1
|
Grooms AJ, Huttner RT, Stockwell M, Tadese L, Marcelo IM, Kass A, Badu-Tawiah AK. Programmable C-N Bond Formation through Radical-Mediated Chemistry in Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2025; 64:e202413122. [PMID: 39453314 DOI: 10.1002/anie.202413122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Non-thermal plasma discharge produced in the wake of charged microdroplets is found to facilitate catalyst-free radical mediated hydrazine cross-coupling reactions without the use of external light source, heat, precious metal complex, or trapping agents. A plasma-microdroplet fusion platform is utilized for introduction of hydrazine reagent that undergoes homolytic cleavage forming radical intermediate species. The non-thermal plasma discharge that causes the cleavage originates from a chemically etched silica capillary. The coupling of the radical intermediates gives various products. Plasma-microdroplet fusion occurs online in a programmable reaction platform allowing direct process optimization and product validation via mass spectrometry. The platform is applied herein with a variety of hydrazine substrates, enabling i) self-coupling to form secondary amines with identical N-substitutions, ii) cross-coupling to afford secondary amine with different N-substituents, iii) cross-coupling followed by in situ dehydrogenation to give the corresponding aryl-aldimines with two unique N-substitutions, and iv) cascade heterocyclic carbazole derivatives formation. These unique reactions were made possible in the charged microdroplet environment through our ability to program conditions such as reagent concentration (i. e., flow rate), microdroplet reactivity (i. e., presence or absence of plasma), and reaction timescale (i. e., operational mode of the source). The selected program is implemented in a co-axial spray format, which is found to be advantageous over the conventional one-pot single emitter electrospray-based microdroplet reactions.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert T Huttner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mackenzie Stockwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Leah Tadese
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Isabella M Marcelo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Anthony Kass
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proc Natl Acad Sci U S A 2024; 121:e2412784121. [PMID: 39585974 PMCID: PMC11626162 DOI: 10.1073/pnas.2412784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life. It has long been known that dehydration at elevated temperatures can drive the synthesis of ester and peptide bonds, but this reaction has typically been carried out by incubating dry monomers at elevated temperatures. We report that single or multiple cycles of wetting and drying link mononucleotides by forming phosphodiester bonds. Mass spectrometric analysis reveals uridine monophosphate oligomers up to 53 nucleotides, with an abundance of 35 and 43 nt in length. Long-chain oligomers are also observed for thymidine monophosphate, adenosine monophosphate, and deoxyadenosine monophosphate after exposure to a few wet-dry cycles. Nanopore sequencing confirms that long linear chains are formed. Enzyme digestion shows that the linkage is the phosphodiester bond, which is further confirmed by 31P NMR and Fourier transform infrared spectroscopy. This suggests that nucleic acid oligomers were likely to be present on early Earth in a steady state of synthesis and hydrolysis.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Povilas Simonis
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, VilniusLT-01513, Lithuania
- State Research Institute Center for Physical Sciences and Technology, VilniusLT-02300, Lithuania
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
3
|
Grooms AJ, Marcelo IM, Huttner RT, Badu-Tawiah AK. Programmable Plasma-Microdroplet Cascade Reactions for Multicomponent Systems. J Am Chem Soc 2024; 146:30068-30077. [PMID: 39467819 DOI: 10.1021/jacs.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The concept of programmable cascade reactions in charged microdroplets is introduced using carbon-carbon (C-C) bond formation via uncatalyzed Michael addition in a three-tier study culminating in programmable Hantzsch multicomponent, multistep reactions. In situ generated reactive oxygen species (ROS) from nonthermal plasma discharge are fused with charged water microdroplets (devoid of ROS) in real time for accelerated chemical reactions. This plasma-microdroplet fusion platform utilizing a coaxial spray configuration enabled product selection while avoiding unwanted side reactions. Hydrogen abstraction via ROS facilitated the formation of enolate anions without strong base use. Reaction enhancement factors >103 were calculated for plasma-microdroplet fusion versus microdroplet-only reactions. The platform programmability was showcased through (i) uncatalyzed 1,4-Michael addition of α,β-unsaturated carbonyls, (ii) novel C-C bond formation via the use of pro-electrophilic amine and alcohol substrates─activated through collisions in the microdroplet environment to serve as Michael acceptors, and (iii) selective Hantzsch cascade reaction with cross-coupling products, avoiding side reactions including N-alkylation and self-coupling product formation. Milligram quantity product collection is achieved, showcasing plasma-microdroplet fusion as an effective tool for preparative-scale synthesis. Thus, the controlled generation of ROS via plasma discharge during charged water microdroplet evolution establishes a green synthetic method for uncatalyzed C-C bond formation.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Isabella M Marcelo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Robert T Huttner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Dai C, Huang C, Ye M, Liu J, Cheng H. Mild Catalyst- and Additive-Free Three-Component Synthesis of 3-Thioisoindolinones and Tricyclic γ-Lactams Accelerated by Microdroplet Chemistry. J Org Chem 2024; 89:14818-14830. [PMID: 39361508 DOI: 10.1021/acs.joc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures. By taking advantage of the astonishing reaction acceleration (1.9 × 102-9.4 × 103 acceleration factor range with a typical rate acceleration factor of 1.51 × 103 for the prototype reaction as the ratio of rate constants by microdroplet and bulk phase), 12 3-thioisoindolinones and two tricyclic γ-lactams were synthesized using various 2-acylbenzaldehydes, amines, and thiols with satisfactory yields ranging from 85% to 97% as well as a scale-up rate of 3.49 g h-1. Because of the advantages (no use of any catalysts or additives, mild temperature, rapid and satisfactory conversion, broad substrate scope, and gram scalability), the microdroplet method represents an attractive alternative to metal catalysis for laboratory synthesis of isoindolinones and their derivatives.
Collapse
Affiliation(s)
- Chengbiao Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Chengkai Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Meiying Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
5
|
Fan J, Liang L, Zhou X, Ouyang Z. Accelerating protein aggregation and amyloid fibrillation for rapid inhibitor screening. Chem Sci 2024; 15:6853-6859. [PMID: 38725489 PMCID: PMC11077537 DOI: 10.1039/d4sc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aβ40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Liwen Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Song X, Yan H, Zhang Y, Zhou W, Li S, Zhang J, Ciampi S, Zhang L. Hydroxylation of the indium tin oxide electrode promoted by surface bubbles. Chem Commun (Camb) 2024; 60:4186-4189. [PMID: 38530669 DOI: 10.1039/d4cc00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Xiaoxue Song
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Hui Yan
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Weiqiang Zhou
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia.
| | - Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
7
|
Bouza M, Foest D, Brandt S, García-Reyes JF, Franzke J. Enhanced Compound Analysis Using Reactive Paper Spray Mass Spectrometry: Leveraging Schiff Base Reaction for Amino Acid Detection. Anal Chem 2024; 96:5289-5297. [PMID: 38507224 PMCID: PMC10993198 DOI: 10.1021/acs.analchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Daniel Foest
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Sebastian Brandt
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| |
Collapse
|
8
|
De Angelis M, Managò M, Pepi F, Salvitti C, Troiani A, Villani C, Ciogli A. Stereoselectivity in electrosprayed confined volumes: asymmetric synthesis of warfarin by diamine organocatalysts in microdroplets and thin films. RSC Adv 2024; 14:1576-1580. [PMID: 38179090 PMCID: PMC10765477 DOI: 10.1039/d3ra07975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The asymmetric synthesis of warfarin in microdroplets and thin films generated by an electrospray ionization (ESI) source is reported. This is one of the first examples of an enantioselective organocatalyzed reaction in electrosprayed confined volumes. The optimal conditions in terms of system setting were established for this reaction.
