem.1c01314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The N-heterocyclic germylenes and stannylenes LSi(NAr)2EX (L = PhC(NtBu)2, Ar = 2,6-iPr2C6H3; E = Ge, Sn; X = Cl, CF3SO3, BPh4) supported by the bulky silaamidinate ligand [LSi(NAr)2]- have been synthesized and fully characterized. The germylene triflate LSi(NAr)2GeOTf (3b) and dimeric borate [LSi(NAr)2Ge]2ClBPh4 (3a) enabled highly regio- and chemoselective catalytic hydroboration of pyridines and may represent the most active catalytic system for the transformation. DFT calculations disclosed that the cationic germylene [LSi(NAr)2Ge]+ with a low-lying LUMO energy initiated the catalytic process. In contrast, the analogous amidinate germylene triflates are almost inactive, indicating the silaamidinate ligand is essential for the stabilization of cationic species.
Collapse
Affiliation(s)
- Chaopeng Hu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
18
|
Sarkar D, Dutta S, Weetman C, Schubert E, Koley D, Inoue S. Germyliumylidene: A Versatile Low Valent Group 14 Catalyst. Chemistry 2021; 27:13072-13078. [PMID: 34171132 PMCID: PMC8518661 DOI: 10.1002/chem.202102233] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Bis‐NHC stabilized germyliumylidenes [RGe(NHC)2]+ are typically Lewis basic (LB) in nature, owing to their lone pair and coordination of two NHCs to the vacant p‐orbitals of the germanium center. However, they can also show Lewis acidity (LA) via Ge−CNHC σ* orbital. Utilizing this unique electronic feature, we report the first example of bis‐NHC‐stabilized germyliumylidene [MesTerGe(NHC)2]Cl (1), (MesTer=2,6‐(2,4,6‐Me3C6H2)2C6H3; NHC= IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) catalyzed reduction of CO2 with amines and arylsilane, which proceeds via its Lewis basic nature. In contrast, the Lewis acid nature of 1 is utilized in the catalyzed hydroboration and cyanosilylation of carbonyls, thus highlighting the versatile ambiphilic nature of bis‐NHC stabilized germyliumylidenes.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.,Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Emeric Schubert
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
19
|
Evans MJ, Burke FM, Chapple PM, Fulton JR. Synthesis and Reactivity of Acyclic Germanimines: Silyl Rearrangement and Cycloadditions. Inorg Chem 2021; 60:8293-8303. [PMID: 33988988 DOI: 10.1021/acs.inorgchem.1c00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of aromatic germanimines [(HMDS)2Ge═NAr] (Ar = Ph, Mes, Dipp; Mes = 2,4,6-Me3C6H2, Dipp = 2,6-iPr2C6H3) and an investigation into their associated reactivity. [(HMDS)2Ge═NPh] decomposes above -30 °C, while [(HMDS)2Ge═NDipp] engages in an intramolecular reaction at 60 °C. [(HMDS)2Ge═NMes] was shown to rearrange via a 1,3-silyl migration to give [(HMDS){(SiMe3)(Mes)N}Ge(NSiMe3)] in a 1:7 equilibrium mixture at room temperature. These latter germanimines react with unsaturated polar substrates such as CO2, ketones, and arylisocyanate via a [2 + 2] cycloaddition pathway.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - Finlay M Burke
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - Peter M Chapple
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
| |
Collapse
|
20
|
Mangan RJ, Davies AR, Hicks J, Sindlinger CP, Thompson AL, Aldridge S. Synthesis, structure and reactivity of terphenyl-substituted germylium-ylidene cations. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl-Stannylene. Angew Chem Int Ed Engl 2021; 60:3519-3523. [PMID: 33155395 PMCID: PMC7898380 DOI: 10.1002/anie.202013423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Use of a silyl supported stannylene (Mes TerSn(Sit Bu3 ) [Mes Ter=2,6-(2,4,6-Me3 C6 H2 )2 C6 H3 ] enables activation of white phosphorus under mild conditions, which is reversible under UV light. The reaction of a silylene chloride with the activated P4 complex results in facile P-atom transfer. The computational analysis rationalizes the electronic features and high reactivity of the heteroleptic silyl-substituted stannylene in contrast to the previously reported bis(aryl)stannylene.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Dominik Munz
- Department of Chemistry and PharmacyGeneral and Inorganic ChemistryFriedrich-Alexander-University Erlangen-Nuremberg (FAU)Egerlandstraße 191058ErlangenGermany
- Inorganic Chemistry: Coordination ChemistrySaarland University, Geb. C4.166123SaarbrückenGermany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
22
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
23
|
