1
|
Ikbal SA, Zhao P, Ehara M, Akine S. Acceleration and deceleration of chirality inversion speeds in a dynamic helical metallocryptand by alkali metal ion binding. SCIENCE ADVANCES 2023; 9:eadj5536. [PMID: 37922347 PMCID: PMC10624348 DOI: 10.1126/sciadv.adj5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
We report that the chirality inversion kinetics of a trinickel(II) cryptand can be controlled by guest recognition in the cryptand cavity. When the guest was absent, the nickel(II) cryptand underwent a dynamic interconversion between the P and M forms in solution, preferring the M form, with a half-life of t1/2 = 4.99 min. The P/M equilibrium is reversed to P-favored by binding with an alkali metal ion in the cryptand cavity. The timescale of this M→P inversion kinetics was both notably accelerated and decelerated by the guest binding (t1/2 = 0.182 min for K+ complex; 186 min for Cs+ complex); thus, the equilibration rate constants differed by up to 1000-fold depending on the guest metal ions. This acceleration/deceleration can be explained in terms of the virtual binding constants at the transition state of the P/M chirality inversion; K+ binding more stabilizes the transition state rather than the P and M forms to result in the acceleration.
Collapse
Affiliation(s)
- Sk Asif Ikbal
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Sheng J, Pooler DRS, Feringa BL. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem Soc Rev 2023; 52:5875-5891. [PMID: 37581608 PMCID: PMC10464662 DOI: 10.1039/d3cs00247k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/16/2023]
Abstract
Chirality is a fundamental property which plays a major role in chemistry, physics, biological systems and materials science. Chiroptical artificial molecular motors (AMMs) are a class of molecules which can convert light energy input into mechanical work, and they hold great potential in the transformation from simple molecules to dynamic systems and responsive materials. Taking distinct advantages of the intrinsic chirality in these structures and the unique opportunity to modulate the chirality on demand, chiral AMMs have been designed for the development of light-responsive dynamic processes including switchable asymmetric catalysis, chiral self-assembly, stereoselective recognition, transmission of chirality, control of spin selectivity and biosystems as well as integration of unidirectional motion with specific mechanical functions. This review focuses on the recently developed strategies for chirality-led applications by the class of intrinsically chiral AMMs. Finally, some limitations in current design and challenges associated with recent systems are discussed and perspectives towards promising candidates for responsive and smart molecular systems and future applications are presented.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
3
|
Li J, Cui Y, Lu YL, Zhang Y, Zhang K, Gu C, Wang K, Liang Y, Liu CS. Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch. Nat Commun 2023; 14:5030. [PMID: 37596287 PMCID: PMC10439165 DOI: 10.1038/s41467-023-40698-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yihan Cui
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunfei Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaihuang Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chaonan Gu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaifang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yujia Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chun-Sen Liu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
5
|
Dašková V, Padín D, Feringa BL. Turning Enantiomeric Relationships into Diastereomeric Ones: Self-Resolving α-Ureidophosphonates and Their Organocatalytic Enantioselective Synthesis. J Am Chem Soc 2022; 144:23603-23613. [PMID: 36516975 PMCID: PMC9801384 DOI: 10.1021/jacs.2c10911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Controlling chiral recognition and chiral information transfer has major implications in areas ranging from drug design and asymmetric catalysis to supra- and macromolecular chemistry. Especially intriguing are phenomena associated with chiral self-recognition. The design of systems that show self-induced recognition of enantiomers, i.e., involving homochiral versus heterochiral dimers, is particularly challenging. Here, we report the chiral self-recognition of α-ureidophosphonates and its application as both a powerful analytical tool for enantiomeric ratio determination by NMR and as a convenient way to increase their enantiomeric purity by simple achiral column chromatography or fractional precipitation. A combination of NMR, X-ray, and DFT studies indicates that the formation of homo- and heterochiral dimers involving self-complementary intermolecular hydrogen bonds is responsible for their self-resolving properties. It is also shown that these often unnoticed chiral recognition phenomena can facilitate the stereochemical analysis during the development of new asymmetric transformations. As a proof of concept, the enantioselective organocatalytic hydrophosphonylation of alkylidene ureas toward self-resolving α-ureidophosphonates is presented, which also led us to the discovery of the largest family of self-resolving compounds reported to date.
Collapse
|
6
|
Photoisomerization, assembling and fluorescence photoswitching behaviors of a water-soluble stiff-stilbene with cucurbit[7]uril. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Wezenberg SJ. Photoswitchable molecular tweezers: isomerization to control substrate binding, and what about vice versa? Chem Commun (Camb) 2022; 58:11045-11058. [PMID: 36106956 PMCID: PMC9531670 DOI: 10.1039/d2cc04329g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
The linkage of two identical binding motifs by a molecular photoswitch has proven to be a straightforward and versatile strategy to control substrate binding affinity by light. Stimulus control of binding properties in artificial receptors is partly inspired by the dynamic behavior of proteins and is highly attractive as it could, for example, improve extraction processes and allow (de)activation of membrane transport on demand. This feature article summarizes the development and design principles of molecular tweezers containing a molecular photoswitch as the core unit. Besides the control of binding affinity by isomerization, the effect of substrate binding on the isomerization behavior is discussed where data is available. While the latter often receives less attention, it could be of benefit in the future creation of multi-stimuli-controlled molecular switching and machine-like systems.