Collapse
Affiliation(s)
- Martina De Angelis
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Chiara Salvitti
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Roma Italy
| |
Collapse
|
9
|
Grooms AJ, Nordmann AN, Badu-Tawiah AK. Dual Tunability for Uncatalyzed N-Alkylation of Primary Amines Enabled by Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2023:e202311100. [PMID: 37770409 DOI: 10.1002/anie.202311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Anna N Nordmann
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| |
Collapse
|
10
|
Ju Y, He Y, Kan G, Yu K, Jiang J, Wang X, Zhang H. Reaction acceleration in microdroplet mass spectrometry: Inlet capillary and solvent composition effects. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37 Suppl 1:e9498. [PMID: 36852554 DOI: 10.1002/rcm.9498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Microdroplet chemistry has attracted tremendous interest in recent years. We have previously reported that microdroplet mass spectrometry (MS) achieves reaction acceleration. Here we systematically investigated the effect of capillary heating of MS inlet and solvent polarity of microdroplets on the conversion ratios of dehydration and phosphorylation reactions. METHODS The micron-sized droplets generated by high-speed gas encapsulated the compounds. The conversion ratios of dehydration and phosphorylation reactions were investigated at different capillary temperatures of MS inlet between 30°C and 300°C. Subsequently, the effects of solvent polarity of different microdroplets (acetonitrile, acetonitrile/water [v/v: 9:1], and water) on microdroplet reactions were investigated. RESULTS The microdroplets could be used as reaction vessels for rapid dehydration and phosphorylation reactions. Microdroplet MS is characterized by the completion of the reaction in microseconds. The increase in capillary temperature increased the conversion ratio of dehydration reactions but had little effect on phosphorylation reactions. The stability of compounds supports this phenomenon. In addition, the increase in solvent polarity in microdroplets promoted the dehydration reaction but inhibited the nucleophilic substitution reaction (phosphorylation reaction). CONCLUSIONS Microdroplet MS achieved an acceleration of the reaction, which was attributed to capillary temperature, microdroplet solvents, and the stability of reaction products. This finding suggested that the inlet capillary and solvent system should be considered in the study and interpretation of microdroplet MS.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Chen CJ, Williams ER. The role of analyte concentration in accelerated reaction rates in evaporating droplets. Chem Sci 2023; 14:4704-4713. [PMID: 37181782 PMCID: PMC10171075 DOI: 10.1039/d3sc00259d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air-water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 102 and 107 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 107 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Evan R Williams
- Department of Chemistry, University of California Berkeley CA 94720 USA
| |
Collapse
|
12
|
Rosenberger P, Dagar R, Zhang W, Majumdar A, Neuhaus M, Ihme M, Bergues B, Kling MF. Reaction nanoscopy of ion emission from sub-wavelength propanediol droplets. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1823-1831. [PMID: 39635141 PMCID: PMC11501279 DOI: 10.1515/nanoph-2022-0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/22/2023] [Indexed: 12/07/2024]
Abstract
Droplets provide unique opportunities for the investigation of laser-induced surface chemistry. Chemical reactions on the surface of charged droplets are ubiquitous in nature and can provide critical insight into more efficient processes for industrial chemical production. Here, we demonstrate the application of the reaction nanoscopy technique to strong-field ionized nanodroplets of propanediol (PDO). The technique's sensitivity to the near-field around the droplet allows for the in-situ characterization of the average droplet size and charge. The use of ultrashort laser pulses enables control of the amount of surface charge by the laser intensity. Moreover, we demonstrate the surface chemical sensitivity of reaction nanoscopy by comparing droplets of the isomers 1,2-PDO and 1,3-PDO in their ion emission and fragmentation channels. Referencing the ion yields to gas-phase data, we find an enhanced production of methyl cations from droplets of the 1,2-PDO isomer. Density functional theory simulations support that this enhancement is due to the alignment of 1,2-PDO molecules on the surface. The results pave the way towards spatio-temporal observations of charge dynamics and surface reactions on droplets.
Collapse
Affiliation(s)
- Philipp Rosenberger
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
| | - Ritika Dagar
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
| | - Wenbin Zhang
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200241, China
| | - Arijit Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305, USA
| | - Marcel Neuhaus
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA94025, USA
| | - Boris Bergues
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
| | - Matthias F. Kling
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748Garching, Germany
- Department of Applied Physics, Stanford University, Stanford, CA94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA94025, USA
| |
Collapse
|
13
|
Gunawardena HP, Ai Y, Gao J, Zare RN, Chen H. Rapid Characterization of Antibodies via Automated Flow Injection Coupled with Online Microdroplet Reactions and Native-pH Mass Spectrometry. Anal Chem 2023; 95:3340-3348. [PMID: 36656670 PMCID: PMC10492509 DOI: 10.1021/acs.analchem.2c04535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microdroplet reactions have aroused much interest due to significant reaction acceleration (e.g., ultrafast protein digestion in microdroplets could occur in less than 1 ms). This study integrated a microdroplet protein digestion technique with automated sample flow injection and online mass spectrometry (MS) analysis, to develop a rapid and robust method for structural characterization of monoclonal antibodies (mAbs) that is essential to assess the antibody drug's safety and quality. Automated sequential aspiration and mixing of an antibody and an enzyme (IdeS or IgdE) enabled rapid analysis with high reproducibility (total analysis time: 2 min per sample; reproducibility: ∼2% coefficient of variation). Spraying the sample in ammonium acetate buffer (pH 7) using a jet stream source allowed efficient digestion of antibodies and efficient ionization of resulting antibody subunits under native-pH conditions. Importantly, it also provided a platform to directly study specific binding of an antibody and an antigen (e.g., detecting the complexes mAb/RSFV antigen and F(ab')2/RSVF in this study). Furthermore, subsequent tandem MS analysis of a resulting subunit from microdroplet digestion enabled localizing post-translational modifications on particular domains of a mAb in a rapid fashion. In combination with IdeS digestion of an antibody, additional tris(2-carboxyethyl)phosphine (TCEP) reduction and N-glycosidase F (PNGase F) deglycosylation reactions that facilitate antibody analysis could be realized in "one-pot" spraying. Interestingly, increased deglycosylation yield in microdroplets was found, simply by raising the sample temperature. We expect that our method would have a high impact for rapid characterization of monoclonal antibodies.