Sarkar D, Weetman C, Munz D, Inoue S. Reversible Activation and Transfer of White Phosphorus by Silyl‐Stannylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Dominik Munz
- Department of Chemistry and Pharmacy General and Inorganic Chemistry Friedrich-Alexander-University Erlangen-Nuremberg (FAU) Egerlandstraße 1 91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry Saarland University, Geb. C4.1 66123 Saarbrücken Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
24
|
Sarkar D, Weetman C, Dutta S, Schubert E, Jandl C, Koley D, Inoue S. N-Heterocyclic Carbene-Stabilized Germa-acylium Ion: Reactivity and Utility in Catalytic CO2 Functionalizations. J Am Chem Soc 2020; 142:15403-15411. [DOI: 10.1021/jacs.0c06287] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Emeric Schubert
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Christian Jandl
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
25
|
Zhou X, Vasko P, Hicks J, Fuentes MÁ, Heilmann A, Kolychev EL, Aldridge S. Cooperative N-H bond activation by amido-Ge(ii) cations. Dalton Trans 2020; 49:9495-9504. [PMID: 32608471 DOI: 10.1039/d0dt01960g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-heterocyclic carbene (NHC) and tertiary phosphine-stabilized germylium-ylidene cations, [R(L)Ge:]+, featuring tethered amido substituents at R have been synthesized via halide abstraction. Characterization in the solid state by X-ray crystallography shows these systems to be monomeric, featuring a two-coordinate C,N- or P,N-ligated germanium atom. The presence of the strongly Lewis acidic cationic germanium centre and proximal amide function allows for facile cleavage of N-H bonds in 1,2-fashion: the products resulting from reactions with carbazole feature a tethered secondary amine donor bound to a three-coordinate carbazolyl-GeII centre. In each case, addition of the components of the N-H bond occurs to the same face of the germanium amide function, consistent with a coordination/proton migration mechanism. Such as sequence is compatible with the idea that substrate coordination via the pπ orbital at germanium reduces the extent of N-to-Ge π donation from the amide, thereby enhancing the basicity of the proximal N-group.
Collapse
Affiliation(s)
- Xueer Zhou
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Petra Vasko
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK. and Department of Chemistry, Nanoscience Center, University of Jyväskylä, P. O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Jamie Hicks
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - M Ángeles Fuentes
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Andreas Heilmann
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Eugene L Kolychev
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
26
|
Aysin RR, Leites LA, Bukalov SS. Aromaticity of 1-Heterocyclopropenes Containing an Atom of Group 14 or 4. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- R. R. Aysin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciencies, ul. Vavilova 28, Moscow 119991, Russia
| | - L. A. Leites
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciencies, ul. Vavilova 28, Moscow 119991, Russia
| | - S. S. Bukalov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciencies, ul. Vavilova 28, Moscow 119991, Russia
| |
Collapse
|
27
|
Wang P, Zhang M, Zhu C. Synthesis, Characterization, and Reactivity of a Pincer-Type Aluminum(III) Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 226019 Nantong, People’s Republic of China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, People’s Republic of China
| |
Collapse
|
28
|
Nguyen MT, Gusev D, Dmitrienko A, Gabidullin BM, Spasyuk D, Pilkington M, Nikonov GI. Ge(0) Compound Stabilized by a Diimino-Carbene Ligand: Synthesis and Ambiphilic Reactivity. J Am Chem Soc 2020; 142:5852-5861. [PMID: 32119541 DOI: 10.1021/jacs.0c01283] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The germylone dimNHCGe (5, dimNHC = diimino N-heterocyclic carbene) was successfully prepared via the reduction of the germanium cation [dimNHCGeCl]+ with KC8. The molecular structure of 5 was unambiguously established by both NMR spectroscopy and single-crystal X-ray diffraction. The reactivity of 5 was investigated, revealing that it undergoes oxidative addition of HCl, CH3I, and PhI, accompanied by an unusual migration of the H, Me, and Ph groups from germanium to the carbene ligand. Related chemistry was also observed with C5F5N, which results in the migration of the fluorinated pyridine moiety to the carbene ligand. Compound 5 also undergoes cycloaddition with tetrachloro-o-benzoquinone to afford a Ge(IV) adduct.