Collapse
Affiliation(s)
- Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
8
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
9
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
10
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
12
|
Xu F, Crespi S, Pacella G, Fu Y, Stuart MCA, Zhang Q, Portale G, Feringa BL. Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water. J Am Chem Soc 2022; 144:6019-6027. [PMID: 35341243 PMCID: PMC8991000 DOI: 10.1021/jacs.2c01063] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/02/2023]
Abstract
Natural systems transfer chiral information across multiple length scales through dynamic supramolecular interaction to accomplish various functions. Inspired by nature, many exquisite artificial supramolecular systems have been developed, in which controlling the supramolecular chirality holds the key to completing specific tasks. However, to achieve precise and non-invasive control and modulation of chirality in these systems remains challenging. As a non-invasive stimulus, light can be used to remotely control the chirality with high spatiotemporal precision. In contrast to common molecular switches, a synthetic molecular motor can act as a multistate chiroptical switch with unidirectional rotation, offering major potential to regulate more complex functions. Here, we present a light-driven molecular motor-based supramolecular polymer, in which the intrinsic chirality is transferred to the nanofibers, and the rotation of molecular motors governs the chirality and morphology of the supramolecular polymer. The resulting supramolecular polymer also exhibits light-controlled multistate aggregation-induced emission. These findings present a photochemically tunable multistate dynamic supramolecular system in water and pave the way for developing molecular motor-driven chiroptical materials.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gianni Pacella
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Youxin Fu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Qi Zhang
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, China
| |
Collapse
|
13
|
Lv S, Li X, Yang L, Ren H, Jiang J. Computational design of photoswitchable anion receptors: Red-shifted and bistable di-ortho-fluoro di-ortho-chloro azobenzene derivatives. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo‐responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Centre for Systems Chemistry Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
15
|
Liu Y, Zhang Q, Crespi S, Chen S, Zhang X, Xu T, Ma C, Zhou S, Shi Z, Tian H, Feringa BL, Qu D. Motorized Macrocycle: A Photo-responsive Host with Switchable and Stereoselective Guest Recognition. Angew Chem Int Ed Engl 2021; 60:16129-16138. [PMID: 33955650 PMCID: PMC8361693 DOI: 10.1002/anie.202104285] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Designing photo-responsive host-guest systems can provide versatile supramolecular tools for constructing smart systems and materials. We designed photo-responsive macrocyclic hosts, modulated by light-driven molecular rotary motors enabling switchable chiral guest recognition. The intramolecular cyclization of the two arms of a first-generation molecular motor with flexible oligoethylene glycol chains of different lengths resulted in crown-ether-like macrocycles with intrinsic motor function. The octaethylene glycol linkage enables the successful unidirectional rotation of molecular motors, simultaneously allowing the 1:1 host-guest interaction with ammonium salt guests. The binding affinity and stereoselectivity of the motorized macrocycle can be reversibly modulated, owing to the multi-state light-driven switching of geometry and helicity of the molecular motors. This approach provides an attractive strategy to construct stimuli-responsive host-guest systems and dynamic materials.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Stefano Crespi
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Shaoyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Xiu‐Kang Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Tian‐Yi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Chang‐Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shang‐Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterFrontiers Science Center for Materiobiology and Dynamic ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
16
|
Sokołowska P, Dąbrowa K, Jarosz S. Visible-Light Responsive Sucrose-Containing Macrocyclic Host for Cations. Org Lett 2021; 23:2687-2692. [PMID: 33729804 PMCID: PMC8041374 DOI: 10.1021/acs.orglett.1c00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral photoresponsive host 1 was prepared by a high-yield Cs2CO3-templated macrocyclization. Trans-1 transforms into long-lived cis-1 (25 days) upon irradiation with green light, and the backward transformation is triggered by blue light. Both isomers prefer potassium among alkali metal cations, and cis-1 binds cations stronger than trans-1 (Kcis/Ktrans ≤ 4.1). 1H NMR titration experiments as well as density functional theory studies reveal that sucrose ring oxygen residues and azobenzene nitrogen atoms in 1 contribute to cation coordination.
