1
|
Yi X, Jin P, Zhang Z, Zang E, Tian Y, Li X, Liu J, Wang Y, Shi L. Identification, isoform classification, ligand binding, and database construction of the protein-tyrosine sulfotransferase family in metazoans. Comput Biol Med 2024; 182:109208. [PMID: 39348753 DOI: 10.1016/j.compbiomed.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Protein tyrosine sulfonation (PTS) influences various crucial physiological and pathological processes in animals. Protein-tyrosine sulfotransferase (TPST) serves as a pivotal enzyme in this process. Research on TPST is still in its early stages, and current identification methods have not yet effectively differentiated TPST from other type II sulfotransferases. Furthermore, this study has revealed that TPST in animals is highly conserved and exhibits significant differences when compared to other sulfotransferases and TPSTs in non-animal species. However, precise and efficient methods for identifying TPST, conducting subfamily classification, performing functional and sequence analyses, and accessing corresponding databases and analytical platforms for the entire TPST family of metazoan species are lacking. These findings provide a foundation for more in-depth research on TPST in animals and are crucial for advancing the understanding of PTS and its broader impacts. In this study, a Hidden Markov Model (TPST-HMM) was formulated based on the conserved motifs binding to the substrate PAPS and the ligand tyrosine in metazoan TPSTs. TPST-HMM successfully identified more than 91.8 % of metazoan TPSTs in UniProt (e-value < 1e-5). When the threshold was adjusted to 1e-20, the identification rate of TPST was 83.9 % in metazoans and approximately 0 % in other species (fungi, bacteria, etc.). Subsequently, 5638 TPSTs were identified from 1311 metazoan genomes, and these TPSTs were classified into three subfamilies. The classification of the TPST1 and TPST2 subtypes, which were initially annotated in mammals, was extended across vertebrates. Additionally, a novel subtype, TPST3, belonging to a distinct subfamily, was discovered in invertebrates. We proposed a molecular docking prediction method for TPST and tyrosine ligands based on the observation that TPST-tyrosine binding recognition and binding in metazoans were primarily driven by electrostatic interactions. Finally, a database website for animal TPST sequences was established (http://sz.bjfskj.com/). The website included an online tool for identifying TPST protein sequences, enabling annotation and visualization of functional motifs and active amino acids. Its design aimed to assist users in studying TPST in animals.
Collapse
Affiliation(s)
- Xiaozhe Yi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Panpan Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Zhaolei Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Erhuan Zang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Yu Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, 067000, China
| | - Jinxin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Yunbo Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Linchun Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
2
|
Xia Z, Ye Z, Deng T, Tan Z, Song C, Li J. Benzylic C-H Radical Sulfation by Persulfates. Angew Chem Int Ed Engl 2024:e202413847. [PMID: 39404953 DOI: 10.1002/anie.202413847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/14/2024]
Abstract
Sulfation is a highly valuable pathological and physiological process, yet it is often underappreciated considering the rather difficult accessibility of organosulfates. O-sulfonation (O-SO3), a conventional and still common way to make organosulfates, restricts its applicability to hydroxyl compounds and therein lies a major challenge of library construction. Here, we describe a benzylic C-H radical sulfation with persulfates via C-O bond formation. This strategy leverages modular control over the reactivity of persulfates and the stability of sulfate radicals by coutercations. K+/NH4 + stabilized sulfate radicals act as the oxidant to generate carbon-centered radicals from substrates, and activation of persulfates by n-NBu4 + provides O-O resource pool to facilitate C-OSO3 - bond formation via a bimolecular homolytic substitution (SH2) process.