Collapse
Affiliation(s)
- Harsha P. Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, USA
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Ave, Montclair, NJ 07043, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
14
|
de Paula CCA, Binatti I, Coelho Pimenta JV, Augusti R. Accelerated synthesis of phthalimide derivatives: Intrinsic reactivity of diamines towards phthalic anhydride evaluated by paper spray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9407. [PMID: 36169595 DOI: 10.1002/rcm.9407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Paper spray (PS) is a simple and innovative ambient ionization technique for mass spectrometry (MS) analysis. Under PS-MS conditions, chemical reactions, which usually occur slowly on a bulk scale, are accelerated. Moreover, the formation of products and transient species can be easily monitored. In this manuscript, reactions between phthalic anhydride and diamines were conducted and monitored using a PS-MS platform. The reaction products (phthalimides) have many pharmaceutical applications, but their traditional syntheses can take hours under reflux, requiring laborious purification steps. METHODS In situ reactions were performed by dropping methanolic solutions of phthalic anhydride and diamines on a triangular paper. The analyses were achieved by positioning the triangle tip in front of the mass spectrometer entrance, whereas a metal clip was attached to the triangle base. After adding methanol to the paper, a high voltage was applied across the metal clip, and the mass spectra were acquired. RESULTS The intrinsic reactivity of alkyl and aromatic diamines was evaluated. The carbon chain remarkably influenced the reactivity of aliphatic diamines. For aryl diamines, the ortho isomer was the most reactive. Moreover, for aryl amines with electron-withdrawing substituents, no reaction was noticed. CONCLUSIONS Taking advantage of the unique characteristics of PS-MS, it was possible to investigate the intrinsic reactivity of model alkyl (ethylene versus propylene) and aryl (o-phenylene versus m-phenylene and p-phenylene) diamines towards phthalic anhydride. Some crucial parameters that affect the intrinsic reactivity of organic molecules, such as isomerism, intramolecular interaction, and conformation, were easily explored.
Collapse
Affiliation(s)
| | | | | | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Lee C, Pohl MN, Ramphal IA, Yang W, Winter B, Abel B, Neumark DM. Evaporation and Molecular Beam Scattering from a Flat Liquid Jet. J Phys Chem A 2022; 126:3373-3383. [PMID: 35579333 DOI: 10.1021/acs.jpca.2c01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experimental setup for molecular beam scattering from flat liquid sheets has been developed, with the goal of studying reactions at gas-liquid interfaces for volatile liquids. Specifically, a crossed molecular beam instrument that can measure angular and translational energy distributions of scattered products has been adapted for liquid jet scattering. A microfluidic chip is used to create a stable flat liquid sheet inside vacuum from which scattering occurs, and both evaporation and scattering from this sheet are characterized using a rotatable mass spectrometer that can measure product time-of-flight distributions. This article describes the instrument and reports on the first measurements of evaporation of dodecane and Ne from a Ne-doped dodecane flat jet, as well as scattering of Ne from a flat jet of pure dodecane.
Collapse
Affiliation(s)
- Chin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marvin N Pohl
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isaac A Ramphal
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Walt Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bernd Abel
- Department of Functional Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318 Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University of Leipzig, Linnéstrasse 3, 04318 Leipzig, Germany
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Water coordinated on Cu(I)-based catalysts is the oxygen source in CO 2 reduction to CO. Nat Commun 2022; 13:2577. [PMID: 35562192 PMCID: PMC9095693 DOI: 10.1038/s41467-022-30289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Catalytic reduction of CO2 over Cu-based catalysts can produce various carbon-based products such as the critical intermediate CO, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we develop a modified triple-stage quadrupole mass spectrometer to monitor the reduction of CO2 to CO in the gas phase online. Our experimental observations reveal that the coordinated H2O on Cu(I)-based catalysts promotes CO2 adsorption and reduction to CO, and the resulting efficiencies are two orders of magnitude higher than those without H2O. Isotope-labeling studies render compelling evidence that the O atom in produced CO originates from the coordinated H2O on catalysts, rather than CO2 itself. Combining experimental observations and computational calculations with density functional theory, we propose a detailed reaction mechanism of CO2 reduction to CO over Cu(I)-based catalysts with coordinated H2O. This study offers an effective method to reveal the vital roles of H2O in promoting metal catalysts to CO2 reduction. Understanding the underlying mechanisms for catalytic reduction of CO2 over Cu based catalysts remains challenging. Here, the authors develop an effective method to reveal the vital roles of H2O in promoting metal catalysts to CO2 reduction via a modified triple stage quadrupole mass spectrometer.
Collapse
|
17
|
Wang W, Zhang H, Jiang J, He Y, He J, Liu J, Yu K, Liu Q, Qiao L. Thin interfacial film spontaneously produces hydrogen peroxide: mechanism and application for perfluorooctanoic acid degradation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04791d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have unambiguously demonstrated spontaneous formation of hydrogen peroxide (H2O2) in thin film formats by evaporating almost all the water and its effective for perfluorooctanoic acid (PFOA) degradation without catalysts.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jing He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Junyu Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Qianhui Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| |
Collapse
|
18
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Brown HM, Doppalapudi KR, Fedick PW. Accelerated synthesis of energetic precursor cage compounds using confined volume systems. Sci Rep 2021; 11:24093. [PMID: 34916525 PMCID: PMC8677777 DOI: 10.1038/s41598-021-02945-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Confined volume systems, such as microdroplets, Leidenfrost droplets, or thin films, can accelerate chemical reactions. Acceleration occurs due to the evaporation of solvent, the increase in reactant concentration, and the higher surface-to-volume ratios amongst other phenomena. Performing reactions in confined volume systems derived from mass spectrometry ionization sources or Leidenfrost droplets allows for reaction conditions to be changed quickly for rapid screening in a time efficient and cost-saving manner. Compared to solution phase reactions, confined volume systems also reduce waste by screening reaction conditions in smaller volumes prior to scaling. Herein, the condensation of glyoxal with benzylamine (BA) to form hexabenzylhexaazaisowurtzitane (HBIW), an intermediate to the highly desired energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), was explored. Five confined volume systems were compared to evaluate which technique was ideal for forming this complex cage structure. Substituted amines were also explored as BA replacements to screen alternative cage structure intermediates and evaluate how these accelerated techniques could apply to novel reactions, discover alternative reagents to form the cage compound, and improve synthetic routes for the preparation of CL-20. Ultimately, reaction acceleration is ideal for predicting the success of novel reactions prior to scaling up and determining if the expected products form, all while saving time and reducing costs. Acceleration factors and conversion ratios for each reaction were assessed by comparing the amount of product formed to the traditional bulk solution phase synthesis.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Naval Air Warfare Center Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, CA, 93555, USA
| | - Karan R Doppalapudi
- Chemistry Division, Naval Air Warfare Center Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, CA, 93555, USA
| | - Patrick W Fedick
- Chemistry Division, Naval Air Warfare Center Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, CA, 93555, USA.