Collapse
Affiliation(s)
- Minh Tho Nguyen
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Dmitry Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Anton Dmitrienko
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Bulat M Gabidullin
- X-Ray Core Facility, Faculty of Science, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Denis Spasyuk
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Georgii I Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
29
|
Evans MJ, Anker MD, Mouchfiq A, Lein M, Fulton JR. The “Metallo”‐Diels–Alder Reactions: Examining the Metalloid Behavior of Germanimines. Chemistry 2020; 26:2606-2609. [DOI: 10.1002/chem.201905693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Ahmed Mouchfiq
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Matthias Lein
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - J. Robin Fulton
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
30
|
Suzuki F, Nishino R, Yukimoto M, Sugamata K, Minoura M. Synthesis, Structure, and Reactivity of a Thermally Stable Dialkylgermylene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fumiaki Suzuki
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryohei Nishino
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mariko Yukimoto
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
31
|
Dasgupta R, Khan S. N-heterocyclic germylenes and stannylenes: Synthesis, reactivity and catalytic application in a nutshell. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Mangan RJ, Rit A, Sindlinger CP, Tirfoin R, Campos J, Hicks J, Christensen KE, Niu H, Aldridge S. Activation of Protic, Hydridic and Apolar E-H Bonds by a Boryl-Substituted Ge II Cation. Chemistry 2019; 26:306-315. [PMID: 31660651 DOI: 10.1002/chem.201904171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/07/2022]
Abstract
The synthesis of a boryl-substituted germanium(II) cation, [Ge{B(NDippCH)2 }(IPrMe)]+ , (Dipp=2,6-diisopropylphenyl) featuring a supporting N-heterocyclic carbene (NHC) donor, has been explored through chloride abstraction from the corresponding (boryl)(NHC)GeCl precursor. Crystallographic studies in the solid state and UV/Vis spectra in fluorobenzene solution show that this species dimerizes under such conditions to give [(IPrMe){(HCNDipp)2 B}Ge=Ge{B(NDippCH)2 }(IPrMe)]2+ (IPrMe = 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene), which can be viewed as an imidazolium-functionalized digermene. The dimer is cleaved in the presence of donor solvents such as [D8 ]thf or [D5 ]pyridine, to give monomeric adducts of the type [Ge{B(NDippCH)2 }(IPrMe)(L)]+ . In the case of the thf adduct, the additional donor is shown to be sufficiently labile that it can act as a convenient in situ source of the monomeric complex [Ge{B(NDippCH)2 }(IPrMe)]+ for oxidative bond-activation chemistry. Thus, [Ge{B(NDippCH)2 }(IPrMe)(thf)]+ reacts with silanes and dihydrogen, leading to the formation of GeIV products, whereas the cleavage of the N-H bond in ammonia ultimately yields products containing C-H and B-N bonds. The facile reactivity observed in E-H bond activation is in line with the very small calculated HOMO-LUMO gap (132 kJ mol-1 ).
Collapse
Affiliation(s)
- Robert J Mangan
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Arnab Rit
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Christian P Sindlinger
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Rémi Tirfoin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jesús Campos
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Kirsten E Christensen
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Haoyu Niu
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
33
|
Liu LL, Zhou J, Cao LL, Stephan DW. Phosphaaluminirenes: Synthons for Main Group Heterocycles. J Am Chem Soc 2019; 141:16971-16982. [DOI: 10.1021/jacs.9b09330] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jiliang Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Levy L. Cao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Douglas W. Stephan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
34
|
Lai TY, Gullett KL, Chen CY, Fettinger JC, Power PP. Reversible Complexation of Alkynes by a Germylene. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Yi Lai
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Kelly L. Gullett
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Chia-Yuan Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
35
|
Hinz A. Pseudo-One-Coordinate Tetrylenium Salts Bearing a Bulky Carbazolyl Substituent. Chemistry 2019; 25:3267-3271. [PMID: 30716171 DOI: 10.1002/chem.201806346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Syntheses of a bulky carbazole-based substituent, the parent 1,8-bis(3,5-di-tert-butylphenyl)-3,6-di-tert-butyl-carbazole (R-H) and a series of chlorotetrylenes, RECl (E=Ge, Sn, Pb), are described. Detailed analysis of the properties of the carbazole-based substituent revealed that it features flexible high bulkiness and electronic non-innocence, which may make it suitable for many applications in both main-group and transition-metal chemistry. To further showcase the employability of the novel substituent, the chlorotetrylenes were subjected to halide abstraction reactions, affording the corresponding tetrylenium salts [RE][Al(OC4 F9 )4 ] (E=Ge, Sn, Pb) as strongly coloured compounds.