Collapse
Affiliation(s)
- Patrycja Sokołowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Bartelmann T, Gnannt F, Zitzmann M, Mayer P, Dube H. Sulfoxide hemithioindigo tweezers - visible light addressable capture and release. Chem Sci 2021; 12:3651-3659. [PMID: 34163639 PMCID: PMC8179485 DOI: 10.1039/d0sc04981f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introducing responsive elements into supramolecular recognition systems offers great advantages for the control of intermolecular interactions and represents an important stepping stone towards multi-purpose and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness because of the unique ease and precision of this signal. Here we present visible light responsive hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional recognition unit inside their binding site. Sulfur oxidation allows to simultaneously enhance all crucial properties of this receptor type i.e. photoswitching capability, thermal stability of individual switching states, binding affinity, and binding modulation upon switching. With a novel titration method the thermodynamic binding parameters were determined using reduced sample amounts. Employing these strongly enhanced molecular tweezers allowed to demonstrate photocontrol of intermolecular charge transfer in a reversible manner. Hemithioindigo based molecular tweezers with a comprehensively improved property profile are obtained by simple oxidation of the sulfur atom.![]()
Collapse
Affiliation(s)
- Thomas Bartelmann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Center for Integrated Protein Science CIPSM Butenandtstr. 5-13 81377 München Germany
| | - Frederik Gnannt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Max Zitzmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Peter Mayer
- Ludwig-Maximilians-Universität München, Department of Chemistry, Center for Integrated Protein Science CIPSM Butenandtstr. 5-13 81377 München Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München, Department of Chemistry, Center for Integrated Protein Science CIPSM Butenandtstr. 5-13 81377 München Germany .,Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
18
|
Zhang H, Wang L, Dong P, Mao S, Mao P, Liu G. Photolysis of the BODIPY dye activated by pillar[5]arene. RSC Adv 2021; 11:7454-7458. [PMID: 35423231 PMCID: PMC8694983 DOI: 10.1039/d0ra08611h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Here, a pseudo[3]rotaxane comprising a fluorescent BODIPY derivative and pillar[5]arene was conveniently fabricated via host–guest complexation. Importantly, in this system, the efficient photodecomposition of the BODIPY derivative in the presence of pillar[5]arene was witnessed upon irradiation at 311 nm light, which was demonstrated via UV-Vis absorption, fluorescence emission, NMR and HR-MS spectroscopy techniques, but the only BODIPY dye in the absence of pillar[5]arene couldn't undergo photodegradation. We demonstrated that pillar[5]arene could act as an activator to trigger the photodegradation reaction of BODIPY derivatives via free radical reactions even without supramolecular interactions. The present results provide a new strategy for the efficient photolysis of organic dyes. Here, a pseudo[3]rotaxane comprising a fluorescent BODIPY derivative and pillar[5]arene was conveniently fabricated via host–guest complexation.![]()
Collapse
Affiliation(s)
- Haifan Zhang
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Long Wang
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Puyang Dong
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Shuqiang Mao
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Guoxing Liu
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
- College of Science
| |
Collapse
|
19
|
MacDonald TC, Feringa BL, Price WS, Wezenberg SJ, Beves JE. Controlled Diffusion of Photoswitchable Receptors by Binding Anti-electrostatic Hydrogen-Bonded Phosphate Oligomers. J Am Chem Soc 2020; 142:20014-20020. [PMID: 33180496 PMCID: PMC7735709 DOI: 10.1021/jacs.0c09072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Dihydrogen phosphate anions are found to spontaneously associate into anti-electrostatic oligomers via hydrogen bonding interactions at millimolar concentrations in DMSO. Diffusion NMR measurements supported formation of these oligomers, which can be bound by photoswitchable anion receptors to form large bridged assemblies of approximately three times the volume of the unbound receptor. Photoisomerization of the oligomer-bound receptor causes a decrease in diffusion coefficient of up to 16%, corresponding to a 70% increase in effective volume. This new approach to external control of diffusion opens prospects in controlling molecular transport using light.
Collapse
Affiliation(s)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - William S. Price
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jonathon E. Beves
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Lv S, Li X, Yang L, Wang X, Zhang J, Zhang G, Jiang J. Azopyrazole-Based Photoswitchable Anion Receptor for Dihydrogen Phosphate Transport. J Phys Chem A 2020; 124:9692-9697. [PMID: 33198457 DOI: 10.1021/acs.jpca.0c08108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule anion carriers are potential reagents used in the treatment of diseases caused by dysregulated anion transport. Photoswitchable anion receptors, which can be reversibly switched between isomers by light and thereby cause reversible changes in anion binding affinity, have been receiving enormous interest. Here, based on the well-known photoswitch 1-N-methyl-3-phenylazopyrazole (3pzH), we designed a novel tetramethylamide-3pzH (3pzH_TA) photoswitchable receptor that achieves highly efficient and durable anion transportation. It enables high photoisomerization ratios of E → Z (>98%) and Z → E (97%) with a thermal half-life two times longer than that of 3pzH. We further demonstrated the high sensitivity of 3pzH_TA toward H2PO4- anion and revealed the key role of hydrogen bonds between H2PO4- and Z isomer in the strength of anion binding. Our findings open up a new strategy for the rational design and understanding of new types of photoswitchable anion receptors.