Collapse
Affiliation(s)
- Zhen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ting Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunlang Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiakun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
4
|
Li H, Zhang X, Wang Z, Sun C, Huang M, Liu J, Li Y, Zou Z, Pan Y, Zhang W, Wang Y. Pyridinium-Based Fluorosulfonamide Reagents Enabled Photoredox-Catalyzed Radical Fluorosulfonamidation. Org Lett 2024; 26:6714-6719. [PMID: 39058587 DOI: 10.1021/acs.orglett.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Sulfamoyl fluorides, as a crucial building block of SuFEx, have garnered extensive research interest due to their unique properties. However, the direct radical fluorosulfonamidation process for the synthesis of sulfamoyl fluorides has been overlooked. We herein disclosed a practical procedure for constructing a redox-active fluorosulfonamide radical reagent named fluorosulfonyl-N-pyridinium tetrafluoroborate (PNSF) from SO2F2. These reagents can facilitate a range of reactions, including the N-(fluorosulfonyl) sulfonamidation of (hetero)arenes, sequential radical stereoselective fluorosulfonamidation, and 1,2-difunctionalization of alkenes.
Collapse
Affiliation(s)
- Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenlei Zou
- Anhui Technology Research Center of Optoelectronic Technology Appliance, Biomimetic Energy Laboratory, School of Electrical Engineering, Tongling University, Tongling 244000, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Hansen T, Danková D, Bæk M, Grlaš L, Olsen CA. Sulfur(VI) Fluoride Exchange Chemistry in Solid-Phase Synthesis of Compound Arrays: Discovery of Histone Deacetylase Inhibitors. JACS AU 2024; 4:1854-1862. [PMID: 38818074 PMCID: PMC11134391 DOI: 10.1021/jacsau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Multistep synthesis performed on solid support is a powerful means to generate small-molecule libraries for the discovery of chemical probes to dissect biological mechanisms as well as for drug discovery. Therefore, expansion of the collection of robust chemical transformations amenable to solid-phase synthesis is desirable for achieving chemically diverse libraries for biological testing. Here, we show that sulfur(VI) fluoride exchange (SuFEx) chemistry, exemplified by pairing phenols with aryl fluorosulfates, can be used for the solid-phase synthesis of biologically active compounds. As a case study, we designed and synthesized a library of 84 hydroxamic acid-containing small molecules, providing a rich source of inhibitors with diverse selectivity profiles across the human histone deacetylase enzyme family. Among other discoveries, we identified a scaffold that furnished inhibitors of HDAC11 with exquisite selectivity in vitro and a selective inhibitor of HDAC6 that was shown to affect the acetylation of α-tubulin over histone sites H3K18, H3K27, as well as SMC3 in cultured cells. Our results encourage the further use of SuFEx chemistry for the synthesis of diverse small-molecule libraries and provide insight for future design of selective HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | - Linda Grlaš
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Wang W, Li J, Xu L, Dong J. N-Fluorosulfonyl Guanidine: An Entry to N-Guanyl Sulfamides and Sulfamates. Org Lett 2024; 26:3202-3207. [PMID: 38578703 DOI: 10.1021/acs.orglett.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Here, we present the straightforward synthesis of N-fluorosulfonyl guanidine (1) from two industrial feedstocks, guanidine hydrochloride and sulfuryl fluoride (SO2F2), using SuFEx chemistry. Compound 1 exhibits excellent stability under ambient conditions and displays unique SuFEx reactivity toward amines and phenols to generate N-guanyl sulfamides and sulfamates that have rarely been accessed. Notably, water serves as an effective solvent in this process. Our protocol provides a reliable pathway for the synthesis and investigation of these novel guanidine-containing molecules.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingyuan Li
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
8
|
Yue S, Ding G, Zheng Y, Song C, Xu P, Yu B, Li J. Dimethyl sulfate and diisopropyl sulfate as practical and versatile O-sulfation reagents. Nat Commun 2024; 15:1861. [PMID: 38424087 PMCID: PMC10904734 DOI: 10.1038/s41467-024-46214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
O-Sulfation is a vital post-translational modification in bioactive molecules, yet there are significant challenges with their synthesis. Dialkyl sulfates, such as dimethyl sulfate and diisopropyl sulfate are commonly used as alkylation agents in alkaline conditions, and result in the formation of sulfate byproducts. We report herein a general and robust approach to O-sulfation by harnessing the tunable reactivity of dimethyl sulfate or diisopropyl sulfate under tetrabutylammonium bisulfate activation. The versatility of this O-sulfation protocol is interrogated with a diverse range of alcohols, phenols and N-OH compounds, including carbohydrates, amino acids and natural products. The enhanced electrophilicity of the sulfur atom in dialkyl sulfates, facilitated by the interaction with bisulfate anion (HSO4-), accounts for this pioneering chemical reactivity. We envision that our method will be useful for application in the comprehension of biological functions and discovery of drugs.