Collapse
Affiliation(s)
- Alexander Hinz
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Gebäude 30.45, 76131, Karlsruhe, Germany
| |
Collapse
|
36
|
Diab F, Aicher FSW, Sindlinger CP, Eichele K, Schubert H, Wesemann L. Reductive Elimination and Oxidative Addition of Hydrogen at Organostannylium and Organogermylium Cations. Chemistry 2019; 25:4426-4434. [PMID: 30706972 DOI: 10.1002/chem.201805770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Fatima Diab
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Frederik S. W. Aicher
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christian P. Sindlinger
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
- Institut für Anorganische ChemieGeorg-August Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Klaus Eichele
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Lars Wesemann
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
37
|
Sinhababu S, Singh D, Sharma MK, Siwatch RK, Mahawar P, Nagendran S. Ge(ii) cation catalyzed hydroboration of aldehydes and ketones. Dalton Trans 2019; 48:4094-4100. [DOI: 10.1039/c8dt05121f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The catalytic utility of a germylene cation 4 is reported. In the presence of compound 4, a variety of aldehydes and ketones can be hydroborylated using HBpin.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | - Dharmendra Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | | | - Rahul Kumar Siwatch
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | - Pritam Mahawar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | - Selvarajan Nagendran
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| |
Collapse
|
38
|
Roy MMD, Fujimori S, Ferguson MJ, McDonald R, Tokitoh N, Rivard E. Neutral, Cationic and Hydride-substituted Siloxygermylenes. Chemistry 2018; 24:14392-14399. [DOI: 10.1002/chem.201802958] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Matthew M. D. Roy
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Shiori Fujimori
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
- Institute for Chemical Research; Kyoto University; Uji Kyoto, 611-0011 Japan
| | - Michael J. Ferguson
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Robert McDonald
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Norihiro Tokitoh
- Institute for Chemical Research; Kyoto University; Uji Kyoto, 611-0011 Japan
| | - Eric Rivard
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
39
|
Kundu S, Sinhababu S, Siddiqui MM, Luebben AV, Dittrich B, Yang T, Frenking G, Roesky HW. Comparison of Two Phosphinidenes Binding to Silicon(IV)dichloride as well as to Silylene. J Am Chem Soc 2018; 140:9409-9412. [PMID: 30011193 DOI: 10.1021/jacs.8b06230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic alkyl(amino) carbene (cAAC) anchored silylene with two phosphinidenes was isolated as (cAAC)Si{P(cAAC)}2 (3) at room temperature, which was synthesized from the reduction of (Cl2)Si{P(cAAC)}2 (2) using 2 equiv of KC8. Compound 2 resulted from the reaction of 2 equiv of (cAAC)PK (1) with 1 equiv of SiCl4. Compounds 2 and 3 are the first examples where two terminal phosphinidenes are binding each to a silicon center characterized by single crystal X-ray structural analysis. Furthermore, the structure and bonding of compounds 2 and 3 have been investigated by theoretical methods for comparison.
Collapse
Affiliation(s)
- Subrata Kundu
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Soumen Sinhababu
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Mujahuddin M Siddiqui
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Anna V Luebben
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Birger Dittrich
- Anorganische und Strukturchemie II , Heinrich Heine-Universität Düsseldorf , Gebäude 26.42.01.21, Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Tao Yang
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerweinstrasse 4 , 35032 Marburg , Germany
| | - Gernot Frenking
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerweinstrasse 4 , 35032 Marburg , Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
40
|
Seow C, Ismail MLB, Xi HW, Li Y, Lim KH, So CW. A Bis(germyliumylidene)silver(I) Complex Dication. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Celestine Seow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Muhammad Luthfi Bin Ismail
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Hong-Wei Xi
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Kok Hwa Lim
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
41
|
Sharma MK, Sinhababu S, Yadav D, Mukherjee G, Rajaraman G, Nagendran S. Pseudohalogenogermylenes versus Halogenogermylenes: Difference in their Complexation Behavior towards Group 6 Metal Carbonyls. Chem Asian J 2018; 13:1357-1365. [DOI: 10.1002/asia.201800248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mahendra Kumar Sharma
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110 016 India
| | - Soumen Sinhababu
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110 016 India
| | - Dhirendra Yadav
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110 016 India
| | - Goutam Mukherjee
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110 016 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400 076 India
| | - Selvarajan Nagendran
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas New Delhi 110 016 India
| |
Collapse
|
42
|
Chu T, Nikonov GI. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem Rev 2018; 118:3608-3680. [DOI: 10.1021/acs.chemrev.7b00572] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Terry Chu