Collapse
Affiliation(s)
- Shasha Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xijun Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jinxiao Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Gilissen PJ, White PB, Berrocal JA, Vanthuyne N, Rutjes FPJT, Feringa BL, Elemans JAAW, Nolte RJM. Molecular motor-functionalized porphyrin macrocycles. Nat Commun 2020; 11:5291. [PMID: 33082343 PMCID: PMC7576194 DOI: 10.1038/s41467-020-19123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular motors and switches change conformation under the influence of an external stimulus, e.g. light. They can be incorporated into functional systems, allowing the construction of adaptive materials and switchable catalysts. Here, we present two molecular motor-functionalized porphyrin macrocycles for future photo-switchable catalysis. They display helical, planar and point chirality, and are diastereomers, which differ in the relative orientation of the motor and macrocyclic components. Fluorescence, UV-vis, and 1H NMR experiments reveal that the motor-functionalized macrocycles can bind and thread different variants of viologen guests, including a one-side blocked polymeric one of 30 repeat units. The latter feature indicates that the motor systems can find the open end of a polymer chain, thread on it, and move along the chain to eventually bind at the viologen trap, opening possibilities for catalytic writing on single polymer chains via chemical routes. Molecular motors and switches change conformation under the influence of an external stimulus and can be incorporated into functional systems, allowing the construction of adaptive materials and switchable catalysts. Here, the authors present two molecular motor-functionalized porphyrin macrocycles for future photo-switchable catalysis.
Collapse
Affiliation(s)
- Pieter J Gilissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johannes A A W Elemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Fares M, Wu X, Ramesh D, Lewis W, Keller PA, Howe ENW, Pérez‐Tomás R, Gale PA. Stimuli‐Responsive Cycloaurated “OFF‐ON” Switchable Anion Transporters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mohamed Fares
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Xin Wu
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Deepthi Ramesh
- Faculty of Medicine & Health Sciences Department of Pathology and Experimental Therapeutics Cancer Cell Biology Research Group University of Barcelona Barcelona Spain
| | - William Lewis
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Ethan N. W. Howe
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
- GlaxoSmithKline GSK Jurong 1 Pioneer Sector 1 Singapore 628413 Singapore
| | - Ricardo Pérez‐Tomás
- Faculty of Medicine & Health Sciences Department of Pathology and Experimental Therapeutics Cancer Cell Biology Research Group University of Barcelona Barcelona Spain
| | - Philip A. Gale
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
23
|
Fares M, Wu X, Ramesh D, Lewis W, Keller PA, Howe ENW, Pérez-Tomás R, Gale PA. Stimuli-Responsive Cycloaurated "OFF-ON" Switchable Anion Transporters. Angew Chem Int Ed Engl 2020; 59:17614-17621. [PMID: 32583552 DOI: 10.1002/anie.202006392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 01/28/2023]
Abstract
Anion transporters have shown potential application as anti-cancer agents that function by disrupting homeostasis and triggering cell death. In this research article we report switchable anion transport by gold complexes of anion transporters that are "switched on" in situ in the presence of the reducing agent GSH by decomplexation of gold. GSH is found in higher concentrations in tumors than in healthy tissue and hence this approach offers a strategy to target these systems to tumors.
Collapse
Affiliation(s)
- Mohamed Fares
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.,School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Deepthi Ramesh
- Faculty of Medicine & Health Sciences, Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Ethan N W Howe
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.,GlaxoSmithKline, GSK Jurong, 1 Pioneer Sector 1, Singapore, 628413, Singapore
| | - Ricardo Pérez-Tomás
- Faculty of Medicine & Health Sciences, Department of Pathology and Experimental Therapeutics, Cancer Cell Biology Research Group, University of Barcelona, Barcelona, Spain
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
24
|
Pizzolato SF, Štacko P, Kistemaker JCM, van Leeuwen T, Feringa BL. Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis. Nat Catal 2020. [DOI: 10.1038/s41929-020-0452-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Tecilla P, Bonifazi D. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes. ChemistryOpen 2020; 9:529-544. [PMID: 32373423 PMCID: PMC7197086 DOI: 10.1002/open.202000045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Azobenzene is one of the most studied light-controlled molecular switches and it has been incorporated in a large variety of supramolecular systems to control their structural and functional properties. Given the peculiar isomeric distribution at the photoexcited state (PSS), azobenzene derivatives have been used as photoactive framework to build metastable supramolecular systems that are out of the thermodynamic equilibrium. This could be achieved exploiting the peculiar E/Z photoisomerization process that can lead to isomeric ratios that are unreachable in thermal equilibrium conditions. The challenge in the field is to find molecular architectures that, under given external circumstances, lead to a given isomeric ratio in a reversible and predictable manner, ensuring an ultimate control of the configurational distribution and system composition. By reviewing early and recent works in the field, this review aims at describing photoswitchable systems that, containing an azobenzene dye, display a controlled configurational equilibrium by means of a molecular recognition event. Specifically, examples include programmed photoactive molecular architectures binding cations, anions and H-bonded neutral guests. In these systems the non-covalent molecular recognition adds onto the thermal and light stimuli, equipping the supramolecular architecture with an additional external trigger to select the desired configuration composition.