Collapse
Affiliation(s)
- Shuaishuai Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guoping Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Ye Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunlan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jiakun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
9
|
Deng X, Zhu X. Recent Advances of S- 18F Radiochemistry for Positron Emission Tomography. ACS OMEGA 2023; 8:37720-37730. [PMID: 37867643 PMCID: PMC10586020 DOI: 10.1021/acsomega.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
The click chemistry of sulfur(VI) fluoride exchange (SuFEx) has facilitated the widespread application of sulfur-fluoride compounds such as sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides in various fields, especially in the development of 18F ligands for PET (positron emission tomography) imaging. In recent years, the prominent progress of sulfur-[18F]fluoride compounds has been achieved through the combination of 18F and sulfur-fluoride chemistry. These compounds serve as potential 18F tracers, 18F synthons, and reagents for 18F-fluorination, thereby complementing the range of 18F ligands, typically C-18F structures, used in PET studies. This review aims to provide an overview of S-18F labeling reactions through examples of relevant 18F compounds and highlight the advancements and breakthroughs achieved in the past decade.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
10
|
Liu C, Liu X, Zhou M, Xia C, Lyu Y, Peng Q, Soni C, Zhou Z, Su Q, Wu Y, Weerapana E, Gao J, Chatterjee A, Cheng L, Jia N. Fluorosulfate as a Latent Sulfate in Peptides and Proteins. J Am Chem Soc 2023; 145:20189-20195. [PMID: 37647087 PMCID: PMC10623540 DOI: 10.1021/jacs.3c07937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sulfation widely exists in the eukaryotic proteome. However, understanding the biological functions of sulfation in peptides and proteins has been hampered by the lack of methods to control its spatial or temporal distribution in the proteome. Herein, we report that fluorosulfate can serve as a latent precursor of sulfate in peptides and proteins, which can be efficiently converted to sulfate by hydroxamic acid reagents under physiologically relevant conditions. Photocaging the hydroxamic acid reagents further allowed for the light-controlled activation of functional sulfopeptides. This work provides a valuable tool for probing the functional roles of sulfation in peptides and proteins.
Collapse
Affiliation(s)
- Chao Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xueyi Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Mi Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Yuhan Lyu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chintan Soni
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qiwen Su
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yujia Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lin Cheng
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Niu Jia
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
11
|
Homer JA, Xu L, Kayambu N, Zheng Q, Choi EJ, Kim BM, Sharpless KB, Zuilhof H, Dong J, Moses JE. Sulfur fluoride exchange. NATURE REVIEWS. METHODS PRIMERS 2023; 3:58. [PMID: 38873592 PMCID: PMC11171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sulfur Fluoride Exchange (SuFEx) is a click reaction par excellence that has revolutionized multiple research fields. In this Primer, we delve into the essential elements of SuFEx operation, catalysis, and SuFExable connective hubs. We also explore the cutting-edge applications of SuFEx in drug development, polymer science, and biochemistry. Additionally, we examine the potential limitations and promising prospects for this versatile click reaction.