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Georgii I. Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
43
|
Su Y, Li Y, Ganguly R, Kinjo R. Isolation and Reactivity of a Chlorogermyliumylidene Featuring Two Ge-Cl Units. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 637371 Singapore Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 637371 Singapore Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 637371 Singapore Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 637371 Singapore Singapore
| |
Collapse
|
44
|
Sinhababu S, Kundu S, Paesch AN, Herbst-Irmer R, Stalke D, Fernández I, Frenking G, Stückl AC, Schwederski B, Kaim W, Roesky HW. A Route to Base Coordinate Silicon Difluoride and the Silicon Trifluoride Radical. Chemistry 2018; 24:1264-1268. [DOI: 10.1002/chem.201705773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Soumen Sinhababu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Alexander N. Paesch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro, de Innovación en Química Avanzada; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Gernot Frenking
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
- Institute of Advanced Synthesis; School of Chemistry and Molecular Engineering; Jiangsu National Synergetic Innovation Center for Advanced Materials; Nanjing Tech University; Nanjing P.R. China
| | - A. Claudia Stückl
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Brigitte Schwederski
- Universität Stuttgart; Institut für Anorganische Chemie; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Kaim
- Universität Stuttgart; Institut für Anorganische Chemie; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
45
|
Đorđević N, Ganguly R, Petković M, Vidović D. E–H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. Inorg Chem 2017; 56:14671-14681. [DOI: 10.1021/acs.inorgchem.7b02579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nemanja Đorđević
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| | - Rakesh Ganguly
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| | - Milena Petković
- Faculty
of Physical Chemistry, University of Belgrade, 11000 Belgrade, Republic of Serbia
| | - Dragoslav Vidović
- SPMS-CBC, Nanyang Technological University, 21 Nanyang Link, Singapore 638737
| |
Collapse
|
46
|
Beyond carbocations: Synthesis, structure and reactivity of heavier Group 14 element cations. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Roy MMD, Lummis PA, Ferguson MJ, McDonald R, Rivard E. Accessing Low-Valent Inorganic Cations by Using an Extremely Bulky N-Heterocyclic Carbene. Chemistry 2017; 23:11249-11252. [PMID: 28703433 DOI: 10.1002/chem.201703215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/07/2022]
Abstract
The extremely bulky N-heterocyclic carbene (NHC), ITr (ITr=[(HCNCPh3 )2 C:]) featuring sterically shielding umbrella-shaped trityl (CPh3 ) substituents was prepared. This NHC features the highest percent buried volume (%Vbur ) to date, and was used to form a thermally stable quasi one-coordinate thallium(I) cation [ITr-Tl]+ . This TlI adduct and the corresponding lithium complex [ITr⋅Li(OEt2 )]+ are versatile "all-in-one" transmetalation/ligation reagents for preparing low-coordinate inorganic species inaccessible by pre-existing routes.
Collapse
Affiliation(s)
- Matthew M D Roy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2, Canada
| | - Paul A Lummis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2, Canada
| | - Robert McDonald
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
48
|
Kundu S, Li B, Kretsch J, Herbst-Irmer R, Andrada DM, Frenking G, Stalke D, Roesky HW. An Electrophilic Carbene-Anchored Silylene-Phosphinidene. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700420] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Bin Li
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- State Key Laboratory of Physical Chemistry of Solid Surface; National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Johannes Kretsch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Diego M. Andrada
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Gernot Frenking
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
49
|
Kundu S, Li B, Kretsch J, Herbst-Irmer R, Andrada DM, Frenking G, Stalke D, Roesky HW. An Electrophilic Carbene-Anchored Silylene-Phosphinidene. Angew Chem Int Ed Engl 2017; 56:4219-4223. [DOI: 10.1002/anie.201700420] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Bin Li
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- State Key Laboratory of Physical Chemistry of Solid Surface; National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Johannes Kretsch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Diego M. Andrada
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Gernot Frenking
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
50
|
Sindlinger CP, Aicher FSW, Schubert H, Wesemann L. Reduktive Dehydrierung eines Stannans durch mehrfache Sn-H-Aktivierung mit einem frustrierten Lewis-Paar. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian P. Sindlinger
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX13TA Oxford Großbritannien
| | - Frederik S. W. Aicher
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Hartmut Schubert
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Lars Wesemann
- Institut für Anorganische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|