Collapse
Affiliation(s)
- Paolo Tecilla
- Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteVia Weiss 2 134127TriesteItaly
| | - Davide Bonifazi
- School of ChemistryCardiff University Main BuildingPark PlaceCF10 3ATCardiff, WalesUK
| |
Collapse
|
26
|
Sperandio C, Rodriguez J, Quintard A. Development of copper-catalyzed enantioselective decarboxylative aldolization for the preparation of perfluorinated 1,3,5-triols featuring supramolecular recognition properties. Chem Sci 2020; 11:1629-1635. [PMID: 32206281 PMCID: PMC7069514 DOI: 10.1039/c9sc05196a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Fluorine is able to confer unique properties to organic molecules but the scarcity of natural organofluorine sources renders the development of new synthetic methods highly desirable. Using a chiral BOX/Cu combination, enantioselective decarboxylative aldolization of perfluorinated aldehydes has been developed. Most notably, the reaction occurring under mild conditions and with high enantiocontrol can create ketodiols in one single synthetic operation, which are precursors of crucial perfluorinated 1,3,5-triols. In addition, the reaction performed with chloral, validates the proposed transition state model based on steric interactions and provides the first enantioselective synthesis of hexachlorinated ketodiol of great synthetic utility. The ability of perfluorinated 1,3,5-triols to form a central hydrogen-bonding framework allows strong coordination of anions and the chirality obtained through the catalyst-controlled synthetic sequence demonstrates the selective chiral anion recognition ability of polyols.
Collapse
Affiliation(s)
- Céline Sperandio
- Aix Marseille Univ , CNRS , Centrale Marseille , iSm2 , Marseille , France . ; http://ism2.univ-amu.fr/fr/annuaire/stereo/quintardadrien
| | - Jean Rodriguez
- Aix Marseille Univ , CNRS , Centrale Marseille , iSm2 , Marseille , France . ; http://ism2.univ-amu.fr/fr/annuaire/stereo/quintardadrien
| | - Adrien Quintard
- Aix Marseille Univ , CNRS , Centrale Marseille , iSm2 , Marseille , France . ; http://ism2.univ-amu.fr/fr/annuaire/stereo/quintardadrien
| |
Collapse
|
27
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen‐Bonded Azo‐Macrocycle for Precisely Photo‐Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zecong Ye
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Zhiyao Yang
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Lei Wang
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lixi Chen
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Yimin Cai
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Pengchi Deng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Wen Feng
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Lihua Yuan
- College of ChemistryKey Laboratory for Radiation Physics and Technology of Ministry of EducationAnalytical and Testing CenterSichuan University Chengdu 610064 China
| |
Collapse
|
28
|
Ye Z, Yang Z, Wang L, Chen L, Cai Y, Deng P, Feng W, Li X, Yuan L. A Dynamic Hydrogen-Bonded Azo-Macrocycle for Precisely Photo-Controlled Molecular Encapsulation and Release. Angew Chem Int Ed Engl 2019; 58:12519-12523. [PMID: 31269315 DOI: 10.1002/anie.201906912] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 02/06/2023]
Abstract
A light-responsive system constructed from hydrogen-bonded azo-macrocycles demonstrates precisely controlled propensity in molecular encapsulation and release process. A significant decrease in the size of the cavity is observed in the course of the E→Z photoisomerization based on the results from DFT calculations and traveling wave ion mobility mass spectrometry. These macrocyclic hosts exhibit a rare 2:1 host-guest stoichiometry and guest-dependent slow or fast exchange on the NMR timescale. With the slow host-guest exchange and switchable shape change of the cavity, quantitative release and capture of bipyridinium guests is achieved with the maximum release of 68 %. This work underscores the importance of slow host-guest exchange on realizing accurate release of organic cations in a stepwise manner under light irradiation. The light-responsive system established here could advance further design of novel photoresponsive molecular switches and mechanically interlocked molecules.
Collapse
Affiliation(s)
- Zecong Ye
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lixi Chen
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Pengchi Deng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lihua Yuan
- College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
29
|
Hydroquinone-Based Anion Receptors for Redox-Switchable Chloride Binding. CHEMISTRY-SWITZERLAND 2019. [DOI: 10.3390/chemistry1010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of chloride receptors has been synthesized containing an amide hydrogen bonding site and a hydroquinone motif. It was anticipated that oxidation of the hydroquinone unit to quinone would greatly the diminish chloride binding affinity of these receptors. A conformational switch is promoted in the quinone form through the formation of an intramolecular hydrogen bond between the amide and the quinone carbonyl, which blocks the amide binding site. The reversibility of this oxidation process highlighted the potential of these systems for use as redox-switchable receptors. 1H-NMR binding studies confirmed stronger binding capabilities of the hydroquinone form compared to the quinone; however, X-ray crystal structures of the free hydroquinone receptors revealed the presence of an analogous inhibiting intramolecular hydrogen bond in this state of the receptor. Binding studies also revealed interesting and contrasting trends in chloride affinity when comparing the two switch states, which is dictated by a secondary interaction in the binding mode between the amide carbonyl and the hydroquinone/quinone couple. Additionally, the electrochemical properties of the systems have been explored using cyclic voltammetry and it was observed that the reduction potential of the system was directly related to the expected strength of the internal hydrogen bond.