Collapse
Affiliation(s)
- Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, NY 11724, USA
| | - Long Xu
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Namitharan Kayambu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Current affiliation: Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Eun Joung Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, NY 11724, USA
| |
Collapse
|
12
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
13
|
Faucher FF, Abegg D, Ipock P, Adibekian A, Lovell S, Bogyo M. Solid Phase Synthesis of Fluorosulfate Containing Macrocycles for Chemoproteomic Workflows. Isr J Chem 2023. [DOI: 10.1002/ijch.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
| | - Daniel Abegg
- Department of Chemistry University of Illinois Chicago Chicago, Illinois 60607 USA
| | - Phillip Ipock
- Department of Chemistry Stanford University Stanford 94305 CA
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago, Illinois 60607 USA
| | - Scott Lovell
- Department of Life Sciences University of Bath Bath BA2 7AX U.K
- Department of Pathology Stanford University School of Medicine Stanford 94305 CA
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine Stanford 94305 CA
- Department of Chemical and Systems Biology Stanford University School of Medicine Stanford 94305 CA
- Department of Microbiology and Immunology Stanford University School of Medicine Stanford 94305 CA
| |
Collapse
|
14
|
Faucher FF, Abegg D, Ipock P, Adibekian A, Lovell S, Bogyo M. Solid Phase Synthesis of Fluorosulfate Containing Macrocycles for Chemoproteomic Workflows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529022. [PMID: 36824748 PMCID: PMC9949109 DOI: 10.1101/2023.02.17.529022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Macrocyclic peptides are attractive for chemoproteomic applications due to their modular synthesis and potential for high target selectivity. We describe a solid phase synthesis method for the efficient generation of libraries of small macrocycles that contain an electrophile and alkyne handle. The modular synthesis produces libraries that can be directly screened using simple SDS-PAGE readouts and then optimal lead molecules applied to proteomic analysis. We generated a library of 480 macrocyclic peptides containing the weakly reactive fluorosulfate (OSF) electrophile. Initial screening of a subset of the library containing each of the various diversity elements identified initial molecules of interest. The corresponding positional and confirmational isomers were then screened to select molecules that showed specific protein labeling patterns that were dependent on the probe structure. The most promising hits were applied to standard chemoproteomic workflows to identify protein targets. Our results demonstrate the feasibility of rapid, on-resin synthesis of diverse macrocyclic electrophiles to generate new classes of covalent ligands.
Collapse
Affiliation(s)
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | | | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Scott Lovell
- Current Address: Department of Life Sciences, University of Bath, Bath BA2 7AX, U.K
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
15
|
Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO 2F radical reagent. Nat Commun 2022; 13:3515. [PMID: 35717500 PMCID: PMC9206656 DOI: 10.1038/s41467-022-31296-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides are key components in the fields of chemical biology, materials science and drug discovery. In this line, the highly active SO2F radical has been employed for the construction of sulfonyl fluorides, but the utilization of gaseous ClSO2F as radical precursor is limited due to the tedious and hazardous preparation. Meanwhile, the synthesis of sulfonyl fluorides from inert SO2F2 gas through a fluorosulfonyl radical (·SO2F) process has met with inevitable difficulties due to the high homolytic bond dissociation energy of the S(VI)-F bond. Here we report a radical fluorosulfonylation strategy for the stereoselective synthesis of alkenyl sulfonyl fluorides and functional alkyl sulfonyl fluorides with an air-stable crystalline benzimidazolium fluorosulfonate cationic salt reagent. This bench-stable redox-active reagent offers a useful and operational protocol for the radical fluorosulfonylation of unsaturated hydrocarbons with good yield and high stereoselectivity, which can be further transformed into valuable functional SO2F moieties. Sulfonyl fluorides have potential application in chemical biology, materials science, and drug discovery, but their preparation remains challenging. Here, the authors report an air-stable fluorosulfonylating reagent that enables the radical fluorosulfonylation, hydrofluorosulfonylation and migratory SO2F-difunctionalization of unsaturated hydrocarbons to construct a variety of sulfonyl fluoride compounds.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
17
|
Xu S, Cui S. SuFExable Isocyanides for Ugi Reaction: Synthesis of Sulfonyl Fluoro Peptides. Org Lett 2021; 23:5197-5202. [PMID: 34157840 DOI: 10.1021/acs.orglett.1c01734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, the sulfonyl fluoro isocyanides were first developed as a new type of SuFExable synthon, and they are used as building blocks in the Ugi reaction (U-4CR). The Ugi reaction was established and the substrate scope was investigated, and various sulfonyl fluoro α-amino amides and peptides could be reached in a one-step synthesis. Therefore, this protocol opens a new vision for SuFExable building blocks and click chemistry, and it also provides a distinct approach to sulfonyl fluoro peptides.