| |
Collapse
|
20
|
Wang Y, Pan R, Jiang D, Jiang D, Chen HY. Nanopipettes for the Electrochemical Study of Enhanced Enzymatic Activity in a Femtoliter Space. Anal Chem 2021; 93:14521-14526. [PMID: 34666486 DOI: 10.1021/acs.analchem.1c03341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemical reaction in a confined space is known to be accelerated due to a high collision probability; however, the study of this confinement effect in a supersmall space down to femtoliter (fL) is seldom reported. Here, an adjustable volume [from picoliter (pL) to fL] of the aqueous phase is retrained at the tip of a nanopipette by an organic solvent so that the confinement effect on the specific activity of glucose oxidase is investigated. The activity is determined by the amount of hydrogen peroxide generated from the reaction between the oxidase and glucose using a nanoelectrode inside the nanopipette. As compared with the activity in bulk solution (82 U/mg), the activity increases up to 7500 U/mg in a 105 fL space. The 2 orders of magnitude increase in the enzymatic activity is the highest amplification in the volume-confined enzyme reaction as reported. A near-exponential drop in the activity is observed with the increase in the space volume, revealing the dominant enhancement in the confined space at the fL level for the first time. The established electrochemical nanopipettes should not only provide a strategy for the study of the enzymatic activity in supersmall confined space but also help understand the confinement effect of enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Yuling Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Rongrong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Depeng Jiang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
21
|
Li Z, Li Y, Zhan L, Meng L, Huang X, Wang T, Li Y, Nie Z. Point-of-Care Test Paper for Exhaled Breath Aldehyde Analysis via Mass Spectrometry. Anal Chem 2021; 93:9158-9165. [PMID: 34162204 DOI: 10.1021/acs.analchem.1c01011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile organic compounds (VOCs) from exhaled breath (EB) are considered to be promising biomarkers for lung diseases. A convenient and sensitive point-of-care (POC) testing method for EB VOCs is essential. Here, we developed a POC test paper for the analysis of EB aldehydes, which are potential biomarkers for lung cancer. A probe molecule, 4-aminothiophenol (4-ATP), was anchored on a paper substrate to specifically capture gas-phase aldehydes through the Schiff base reaction. Meanwhile, thin-film reaction acceleration was utilized to increase capture efficiency. By directly coupling the test paper to a mass spectrometer through paper spray, high sensitivity (0.1 ppt) and a wide quantification linear range (from 10 ppt to 1 ppm) were obtained. Analysis of EB from lung cancer patients with the test paper showed a significant increase in several reported aldehyde markers compared to EB from healthy volunteers, indicating the potential of this method for sensitive, low-cost, and convenient lung cancer screening and diagnosis.
Collapse
Affiliation(s)
- Zhengzhou Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpeng Zhan
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Li Y, Mehari TF, Wei Z, Liu Y, Cooks RG. Reaction acceleration at air-solution interfaces: Anisotropic rate constants for Katritzky transamination. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4585. [PMID: 32686310 DOI: 10.1002/jms.4585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
To disentangle the factors controlling the rates of accelerated reactions in droplets, we used mass spectrometry to study the Katritzky transamination in levitated Leidenfrost droplets of different yet constant volumes over a range of concentrations while holding concentration constant by adding back the evaporated solvent. The set of concentration and droplet volume data indicates that the reaction rate in the surface region is much higher than that in the interior. These same effects of concentration and volume were also seen in bulk solutions. Three pyrylium reagents with different surface activity showed differences in transamination reactivity. The conclusion is drawn that reactions with surface-active reactants are subject to greater acceleration, as seen particularly at lower concentrations in systems of higher surface-to-volume ratios. These results highlight the key role that air-solution interfaces play in Katritzky reaction acceleration. They are also consistent with the view that reaction-increased rate constant is at least in part due to limited solvation of reagents at the interface.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Tsdale F Mehari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yong Liu
- Department of Analytical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
23
|
Zhao P, Gunawardena HP, Zhong X, Zare RN, Chen H. Microdroplet Ultrafast Reactions Speed Antibody Characterization. Anal Chem 2021; 93:3997-4005. [PMID: 33590747 DOI: 10.1021/acs.analchem.0c04974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, microdroplet reactions have aroused much interest because the microdroplet provides a unique medium where organic reactions could be accelerated by a factor of 103 or more. However, microdroplet reactions of proteins have been rarely studied. We report the occurrence of multiple-step reactions of a large protein, specifically, the digestion, reduction, and deglycosylation of an intact antibody, which can take place in microseconds with high reaction yields in aqueous microdroplets at room temperature. As a result, fast structural characterization of a monoclonal antibody, essential for assessing its quality as a therapeutic drug, can be enabled. We found that the IgG1 antibody can be digested completely by the IdeS protease in aqueous microdroplets in 250 microseconds, a 7.5 million-fold improvement in speed in comparison to traditional digestion in bulk solution (>30 min). Strikingly, inclusion of the reductant tris(2-carboxyethyl)phosphine in the spray solution caused simultaneous antibody digestion and disulfide bond reduction. Digested and reduced antibody fragments were either collected or analyzed online by mass spectrometry. Further addition of PNGase F glycosylase into the spray solution led to antibody deglycosylation, thereby producing reduced and deglycosylated fragments of analytical importance. In addition, glycated fragments of IgG1 derived from glucose modification were identified rapidly with this ultrafast digestion/reduction technique. We suggest that microdroplets can serve as powerful microreactors for both exploring large-molecule reactions and speeding their structural analyses.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Xiaoqin Zhong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Ansu-Gyeabourh E, Amoah E, Ganesa C, Badu-Tawiah AK. Monoacylation of Symmetrical Diamines in Charge Microdroplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:531-536. [PMID: 33356239 DOI: 10.1021/jasms.0c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoacylation of symmetrical diamine is achieved when the primary α,ω-diamines (carbon numbers n = 3, 5 and 12) are diluted in ethyl acetate, and the resultant mixture is electrosprayed across a 10 mm distance in ambient air toward a mass spectrometer. The N-acylated product is formed in charged microdroplets without acidifying and activating agents and in the absence of heat. This result provided an insight into the orientation of the amines in the droplets, suggesting that the ester is activated to react with the amine at the droplet surface due to the high abundance of protons at the air-droplet interface.