Collapse
|
30
|
Rahaman SA, Hossain MS, Baburaj S, Biswas A, Bag A, Bandyopadhyay S. A phototunable anion receptor for C-HX interactions with benzoate anions. Org Biomol Chem 2019; 17:5153-5160. [PMID: 31074751 DOI: 10.1039/c9ob00781d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A supramolecular receptor consisting of two anthracene moieties with binding motifs for binding of benzoate anions is reported here. NMR studies indicate that the binding involves π-π interactions and CHX interactions. Upon exposure to >350 nm light, the receptor undergoes a [4 + 4] photoelectrocyclization restricting the access to the binding site for benzoate. The reverse reaction works in the presence of the dual stimuli of 254 nm light and the benzoate anions. The work thus demonstrates a light mediated dynamic control of the binding pocket of a supramolecular anion receptor.
Collapse
Affiliation(s)
- Sk Atiur Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | - Sruthy Baburaj
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | - Ankita Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | - Arijit Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| |
Collapse
|
31
|
Hoffmann K, Mayer P, Dube H. A hemithioindigo molecular motor for metal surface attachment. Org Biomol Chem 2019; 17:1979-1983. [DOI: 10.1039/c8ob02424c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on the synthesis of a hemithioindigo molecular motor bearing thioether feet for metal surface attachment and a comprehensive study of its light induced unidirectional motion in solution.
Collapse
Affiliation(s)
- Kerstin Hoffmann
- Ludwig-Maximilians-Universität München
- Department für Chemie and Munich Center for Integrated Protein Science CIPSM
- D-81377 Munich
- Germany
| | - Peter Mayer
- Ludwig-Maximilians-Universität München
- Department für Chemie and Munich Center for Integrated Protein Science CIPSM
- D-81377 Munich
- Germany
| | - Henry Dube
- Ludwig-Maximilians-Universität München
- Department für Chemie and Munich Center for Integrated Protein Science CIPSM
- D-81377 Munich
- Germany
| |
Collapse
|
32
|
Kokan Z, Chmielewski MJ. A Photoswitchable Heteroditopic Ion-Pair Receptor. J Am Chem Soc 2018; 140:16010-16014. [DOI: 10.1021/jacs.8b08689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zoran Kokan
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
- Division of Materials Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Michał J. Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
33
|
|
34
|
Abstract
Molecular motors are Nature's solution for (supra)molecular transport and muscle functioning and are involved in most forms of directional motion at the cellular level. Their synthetic counterparts have also found a myriad of applications, ranging from molecular machines and smart materials to catalysis and anion transport. Although light-driven rotary molecular motors are likely to be suitable for use in an artificial cell, as well as in bionanotechnology, thus far they are not readily applied under physiological conditions. This results mainly from their inherently aromatic core structure, which makes them insoluble in aqueous solution. Here, the study of the dynamic behavior of these motors in biologically relevant media is described. Two molecular motors were equipped with solubilizing substituents and studied in aqueous solutions. Additionally, the behavior of a previously reported molecular motor was studied in micelles, as a model system for the biologically relevant confined environment. Design principles were established for molecular motors in these media, and insights are given into pH-dependent behavior. The work presented herein may provide a basis for the application of the remarkable properties of molecular motors in more advanced biohybrid systems.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Christian Böhmer
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Filippo Tosi
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Wiktor Szymanski
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Department of Radiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
35
|
Roke D, Stuckhardt C, Danowski W, Wezenberg SJ, Feringa BL. Light‐Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Diederik Roke
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Constantin Stuckhardt
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wojciech Danowski
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sander J. Wezenberg
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
36
|
Roke D, Stuckhardt C, Danowski W, Wezenberg SJ, Feringa BL. Light-Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angew Chem Int Ed Engl 2018; 57:10515-10519. [PMID: 29806875 PMCID: PMC6099277 DOI: 10.1002/anie.201802392] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/14/2018] [Indexed: 02/01/2023]
Abstract
A multiphotochromic hybrid system is presented in which a light-driven overcrowded alkene-based molecular rotary motor is connected to a dithienylethene photoswitch. Ring closing of the dithienylethene moiety, using an irradiation wavelength different from the wavelength applied to operate the molecular motor, results in inhibition of the rotary motion as is demonstrated by detailed 1 H-NMR and UV/Vis experiments. For the first time, a light-gated molecular motor is thus obtained. Furthermore, the excitation wavelength of the molecular motor is red-shifted from the UV into the visible-light region upon attachment of the dithienylethene switch.