Collapse
Affiliation(s)
- Shuheng Xu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
19
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
20
|
Zheng Q, Xu H, Wang H, Du WGH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. Sulfur [ 18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. J Am Chem Soc 2021; 143:3753-3763. [PMID: 33630577 DOI: 10.1021/jacs.0c09306] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The lack of efficient [18F]fluorination processes and target-specific organofluorine chemotypes remains the major challenge of fluorine-18 positron emission tomography (PET). We report here an ultrafast isotopic exchange method for the radiosynthesis of novel PET agent aryl [18F]fluorosulfate enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully automated 18F-radiolabeling of 25 structurally and functionally diverse aryl fluorosulfates with excellent radiochemical yield (83-100%, median 98%) and high molar activity (280 GBq μmol-1) at room temperature in 30 s. The purification of radiotracers requires no time-consuming HPLC but rather a simple cartridge filtration. We further demonstrate the imaging application of a rationally designed poly(ADP-ribose) polymerase 1 (PARP1)-targeting aryl [18F]fluorosulfate by probing subcutaneous tumors in vivo.
Collapse
Affiliation(s)
- Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Abstract
α-Conotoxins (Ctx) can selectively target distinct subtypes of nicotinic acetylcholine receptors (nAChRs), which are closely related to a number of neurological diseases, and they have been considered as ideal probes and model peptide drugs. Sulfotyrosine (sY) is an important post-translational modification and believed to modulate certain key protein-protein interactions. Although sY modification has been indicated in several α-Ctx, its biological consequence has largely remained unexplored, mostly because of the difficulties in both its extraction from biological samples and chemical synthesis. Herein, we report a facile synthesis and folding strategy for obtaining the sY modified α-Ctx. This strategy is based on the development of a simple and controlled deprotection of the neopentyl protecting group of the sulfate ester as well as its compatibility with a step-wise oxidative folding of the two disulfide bonds. Eight sY modified α-Ctx peptides were successfully synthesized in good yield and with high purity, and their serum stabilities were almost comparable with non-modified peptides.
Collapse
Affiliation(s)
- Changpeng Li
- School of Chemistry and Chemical Engineering; South China University of Technology, Guangzhou 510640, China.
| | | |
Collapse
|
22
|
Maxwell JW, Payne RJ. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Curr Opin Chem Biol 2020; 58:72-85. [DOI: 10.1016/j.cbpa.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022]
|
23
|
Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, Hull MV, Kotaniguchi M, Cappiello JR, Kitamura S, Nizet V, Sharpless KB, Wolan DW. Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. J Am Chem Soc 2020; 142:10899-10904. [PMID: 32479075 DOI: 10.1021/jacs.9b13652] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 μM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miyako Kotaniguchi
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | - Shinichi Kitamura
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | | | | |
Collapse
|
24
|
Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020; 59:7494-7500. [PMID: 32157791 PMCID: PMC7216998 DOI: 10.1002/anie.201915519] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Indexed: 12/20/2022]
Abstract
SuFEx reactions, in which an S−F moiety reacts with a silyl‐protected phenol, have been developed as powerful click reactions. In the current paper we open up the potential of SuFEx reactions as enantioselective reactions, analyze the role of Si and outline the mechanism of this reaction. As a result, fast, high‐yielding, “Si‐free” and enantiospecific SuFEx reactions of sulfonimidoyl fluorides have been developed, and their mechanism shown, by both experimental and theoretical methods, to yield chiral products.
Collapse
Affiliation(s)
- Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dieuwertje E Streefkerk
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Daan Jordaan
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon‐Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dieuwertje E. Streefkerk
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Daan Jordaan
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
26
|
Kong Z, He L, Shi Y, Guan Q, Ning P. A review of thermal homogeneous catalytic deoxygenation reactions for valuable products. Heliyon 2020; 6:e03446. [PMID: 32123767 PMCID: PMC7036526 DOI: 10.1016/j.heliyon.2020.e03446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
To remove high oxygen content is important to make high quality oil and valuable products. In this paper, the research on homogeneous catalytic deoxygenation reactions, including decarboxylation (DCX)/decarbonylation (DCN), hydrodeoxygenation (HDO) is reviewed. Based on DCX/DCN, the classic radical reactions such as the Barton decarboxylation, Henkel, Hunsdiecker and Kochi reactions were introduced, the practice and overall performance are also discussed. In addition, the different reaction pathways and mechanisms were demonstrated and the key chemical processes have been selected from the literature as examples to elaborate the critical emphasis on the mechanistic understanding. The applications of the catalytic deoxygenation reactions for high-value products have also been highlighted. Overall, this review provides insight discussions on the DO issues and progresses in homogeneous catalytic aspects.