Collapse
Affiliation(s)
- Emelia Ansu-Gyeabourh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- MassBiologics of The University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Enoch Amoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chandrashekar Ganesa
- MassBiologics of The University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Huang KH, Wei Z, Cooks RG. Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. Chem Sci 2020; 12:2242-2250. [PMID: 34163990 PMCID: PMC8179320 DOI: 10.1039/d0sc05625a] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk.![]()
Collapse
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
26
|
Sarih NM, Romero-Perez D, Bastani B, Rauytanapanit M, Boisdon C, Praneenararat T, Tajuddin HA, Abdullah Z, Badu-Tawiah AK, Maher S. Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray. Sci Rep 2020; 10:21504. [PMID: 33299034 PMCID: PMC7725966 DOI: 10.1038/s41598-020-78133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Paper spray ionization (PSI) mass spectrometry (MS) is an emerging tool for ambient reaction monitoring via microdroplet reaction acceleration. PSI-MS was used to accelerate and monitor the time course of the reaction of dansyl chloride with aniline, in acetonitrile, to produce dansyl aniline. Three distinct PSI arrangements were explored in this study representing alternative approaches for sample loading and interaction; conventional single tip as well as two novel setups, a dual-tip and a co-axial arrangement were designed so as to limit any on-paper interaction between reagents. The effect on product abundance was investigated using these different paper configurations as it relates to the time course and distance of microdroplet travel. It was observed that product yield increases at a given distance and then decreases thereafter for all PSI configurations. The fluorescent property of the product (dansyl aniline) was used to visually inspect the reaction progress on the paper substrate during the spraying process. Amongst the variety of sample loading methods the novel dual-tip arrangement showed an increased product yield and microdroplet density, whilst avoiding any on-paper interaction between the reagents.
Collapse
Affiliation(s)
- Norfatirah Muhamad Sarih
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Behnam Bastani
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Monrawat Rauytanapanit
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Hairul Anuar Tajuddin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| |
Collapse
|
27
|
Yu Y, Liu H, Yu Z, Witkowska HE, Cheng Y. Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry. Mol Cell Proteomics 2020; 19:1997-2015. [PMID: 32883800 PMCID: PMC7710143 DOI: 10.1074/mcp.ra120.002067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried - from expression host - six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Haichuan Liu
- Department of OBGYN & Reproductive Sci, Sandler-Moore MS Core Facility, University of California San Francisco, San Francisco, California, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - H Ewa Witkowska
- Department of OBGYN & Reproductive Sci, Sandler-Moore MS Core Facility, University of California San Francisco, San Francisco, California, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
28
|
Yang Y, Liu J, Chen Z, Niu W, Li R, Niu L, Yang P, Mu X, Tang B. A High-Throughput Screening Method for Determining the Optimized Synthesis Conditions of Quinoxaline Derivatives Using Microdroplet Reaction. Front Chem 2020; 8:789. [PMID: 33195024 PMCID: PMC7533680 DOI: 10.3389/fchem.2020.00789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Quinoxaline derivatives demonstrate many distinguished chemical, biological, and physical properties and have a wide application in dyes, electroluminescent material, organic semiconductors, biological agents, etc. However, the synthesis of quinoxaline still suffers from several drawbacks, for instance, longer reaction time, unsatisfactory yields, and use of metal catalysts. Here, utilizing microdroplet-assisted reaction, we demonstrate the successive synthesis of several important quinoxaline derivatives. For case studies of 1H-indeno [1, 2-b] quinoxaline and 3,5-dimethyl-2-phenylquinoxaline, the present microdroplet approach can complete in milliseconds and the conversion rate reached 90% without adding any catalyst, which is considerably quicker and higher than conversional bulk-phase reactions. When combined with MS detection, high-throughput screening of the optimal reaction conditions can be achieved. Several impacts of droplet volume, reaction flow rate, distance from the MS inlet, spray voltage, and flow rate of the auxiliary gas can be screened on-site quickly for enhanced reaction speed and yields. More importantly, this platform is capable to be used for the scaled-up microdroplet synthesis of quinoxaline diversities. Considering the facile, economic, and environmentally friendly features of the microdroplet approach, we sincerely hope that the current strategy can effectively promote the academic research and industrial fabrications of functional quinoxaline substances for chemical, biological, and pharmaceutical application developments.
Collapse
Affiliation(s)
- Yanmei Yang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Junmin Liu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Zhenzhen Chen
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Weihua Niu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Ran Li
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Le Niu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Peng Yang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Xiaoyan Mu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Bo Tang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| |
Collapse
|
29
|
Rovelli G, Jacobs MI, Willis MD, Rapf RJ, Prophet AM, Wilson KR. A critical analysis of electrospray techniques for the determination of accelerated rates and mechanisms of chemical reactions in droplets. Chem Sci 2020; 11:13026-13043. [PMID: 34094487 PMCID: PMC8163298 DOI: 10.1039/d0sc04611f] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼102 to 106 relative to macroscale bulk solutions. Despite electrospray's relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1-4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.
Collapse
Affiliation(s)
- Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
| | - Michael I Jacobs
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
- Department of Chemistry, University of California Berkeley 94720 CA USA
| | - Megan D Willis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
| | - Rebecca J Rapf
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
- Department of Chemistry, University of California Berkeley 94720 CA USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
| |
Collapse
|
30
|
Wei Z, Li Y, Cooks RG, Yan X. Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annu Rev Phys Chem 2020; 71:31-51. [PMID: 32312193 DOI: 10.1146/annurev-physchem-121319-110654] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various organic reactions, including important synthetic reactions involving C-C, C-N, and C-O bond formation as well as reactions of biomolecules, are accelerated when the reagents are present in sprayed or levitated microdroplets or in thin films. The reaction rates increase by orders of magnitude with decreasing droplet size or film thickness. The effect is associated with reactions at the solution-air interface. A key factor is partial solvation of the reagents at the interface, which reduces the critical energy for reaction. This phenomenon is of intrinsic interest and potentially of practical value as a simple, rapid method of performing small-scale synthesis.
Collapse
Affiliation(s)
- Zhenwei Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Yangjie Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA;
| |
Collapse
|
31
|
Kang J, Lhee S, Lee JK, Zare RN, Nam HG. Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil. Sci Rep 2020; 10:16859. [PMID: 33033365 PMCID: PMC7545199 DOI: 10.1038/s41598-020-73980-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Fluorescent molecular rotor dyes, including Cy3, Cy5, and Alexa Fluor 555, dissolved in micron-sized aqueous droplets (microdroplets) in oil were excited, and the fluorescence intensity was recorded as function of time. We observed lengthening of the fluorescence lifetime of these dyes at the water-oil periphery, which extended several microns inward. This behavior shows that intramolecular rotation is restricted at and near the microdroplet interface. Lengthened lifetimes were observed in water microdroplets but not in microdroplets composed of organic solvents. This lifetime change was relatively insensitive to added glycerol up to 60%, suggesting that solution viscosity is not the dominant mechanism. These restricted intramolecular rotations at and near the microdroplet periphery are consistent with the reduced entropy observed in chemical reactions in microdroplets compared to the same reaction conditions in bulk solution and helps us further understand why microdroplet chemistry differs so markedly from bulk-phase chemistry.