Collapse
Affiliation(s)
- Diederik Roke
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Constantin Stuckhardt
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Wojciech Danowski
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Sander J. Wezenberg
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
37
|
Supramolecularly directed rotary motion in a photoresponsive receptor. Nat Commun 2018; 9:1984. [PMID: 29777101 PMCID: PMC5959844 DOI: 10.1038/s41467-018-04249-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Stimuli-controlled motion at the molecular level has fascinated chemists already for several decades. Taking inspiration from the myriad of dynamic and machine-like functions in nature, a number of strategies have been developed to control motion in purely synthetic systems. Unidirectional rotary motion, such as is observed in ATP synthase and other motor proteins, remains highly challenging to achieve. Current artificial molecular motor systems rely on intrinsic asymmetry or a specific sequence of chemical transformations. Here, we present an alternative design in which the rotation is directed by a chiral guest molecule, which is able to bind non-covalently to a light-responsive receptor. It is demonstrated that the rotary direction is governed by the guest chirality and hence, can be selected and changed at will. This feature offers unique control of directional rotation and will prove highly important in the further development of molecular machinery. Unidirectional rotation in a synthetic molecular motor is typically driven by intrinsic asymmetry or sequences of chemical transformations. Here, the authors control the direction of a molecule’s rotation through supramolecular binding of a chiral guest and subsequent transfer of its chiral information.
Collapse
|
38
|
Gratzer K, Diemer V, Clayden J. Signal transduction in oligoamide foldamers by selective non-covalent binding of chiral phosphates at a urea binding site. Org Biomol Chem 2018; 15:3585-3589. [PMID: 28397923 DOI: 10.1039/c7ob00660h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transduction of biological signals depends on the spatial communication of conformational change. We report a synthetic mimic of this signal transduction process in which non-covalent binding induces a change in the position of equilibrium between two rapidly interconverting screw-sense conformers of a synthetic helical polyamide. Selectivity was achieved by incorporating at the N-terminus of the polyamide a urea-based anion recognition site capable of binding chiral phosphate anions. As a result of solvent-dependent binding, an induced conformational change propagates from the binding site through the amide chain, leading to a screw-sense preference detectable in the form of a chemical shift separation between two NMR active 13C labels. The remote induction of screw sense preference indicates successful communication of a signal originating solely from non-covalent binding.
Collapse
Affiliation(s)
- Katharina Gratzer
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | |
Collapse
|
39
|
Wiedbrauk S, Bartelmann T, Thumser S, Mayer P, Dube H. Simultaneous complementary photoswitching of hemithioindigo tweezers for dynamic guest relocalization. Nat Commun 2018; 9:1456. [PMID: 29654233 PMCID: PMC5899155 DOI: 10.1038/s41467-018-03912-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Remote control of complex molecular behavior and function is one key problem in modern chemistry. Using light signaling for this purpose has many advantages, however the integration of different photo processes into a wholesome yet complex system is highly challenging. Here we report an alternative approach to increase complexity of light control-simultaneous complementary photoswitching-in which spectral overlap is used as an advantage to drastically reduce the signaling needed for controlling multipart supramolecular assemblies. Two photoswitchable molecular tweezers respond to the same light signals with opposite changes in their binding affinities. In this way the configuration of two host tweezers and ultimately the dynamic relocation of a guest molecule can be trigged by only one signal reversibly in the same solution. This approach should provide a powerful tool for the construction of sophisticated, integrated, and multi-responsive smart molecular systems in any application driven field of chemistry. Controlling complex photoresponsive systems while minimizing light input is highly challenging. Here, the authors report two photoswitchable molecular tweezers responding to the same light signals with opposite changes in their binding affinities towards a guest molecule allowing for its “light-economic” relocation.
Collapse
Affiliation(s)
- Sandra Wiedbrauk
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Thomas Bartelmann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Stefan Thumser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Henry Dube
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany.
| |
Collapse
|
40
|
Chirality and stereoselectivity in photochromic reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Bai X, Jia C, Zhao Y, Yang D, Wang SC, Li A, Chan YT, Wang YY, Yang XJ, Wu B. Peripheral Templation-Modulated Interconversion between an A4
L6
Tetrahedral Anion Cage and A2
L3
Triple Helicate with Guest Capture/Release. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuemin Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Shi-Cheng Wang
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Yi-Tsu Chan
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
42
|
Bai X, Jia C, Zhao Y, Yang D, Wang SC, Li A, Chan YT, Wang YY, Yang XJ, Wu B. Peripheral Templation-Modulated Interconversion between an A4
L6
Tetrahedral Anion Cage and A2
L3
Triple Helicate with Guest Capture/Release. Angew Chem Int Ed Engl 2018; 57:1851-1855. [DOI: 10.1002/anie.201712080] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Xuemin Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Shi-Cheng Wang
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Yi-Tsu Chan
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 China
| |
Collapse
|
43
|
Nakanishi S, Hara N, Kuroda N, Tajima N, Fujiki M, Imai Y. Solvent-sensitive signs and magnitudes of circularly polarised luminescence and circular dichroism spectra: probing two phenanthrenes as emitters endowed with BINOL derivatives. Org Biomol Chem 2018; 16:1093-1100. [DOI: 10.1039/c7ob02308a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C2-symmeric binaphthyl framework bearing phenanthrene as the emitter exhibited circularly polarised luminescence (CPL) in dilute solutions.