Collapse
Affiliation(s)
- Zhaoni Kong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuzheng Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Corresponding author.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Corresponding author.
| |
Collapse
|
27
|
Xu H, Ma F, Wang N, Hou W, Xiong H, Lu F, Li J, Wang S, Ma P, Yang G, Lerner RA. DNA-Encoded Libraries: Aryl Fluorosulfonates as Versatile Electrophiles Enabling Facile On-DNA Suzuki, Sonogashira, and Buchwald Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901551. [PMID: 31832315 PMCID: PMC6891896 DOI: 10.1002/advs.201901551] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Indexed: 05/07/2023]
Abstract
Using (hetero)aryl fluorosulfonates as versatile electrophiles, facile on-DNA cross-coupling reactions of Suzuki, Sonogashira, and Buchwald are reported here. Notably, all of these reactions show excellent functional group tolerance, mild reaction conditions (relative low temperature and open to air), rich heterocyclic coupling partners, and more importantly, DNA-compatibility. Thus, these new reactions based on efficient formation of C(sp2)-C(sp2), C(sp2)-C(sp), and C(sp2)-N bonds are highly amenable to synthesis of DNA-encoded libraries with great molecular diversity.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Wei Hou
- College of Pharmaceutical Scienceand Institute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of TechnologyHangzhou310014China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
28
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
29
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF 4 )-Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019; 58:8029-8033. [PMID: 30998840 PMCID: PMC6546515 DOI: 10.1002/anie.201902489] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/08/2022]
Abstract
We report here the development of a suite of biocompatible SuFEx transformations from the SOF4 -derived iminosulfur oxydifluoride hub in aqueous buffer conditions. These biocompatible SuFEx reactions of iminosulfur oxydifluorides (R-N=SOF2 ) with primary amines give sulfamides (8 examples, up to 98 %), while the reaction with secondary amines furnish sulfuramidimidoyl fluoride products (8 examples, up to 97 %). Likewise, under mild buffered conditions, phenols react with the iminosulfur oxydifluorides (Ar-N=SOF2 ) to produce sulfurofluoridoimidates (13 examples, up to 99 %), which can themselves be further modified by nucleophiles. These transformations open the potential for asymmetric and trisubstituted linkages projecting from the sulfur(VI) center, including versatile S-N and S-O connectivity (9 examples, up to 94 %). Finally, the SuFEx bioconjugation of iminosulfur oxydifluorides to amine-tagged single-stranded DNA and to BSA protein demonstrate the potential of SOF4 -derived SuFEx click chemistry in biological applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Grant A L Bare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
30
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF
4
)‐Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- Department of Chemistry Fudan University Shanghai 200438 P. R. China
| | - Hua Wang
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Grant A. L. Bare
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John E. Moses
- La Trobe Institute For Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
31
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. Applications of sulfuryl fluoride (SO2F2) in chemical transformations. Org Chem Front 2019. [DOI: 10.1039/c9qo00747d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of novel methodologies concerning the chemical, biological and medicinal applications of sulfuryl fluoride (SO2F2) gas have dramatically improved year by year.