Collapse
Affiliation(s)
- Jooyoun Kang
- Center for Plant Aging Research, Institute for Basic Science, Daegu, 42988, Republic of Korea.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - SangMoon Lhee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, 42988, Republic of Korea
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu, 42988, Republic of Korea. .,Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
32
|
Dyett BP, Zhang X. Accelerated Formation of H 2 Nanobubbles from a Surface Nanodroplet Reaction. ACS NANO 2020; 14:10944-10953. [PMID: 32692921 DOI: 10.1021/acsnano.0c03059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The compartmentalization of chemical reactions within droplets has advantages in low costs, reduced consumption of reagents, and increased throughput. Reactions in small droplets have also been shown to greatly accelerate the rate of many chemical reactions. The accelerated growth rate of nanobubbles from nanodroplet reactions is demonstrated in this work. The gaseous products from the reaction at the nanodroplet surface promoted nucleation of hydrogen nanobubbles within multiple organic liquid nanodroplets. The nanobubbles were confined within the droplets and selectively grew and collapsed at the droplet perimeter, as visualized by microscopy with high spatial and temporal resolutions. The growth rate of the bubbles was significantly accelerated within small droplets and scaled inversely with droplet radius. The acceleration was attributed to confinement from the droplet volume and effect from the surface area on the interfacial chemical reaction for gas production. The results of this study provide further understanding for applications in droplet enhanced production of nanobubbles and the on-demand liberation of hydrogen.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| |
Collapse
|
33
|
Accelerating Electrochemical Reactions in a Voltage‐Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Cheng H, Tang S, Yang T, Xu S, Yan X. Accelerating Electrochemical Reactions in a Voltage-Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020; 59:19862-19867. [PMID: 32725670 DOI: 10.1002/anie.202007736] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/10/2022]
Abstract
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution-air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C-H/N-H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) "reversible" electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| |
Collapse
|
35
|
Wilson KR, Prophet AM, Rovelli G, Willis MD, Rapf RJ, Jacobs MI. A kinetic description of how interfaces accelerate reactions in micro-compartments. Chem Sci 2020; 11:8533-8545. [PMID: 34123113 PMCID: PMC8163377 DOI: 10.1039/d0sc03189e] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A kinetic expression is derived to explain how interfaces alter bulk chemical equilibria and accelerate reactions in micro-compartments. This description, aided by the development of a stochastic model, quantitatively predicts previous experimental observations of accelerated imine synthesis in micron-sized emulsions. The expression accounts for how reactant concentration and compartment size together lead to accelerated reaction rates under micro-confinement. These rates do not depend solely on concentration, but rather the fraction of total molecules in the compartment that are at the interface. Although there are ∼107 to 1013 solute molecules in a typical micro-compartment, a kind of "stochasticity" appears when compartment size and reagent concentration yield nearly equal numbers of bulk and interfacial molecules. Although this is distinct from the stochasticity produced by nano-confinement, these results show how interfaces can govern chemical transformations in larger atmospheric, geologic and biological compartments.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA .,Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Megan D Willis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Rebecca J Rapf
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Michael I Jacobs
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
36
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|
37
|
Cao J, Wang Q, An S, Lu S, Jia Q. Facile and efficient preparation of organoimido derivatives of [Mo 6O 19] 2- using accelerated reactions in Leidenfrost droplets. Analyst 2020; 145:4844-4851. [PMID: 32538384 DOI: 10.1039/d0an00578a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction acceleration is a hot topic in recent years since it is very useful for rapid reaction screening and small-scale synthesis on a short timescale. It is known that the rates of chemical reactions are often accelerated in confined volumes (small droplets or thin films) where the unique chemical reactivities of molecules at the air-droplet/thin film interface, usually different from that in the bulk and gas phases, play a dominant role in acceleration. The Leidenfrost effect was employed to create small levitated droplets with no net charge. These droplets can accelerate many kinds of organic reactions. Our first accelerated synthesis of a series of organoimido-functionalized polyoxometalate (POM) clusters using Leidenfrost droplets with product analysis by electrospray ionization mass spectrometry (ESI-MS) demonstrated that this method can be successfully extended to the synthesis of inorganic/organic hybrids, a very promising area for developing POM-based functional materials. Comparable amounts of synthetic products [Mo6O18(NC6H4R)]2- (R = H (6), m/z 477; p-i-C3H7 (7), m/z 498; p-OCH3 (8), m/z 492; p-NO2 (9), m/z 500) were prepared within minutes in Leidenfrost droplets versus in hours in the corresponding bulk reactions under the same reaction conditions in the presence of the DCC catalyst, suggesting that both concentration and interfacial effects are pivotal in causing reaction acceleration in the Leidenfrost droplet. Compared to the conventional bulk reactions, the acceleration factors (AFs) were 92, 136, 126, and 89 for the four model reactions (1)-(4), respectively. We also found out that substitution affects the rate of reactions occurring in droplets, and hence the magnitude of AF. The rates increase in the order of R = NO2 < H < i-C3H7 < OCH3, in which the electron-donating groups (i.e., R = OCH3, i-C3H7) on the benzene ring are more favorable to the reaction than the electron-withdrawing group (i.e., R = NO2). This experimental result is in good agreement with the DFT calculation which indicates that the free-energy barriers for the direct imidoylization of POM with RNH2 are linearly correlated with the basicity constants (pKb) of amines.
Collapse
Affiliation(s)
- Jie Cao
- Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
38
|
Duranty ER, McCardle H, Reichert WM, Davis JH. Acoustic levitation and infrared thermography: a sound approach to studying droplet evaporation. Chem Commun (Camb) 2020; 56:4224-4227. [PMID: 32181777 DOI: 10.1039/c9cc09856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a new technique combining acoustic levitation and infrared thermography to directly monitor droplet surface temperatures. Using it, temperature profiles were recorded during the evaporation of deionized water, methanol, n-propanol, and isopropanol. Results support the viability of this inexpensive and easily-accessed technique for studying chemical and physical changes in droplets.