Collapse
Affiliation(s)
- Shoma Nakanishi
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Natsuki Kuroda
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Nobuo Tajima
- Computational Materials Science Center
- National Institute for Materials Science 1-2-1 Sengen
- Tsukuba
- Japan
| | - Michiya Fujiki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Yoshitane Imai
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| |
Collapse
|
44
|
Ito S, Okuno M, Asami M. Differentiation of enantiomeric anions by NMR spectroscopy with chiral bisurea receptors. Org Biomol Chem 2018; 16:213-222. [DOI: 10.1039/c7ob02318a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enantiomeric 1H NMR signals of chiral anions are separated by forming 1 : 1 and 1 : 2 host–guest complexes with chiral bisurea.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Manami Okuno
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Masatoshi Asami
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| |
Collapse
|
45
|
|
46
|
Huber LA, Hoffmann K, Thumser S, Böcher N, Mayer P, Dube H. Direct Observation of Hemithioindigo-Motor Unidirectionality. Angew Chem Int Ed Engl 2017; 56:14536-14539. [DOI: 10.1002/anie.201708178] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ludwig Alexander Huber
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Kerstin Hoffmann
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Stefan Thumser
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Niklas Böcher
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Peter Mayer
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| |
Collapse
|
47
|
Huber LA, Hoffmann K, Thumser S, Böcher N, Mayer P, Dube H. Direct Observation of Hemithioindigo-Motor Unidirectionality. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ludwig Alexander Huber
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Kerstin Hoffmann
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Stefan Thumser
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Niklas Böcher
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Peter Mayer
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| | - Henry Dube
- Department of Chemistry and Center for Integrated Protein Science CIPSM; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 München Germany
| |
Collapse
|
48
|
Kikot' LS, Kulygina CY, Lyapunov AY, Shishkina SV, Zubatyuk RI, Bogaschenko TY, Kirichenko TI. Complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives. Beilstein J Org Chem 2017; 13:2056-2067. [PMID: 29062427 PMCID: PMC5647707 DOI: 10.3762/bjoc.13.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022] Open
Abstract
The complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives has been studied both in solution and in the solid state. In this paper we studied the influence of the crown ether ring size and the nature of the substituents at the nitrogen atoms of the paraquat derivatives on the composition and stability of these complexes.
Collapse
Affiliation(s)
- Leonid S Kikot'
- Department of Fine Organic Synthesis, A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, Odesa 65080, Ukraine
| | - Catherine Yu Kulygina
- Department of Fine Organic Synthesis, A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, Odesa 65080, Ukraine
| | - Alexander Yu Lyapunov
- Department of Fine Organic Synthesis, A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, Odesa 65080, Ukraine
| | - Svetlana V Shishkina
- Department of X-ray Diffraction Studies and Quantum Chemistry, SSI ‘‘Institute for Single Crystals’’, National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
- Department of Inorganic Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody Sq., 61122, Kharkiv, Ukraine
| | - Roman I Zubatyuk
- Department of X-ray Diffraction Studies and Quantum Chemistry, SSI ‘‘Institute for Single Crystals’’, National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
| | - Tatiana Yu Bogaschenko
- Department of Fine Organic Synthesis, A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, Odesa 65080, Ukraine
| | - Tatiana I Kirichenko
- Department of Fine Organic Synthesis, A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, Odesa 65080, Ukraine
| |
Collapse
|
49
|
Cvrtila I, Fanlo-Virgós H, Schaeffer G, Monreal Santiago G, Otto S. Redox Control over Acyl Hydrazone Photoswitches. J Am Chem Soc 2017; 139:12459-12465. [PMID: 28749147 PMCID: PMC5599877 DOI: 10.1021/jacs.7b03724] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/28/2022]
Abstract
Photoisomerization provides a clean and efficient way of reversibly altering physical properties of chemical systems and injecting energy into them. These effects have been applied in development of systems such as photoresponsive materials, molecular motors, and photoactivated drugs. Typically, switching from more to less stable isomer(s) is performed by irradiation with UV or visible light, while the reverse process proceeds thermally or by irradiation using another wavelength. In this work we developed a method of rapid and tunable Z→E isomerization of C═N bond in acyl hydrazones, using aromatic thiols as nucleophilic catalysts. As thiols can be oxidized into catalytically inactive disulfides, the isomerization rates can be controlled via the oxidation state of the catalyst, which, together with the UV irradiation, provides orthogonal means to control the E/Z state of the system. As a proof of this concept, we have applied this method to control the diversity of acyl hydrazone based dynamic combinatorial libraries.
Collapse
Affiliation(s)
- Ivica Cvrtila
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hugo Fanlo-Virgós
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
50
|
Feringa BL. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angew Chem Int Ed Engl 2017; 56:11060-11078. [PMID: 28851050 DOI: 10.1002/anie.201702979] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/20/2022]
Abstract
A journey into the nano-world: The ability to design, use and control motor-like functions at the molecular level sets the stage for numerous dynamic molecular systems. In his Nobel Lecture, B. L. Feringa describes the evolution of the field of molecular motors and explains how to program and control molecules by incorporating responsive and adaptive properties.
Collapse
Affiliation(s)
- Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|