Collapse
Affiliation(s)
- Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
32
|
Yang C, Flynn JP, Niu J. Facile Synthesis of Sequence‐Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angew Chem Int Ed Engl 2018; 57:16194-16199. [DOI: 10.1002/anie.201811051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Cangjie Yang
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| | - James P. Flynn
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| | - Jia Niu
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| |
Collapse
|
33
|
Yang C, Flynn JP, Niu J. Facile Synthesis of Sequence‐Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cangjie Yang
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| | - James P. Flynn
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| | - Jia Niu
- Department of ChemistryBoston College 2609 Beacon Street Chestnut Hill MA 02467-3860 USA
| |
Collapse
|
34
|
Total synthesis and modification of proline-rich cyclopeptides Phakellistatins 17 and 18 isolated from marine sponge. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Wang CC, Chen BH, Lu LY, Hung KS, Yang YS. Preparation of Tyrosylprotein Sulfotransferases for In Vitro One-Pot Enzymatic Synthesis of Sulfated Proteins/Peptides. ACS OMEGA 2018; 3:11633-11642. [PMID: 30320268 PMCID: PMC6173500 DOI: 10.1021/acsomega.7b01533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Protein tyrosine sulfation (PTS), catalyzed by membrane-anchored tyrosylprotein sulfotransferase (TPST), is one of the most common post-translational modifications of secretory and transmembrane proteins. PTS, a key modulator of extracellular protein-protein interactions, accounts for various important biological activities, namely, virus entry, inflammation, coagulation, and sterility. The preparation and characterization of TPST is fundamental for understanding the synthesis of tyrosine-sulfated proteins and for studying PTS in biology. A sulfated protein was prepared using a TPST-coupled protein sulfation system that involves the generation of the active sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through either PAPS synthetase (PAPSS) or phenol sulfotransferase. The preparation of sulfated proteins was confirmed through radiometric or immunochemical assays. In this study, enzymatically active Drosophila melanogaster TPST (DmTPST) and human TPSTs (hTPST1 and hTPST2) were expressed in Escherichia coli BL21(DE3) host cells and purified to homogeneity in high yield. Our results revealed that recombinant DmTPST was particularly useful considering its catalytic efficiency and ease of preparation in large quantities. This study provides tools for high-efficiency, one-step synthesis of sulfated proteins and peptides that are useful for further deciphering the mechanisms, functions, and future applications of PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Bo-Han Chen
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Lu-Yi Lu
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Kuo-Sheng Hung
- Department
of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, No.111, Section 3, Hsing-Long Road, Taipei 11696, Taiwan
| | - Yuh-Shyong Yang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| |
Collapse
|
36
|
Thomas J, Fokin VV. Regioselective Synthesis of Fluorosulfonyl 1,2,3-Triazoles from Bromovinylsulfonyl Fluoride. Org Lett 2018; 20:3749-3752. [DOI: 10.1021/acs.orglett.8b01309] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joice Thomas
- The Bridge@USC and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Valery V. Fokin
- The Bridge@USC and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
37
|
Wang N, Yang B, Fu C, Zhu H, Zheng F, Kobayashi T, Liu J, Li S, Ma C, Wang PG, Wang Q, Wang L. Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo. J Am Chem Soc 2018; 140:4995-4999. [PMID: 29601199 DOI: 10.1021/jacs.8b01087] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introducing new chemical reactivity into proteins in living cells would endow innovative covalent bonding ability to proteins for research and engineering in vivo. Latent bioreactive unnatural amino acids (Uaas) can be incorporated into proteins to react with target natural amino acid residues via proximity-enabled reactivity. To expand the diversity of proteins amenable to such reactivity in vivo, a chemical functionality that is biocompatible and able to react with multiple natural residues under physiological conditions is highly desirable. Here we report the genetic encoding of fluorosulfate-l-tyrosine (FSY), the first latent bioreactive Uaa that undergoes sulfur-fluoride exchange (SuFEx) on proteins in vivo. FSY was found nontoxic to Escherichia coli and mammalian cells; after being incorporated into proteins, it selectively reacted with proximal lysine, histidine, and tyrosine via SuFEx, generating covalent intraprotein bridge and interprotein cross-link of interacting proteins directly in living cells. The proximity-activatable reactivity, multitargeting ability, and excellent biocompatibility of FSY will be invaluable for covalent manipulation of proteins in vivo. Moreover, genetically encoded FSY hereby empowers general proteins with the next generation of click chemistry, SuFEx, which will afford broad utilities in chemical biology, drug discovery, and biotherapeutics.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Caiyun Fu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Cheng Ma
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
38
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF 4 ) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018; 57:1939-1943. [PMID: 29314580 PMCID: PMC6005182 DOI: 10.1002/anie.201712145] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Thionyl tetrafluoride (SOF4 ) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur-oxygen and sulfur-nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur-carbon links at the sulfur center of SOF4 -derived iminosulfur oxydifluorides (R1 -N=SOF2 ). This method provides rapid and modular access to sulfonimidoyl fluorides (R1 -N=SOFR2 ), another array of versatile SuFEx connectors with readily tunable reactivity of the S-F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.