Collapse
Affiliation(s)
- Edward R Duranty
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
39
|
Gnanamani E, Yan X, Zare RN. Chemoselective N‐Alkylation of Indoles in Aqueous Microdroplets. Angew Chem Int Ed Engl 2020; 59:3069-3072. [DOI: 10.1002/anie.201913069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Elumalai Gnanamani
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of ChemistryFudan University Shanghai 200438 China
| | - Xin Yan
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of ChemistryTexas A&M University 580 Ross Street College Station TX 77843-3255 USA
| | - Richard N. Zare
- Department of ChemistryStanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of ChemistryFudan University Shanghai 200438 China
| |
Collapse
|
40
|
Nie H, Wei Z, Qiu L, Chen X, Holden DT, Cooks RG. High-yield gram-scale organic synthesis using accelerated microdroplet/thin film reactions with solvent recycling. Chem Sci 2020; 11:2356-2361. [PMID: 34084396 PMCID: PMC8157326 DOI: 10.1039/c9sc06265c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A closed system has been designed to perform microdroplet/thin film reactions with solvent recycling capabilities for gram-scale chemical synthesis. Claisen-Schmidt, Schiff base, Katritzky and Suzuki coupling reactions show acceleration factors relative to bulk of 15 to 7700 times in this droplet spray system. These values are much larger than those reported previously for the same reactions in microdroplet/thin film reaction systems. The solvent recycling mode of the new system significantly improves the reaction yield, especially for reactions with smaller reaction acceleration factors. The microdroplet/thin film reaction yield improved on recycling from 33% to 86% and from 32% to 72% for the Katritzky and Suzuki coupling reactions, respectively. The Claisen-Schmidt reaction was chosen to test the capability of this system in gram scale syntheses and rates of 3.18 g per h and an isolated yield of 87% were achieved.
Collapse
Affiliation(s)
- Honggang Nie
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Zhenwei Wei
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA
| | - Lingqi Qiu
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA
| | - Xingshuo Chen
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA
| | - Dylan T Holden
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA
| | - R Graham Cooks
- Aston Labs, Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47906-1393 USA
| |
Collapse
|
41
|
Gnanamani E, Yan X, Zare RN. Chemoselective N‐Alkylation of Indoles in Aqueous Microdroplets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elumalai Gnanamani
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Xin Yan
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of Chemistry Texas A&M University 580 Ross Street College Station TX 77843-3255 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University 333 Campus Drive Stanford CA 94305-5080 USA
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
42
|
Boyer HC, Gorkowski K, Sullivan RC. In Situ pH Measurements of Individual Levitated Microdroplets Using Aerosol Optical Tweezers. Anal Chem 2020; 92:1089-1096. [PMID: 31760745 DOI: 10.1021/acs.analchem.9b04152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pH of microscale reaction environments controls numerous physicochemical processes, requiring a real-time pH microprobe. We present highly accurate real-time pH measurements of microdroplets using aerosol optical tweezers (AOT) and analysis of the whispering gallery modes (WGMs) contained in the cavity-enhanced Raman spectra. Uncertainties ranging from ±0.03 to 0.06 in pH for picoliter droplets are obtained through averaging Raman frames acquired at 0.5 Hz over 3.3 min. The high accuracy in pH determination is achieved by combining two independent measurements uniquely provided by the AOT approach: the anion concentration ratio from the spontaneous Raman spectra, and the total solute concentration from the refractive index retrieved from WGM analysis of the stimulated cavity-enhanced Raman spectra. pH can be determined over a range of -0.36 to 0.76 using the aqueous sodium bisulfate system. This technique enables direct measurements of pH-dependent chemical and physical changes experienced by individual microparticles and exploration of the role of pH in the chemical behavior of confined microenvironments.
Collapse
Affiliation(s)
- Hallie C Boyer
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kyle Gorkowski
- Department of Atmospheric and Oceanic Sciences , McGill University , Montreal , Quebec H3A 0B9 , Canada
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
43
|
Song R, Yu H, Huang H, Chen Y. Controlled One‐Pot Synthesis of Multiple Heterocyclic Scaffolds Based on an Amphiphilic Claisen‐Schmidt Reaction Intermediate. ChemistrySelect 2019. [DOI: 10.1002/slct.201904110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Hui Yu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| |
Collapse
|
44
|
Sahraeian T, Kulyk DS, Badu-Tawiah AK. Droplet Imbibition Enables Nonequilibrium Interfacial Reactions in Charged Microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14451-14457. [PMID: 31622104 DOI: 10.1021/acs.langmuir.9b02439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A droplet imbibition experiment is proposed to study interfacial effects, which appears to be the main factor influencing reaction acceleration in charged microdroplets produced by electrospray ionization (ESI). One reagent is deposited onto the surface of rapidly moving microdroplets containing the second reagent to be reacted. In this manner, reactions are hindered from reaching equilibrium and monitored in real time by mass spectrometry. We demonstrated this phenomenon using Katritzky chemistry, which is known to proceed either by the solvent-stabilized 2H-pyran intermediate or via the surface-active pseudobase intermediate. Comparisons with reactions performed using ESI show obvious surface effects in favor of the droplet imbibition experiment. By keeping reactant mole ratio constant, it was demonstrated that similar interfacial effects observed in the droplet imbibition experiment can be reached by allowing ESI microdroplets containing premixed reagents to traverse a distance >16 mm. At such spray distance, molecular diffusion and droplet lifetime become comparable allowing reactants to be enriched at droplet surface. Reactions were also conducted in rapid mixing, theta capillary-based droplets, which showed markedly reduced yields compared with the interfacial droplet imbibition experiment.
Collapse
Affiliation(s)
- Taghi Sahraeian
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dmytro S Kulyk
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
45
|
Liu C, Li J, Chen H, Zare RN. Scale-up of microdroplet reactions by heated ultrasonic nebulization. Chem Sci 2019; 10:9367-9373. [PMID: 32110301 PMCID: PMC7017870 DOI: 10.1039/c9sc03701b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dramatically higher rates for a variety of chemical reactions have been reported in microdroplets compared with those in the liquid bulk phase. However, the scale-up of microdroplet chemical synthesis has remained a major challenge to the practical application of microdroplet chemistry. Heated ultrasonic nebulization (HUN) was found as a new way for scaling up chemical synthesis in microdroplets. Four reactions were examined, a base-catalyzed Claisen-Schmidt condensation, an oximation reaction from a ketone, a two-phase oxidation reaction without the use of a phase-transfer-catalyst, and an Eschenmoser coupling reaction. These reactions show acceleration of one to three orders of magnitude (122, 23, 6536, and 62) in HUN microdroplets compared to the same reactions in bulk solution. Then, using the present method, the scale-up of the reactions was achieved at an isolated rate of 19 mg min-1 for the product of the Claisen-Schmidt condensation, 21 mg min-1 for the synthesis of benzophenone oxime from benzophenone, 31 mg min-1 for the synthesis of 4-methoxybenzaldehyde from 4-methoxybenzyl alcohol, and 40 mg min-1 for the enaminone product of the Eschenmoser coupling reaction.