Collapse
Affiliation(s)
- Bing Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F−SO2
+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712429] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taijie Guo
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Genyi Meng
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Xiongjie Zhan
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Qian Yang
- No.187 Building; 1799 Yinchun Road Shanghai 200032 P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Long Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
40
|
Revathi L, Ravindar L, Leng J, Rakesh KP, Qin HL. Synthesis and Chemical Transformations of Fluorosulfates. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700591] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lekkala Revathi
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Lekkala Ravindar
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Jing Leng
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Kadalipura Puttaswamy Rakesh
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
41
|
Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F−SO2
+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew Chem Int Ed Engl 2018; 57:2605-2610. [DOI: 10.1002/anie.201712429] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Taijie Guo
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Genyi Meng
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Xiongjie Zhan
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Qian Yang
- No.187 Building; 1799 Yinchun Road Shanghai 200032 P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Long Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|
42
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4
) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bing Gao
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute For Molecular Science; La Trobe University; Bundoora, Melbourne Victoria 3083 Australia
| | - K. Barry Sharpless
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
43
|
Zhou H, Mukherjee P, Liu R, Evrard E, Wang D, Humphrey JM, Butler TW, Hoth LR, Sperry JB, Sakata SK, Helal CJ, am Ende CW. Introduction of a Crystalline, Shelf-Stable Reagent for the Synthesis of Sulfur(VI) Fluorides. Org Lett 2018; 20:812-815. [DOI: 10.1021/acs.orglett.7b03950] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Zhou
- BioDuro, No. 233 North FuTe Road, WaiGaoQiao
Free Trade Zone, Shanghai 200131, P. R. China
| | - Paramita Mukherjee
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Rongqiang Liu
- BioDuro, No. 233 North FuTe Road, WaiGaoQiao
Free Trade Zone, Shanghai 200131, P. R. China
| | - Edelweiss Evrard
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Dianpeng Wang
- BioDuro, No. 233 North FuTe Road, WaiGaoQiao
Free Trade Zone, Shanghai 200131, P. R. China
| | - John M. Humphrey
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Todd W. Butler
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Lise R. Hoth
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey B. Sperry
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sylvie K. Sakata
- Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
44
|
Veryser C, Demaerel J, Bieliu Nas V, Gilles P, De Borggraeve WM. Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates. Org Lett 2017; 19:5244-5247. [PMID: 28901771 DOI: 10.1021/acs.orglett.7b02522] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient transformation of phenols into the corresponding aryl fluorosulfates is presented: the first protocol to completely circumvent direct handling of gaseous sulfuryl fluoride (SO2F2). The proposed method employs 1,1'-sulfonyldiimidazole as a precursor to generate near-stoichiometric amounts of SO2F2 gas using a two-chamber reactor. With NMR studies, it was shown that this ex situ gas evolution is extremely rapid, and a variety of phenols and hydroxylated heteroarenes were fluorosulfated in good to excellent yields.
Collapse
Affiliation(s)
- Cedrick Veryser
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Joachim Demaerel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Vidmantas Bieliu Nas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Philippe Gilles
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Chen W, Dong J, Plate L, Mortenson DE, Brighty GJ, Li S, Liu Y, Galmozzi A, Lee PS, Hulce JJ, Cravatt BF, Saez E, Powers ET, Wilson IA, Sharpless KB, Kelly JW. Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue. J Am Chem Soc 2016; 138:7353-64. [PMID: 27191344 PMCID: PMC4909538 DOI: 10.1021/jacs.6b02960] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiajia Dong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David E. Mortenson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel J. Brighty
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrea Galmozzi
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter S. Lee
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan J. Hulce
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Enrique Saez
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|