Collapse
Affiliation(s)
- Chengyuan Liu
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| | - Jia Li
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| | - Hao Chen
- Department of Chemistry & Environmental Science , New Jersey Institute of Technology , Newark , NJ 07102 , USA
| | - Richard N Zare
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| |
Collapse
|
46
|
Fedick PW, Iyer K, Wei Z, Avramova L, Capek GO, Cooks RG. Screening of the Suzuki Cross-Coupling Reaction Using Desorption Electrospray Ionization in High-Throughput and in Leidenfrost Droplet Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2144-2151. [PMID: 31392703 DOI: 10.1007/s13361-019-02287-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Suzuki cross-coupling is a widely performed reaction, typically using metal catalysts under heated conditions. Acceleration of the Suzuki cross-coupling reaction has been previously explored in microdroplets using desorption electrospray ionization mass spectrometry (DESI-MS). Building upon previous work, presented here is the use of a high-throughput DESI-MS screening system to identify optimal reaction conditions. Multiple reagents, bases, and stoichiometries were screened using the automated system at rates that approach 10,000 reaction mixture systems per hour. The DESI-MS system utilizes reaction acceleration in microdroplets to allow rapid screening. The results of screening of an array of reaction mixtures using this technique are presented as product ion images via standard MS imaging software, facilitating quick readout. Instructive comparisons are provided with another method of generating droplets for reaction acceleration-the Leidenfrost technique. Acceleration factors greater than 200 were measured for brominated substrates, paralleling the DESI-MS results. Acceleration factors dropped to near unity with highly substituted pyridines, attributable to a steric effect. The reaction proceeded in the absence of a base in Leidenfrost droplets although no product formation was seen without base in the bulk or in the DESI-MS screening experiments. These differences between Leidenfrost chemistry and the bulk and in droplets formed in high-throughput DESI are tentatively attributed to extremes of pH associated with the surfaces of Leidenfrost droplets.
Collapse
Affiliation(s)
- Patrick W Fedick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Research Department, Chemistry Division, United States Navy-Naval Air Systems Command (NAVAIR), Naval Air Warfare Center, Weapons Division (NAWCWD), China Lake, CA, 93555, USA
| | - Kiran Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Larisa Avramova
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Grace O Capek
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
47
|
Marsh BM, Iyer K, Cooks RG. Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2022-2030. [PMID: 31410654 DOI: 10.1007/s13361-019-02264-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/20/2019] [Indexed: 05/08/2023]
Abstract
Phenylhydrazone formation from isatin is used to examine the effects on the reaction rate of (i) electrospray emitter distance from the mass spectrometer (MS) inlet, (ii) emitter tip diameter, and (iii) presence of surfactant. Reaction rates are characterized through measurement of conversion ratios. It is found that there is an increase in the conversion ratio as (i) the electrospray source is moved further from the inlet of the mass spectrometer, (ii) smaller sprayer diameters are used, and (iii) when surfactants are present. Each of these experimental operations is associated with an increase in reaction rate and with a decrease in average droplet sizes. The size measurements are made using super resolution microscopy from the "splash" on a collector surface produced by a fluorescent marker sprayed using conditions similar to those used for the reaction mixture. This measurement showed that droplets undergo significant evaporation as a function of distance of flight, thereby increasing their surface to volume ratios. Similarly, the effect of nanoelectrospray emitter size on conversion ratio is also found to be associated with changes in droplet size for which a 4 to 10 times increase in reaction rate is seen using tip diameters ranging from 20 μm down to 1 μm. Finally, the effects of surfactants in producing smaller droplets with corresponding large increases in reaction rate are demonstrated by splash microscopy. These findings point to reaction acceleration being strongly associated with reactions at the surfaces of microdroplets.
Collapse
Affiliation(s)
- Brett M Marsh
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kiran Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
48
|
Do Cellular Condensates Accelerate Biochemical Reactions? Lessons from Microdroplet Chemistry. Biophys J 2019; 115:3-8. [PMID: 29972809 DOI: 10.1016/j.bpj.2018.05.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular condensates-phase-separated concentrates of proteins and nucleic acids-provide organizational structure for biochemistry that is distinct from membrane-bound compartments. It has been suggested that one major function of cellular condensates is to accelerate biochemical processes that are normally slow or thermodynamically unfavorable. Yet, the mechanisms leading to increased reaction rates within cellular condensates remain poorly understood. In this article, we highlight recent advances in microdroplet chemistry that accelerate reaction rates by many orders of magnitude as compared to bulk and suggest that similar mechanisms may also affect reaction kinetics in cellular condensates.
Collapse
|
49
|
Borówko M, Sokołowski S, Staszewski T. Amphiphilic Dimers at Liquid-Liquid Interfaces: A Density Functional Approach. J Phys Chem B 2019; 123:5962-5972. [PMID: 31204480 DOI: 10.1021/acs.jpcb.9b04501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We apply density functional theory to study the structure of dimers at the interface between two partially miscible symmetric liquids. The dimers are built of two tangentially jointed spheres and do not solve the coexisting liquids. The interactions in the system are modeled using Lennard-Jones potentials with different interactions between segments of the dimers and the liquid components. We study how asymmetry of the interactions between dimers and molecules of the liquid, i.e., the degree of dimer amphiphilicity, influences the interfacial structure. Two unexpected phenomena have been found. First, for some systems, the liquid-liquid interface is able to accommodate only a finite amount of dimers. If the amount of added dimers is larger than a threshold value, a part or all of the dimers move to the interior one of the coexisting phase, forming an insoluble sheet inside it, or the initial interface splits into separate parts. The second is a peculiar behavior of the dependence of the interfacial width with an increase of the amount of added dimers. In this case, we observe a discontinuous jump that is connected with reorientation of dimers with respect to the interface.
Collapse
Affiliation(s)
- M Borówko
- Department for the Modelling of Physico-Chemical Processes , Maria Curie-Skłodowska University , 20031 Lublin , Poland
| | - S Sokołowski
- Department for the Modelling of Physico-Chemical Processes , Maria Curie-Skłodowska University , 20031 Lublin , Poland
| | - T Staszewski
- Department for the Modelling of Physico-Chemical Processes , Maria Curie-Skłodowska University , 20031 Lublin , Poland
| |
Collapse
|
50
|
Long Z, Wang Y, Fu Q, Ouyang J, He L. Accelerated crystallization and encapsulation for the synthesis of water- and oxygen-resistant perovskite nanoparticles in micro-droplets. NANOSCALE 2019; 11:11093-11098. [PMID: 31165114 DOI: 10.1039/c9nr03647d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water- and oxygen-resistant perovskite nanoparticles (PC-PNPs) were synthesized in milliseconds via a single-step microdroplet reaction. It was found through kinetics studies that the synthesis was accomplished within 100 ms in microdroplet reactors, with ejection at ∼1.5 m s-1. Being small-sized, stable, less toxic and biocompatible, PC-PNPs were feasible for cell or in vivo imaging, and selective sensing for Fe3+ and Cys, which will inspire further expanded studies of perovskite materials.
Collapse
Affiliation(s)
- Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qiang Fu
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lixin He
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|