1
|
Wu J, Verboom KL, Krische MJ. Catalytic Enantioselective C-C Coupling of Alcohols for Polyketide Total Synthesis beyond Chiral Auxiliaries and Premetalated Reagents. Chem Rev 2024; 124:13715-13735. [PMID: 39642170 DOI: 10.1021/acs.chemrev.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Catalytic enantioselective hydrogen autotransfer reactions for the direct conversion of lower alcohols to higher alcohols are catalogued and their application to the total synthesis of polyketide natural products is described. These methods exploit a redox process in which alcohol oxidation is balanced by reductive generation of organometallic nucleophiles from unsaturated hydrocarbon pronucleophiles. Unlike classical carbonyl additions, premetalated reagents, chiral auxiliaries and discrete alcohol-to-aldehyde redox reactions are not required. Additionally, chemoselective dehydrogenation of primary alcohols in the presence of secondary alcohols enables C-C coupling in the absence of protecting groups.
Collapse
Affiliation(s)
- Jessica Wu
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Katherine L Verboom
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| |
Collapse
|
2
|
Dissanayake GC, Martinez JB, Garg G, Ndi C, Markley JL, Hanson PR. Synthesis of Simplified 2-Desmethyl Sanctolide A Analogs. J Org Chem 2024; 89:9783-9788. [PMID: 38989836 PMCID: PMC11414416 DOI: 10.1021/acs.joc.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A one-pot, sequential phosphate tether-mediated method for the synthesis of simplified 2-desmethyl sanctolide A analogs is reported. Western side-chain diversification was achieved using a pot-efficient, sequential cross metathesis (CM)/ring-closing metathesis (RCM)/H2/dephosphorylation procedure. Further diversification was achieved by Me3Al-mediated amide formation, Yamaguchi esterification, and RCM macrocyclization to access five C11/C12 Z-configured, 2-des-methyl sanctolide A analogs with improved stability.
Collapse
Affiliation(s)
- Gihan C Dissanayake
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James B Martinez
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Gaurav Garg
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Cornelius Ndi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Jana L Markley
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Sperandio C, Rodriguez J, Quintard A. Catalytic strategies towards 1,3-polyol synthesis by enantioselective cascades creating multiple alcohol functions. Org Biomol Chem 2020; 18:1025-1035. [PMID: 31976499 DOI: 10.1039/c9ob02675d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the different enantioselective catalyst-controlled cascades creating multiple alcohol functions through the formation of several carbon-carbon bonds. Through subsequent simple derivatization, these strategies ensure the rapid preparation of 1,3-polyols. Thanks to the use of efficient metal- or organo-catalysts, these cascades enable the selective assembly of multiple substrates considerably limiting operations and waste generation. For this purpose, several mono- or bi-directional approaches have been devised allowing successive C-C bond-forming events. The considerable synthetic economies these cascades enable have been demonstrated in the preparation of a wide variety of complex bioactive natural products, notably polyketides.
Collapse
Affiliation(s)
- Céline Sperandio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
5
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Angew Chem Int Ed Engl 2019; 58:14055-14064. [PMID: 31162793 PMCID: PMC6764920 DOI: 10.1002/anie.201905532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Use of abundant feedstock pronucleophiles in catalytic carbonyl reductive coupling enhances efficiency in target-oriented synthesis. For such reactions, equally inexpensive reductants are desired or, ideally, corresponding hydrogen autotransfer processes may be enacted wherein alcohols serve dually as reductant and carbonyl proelectrophile. As described in this Minireview, these concepts allow reactions that traditionally require preformed organometallic reagents to be conducted catalytically in a byproduct-free manner from inexpensive π-unsaturated precursors.
Collapse
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Cole C. Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
6
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
7
|
Bourboula A, Limnios D, Kokotou MG, Mountanea OG, Kokotos G. Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones. Molecules 2019; 24:molecules24112081. [PMID: 31159242 PMCID: PMC6600402 DOI: 10.3390/molecules24112081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023] Open
Abstract
3-Hydroxy fatty acids have attracted the interest of researchers, since some of them may interact with free fatty acid receptors more effectively than their non-hydroxylated counterparts and their determination in plasma provides diagnostic information regarding mitochondrial deficiency. We present here the development of a convenient and general methodology for the asymmetric synthesis of 3-hydroxy fatty acids. The enantioselective organocatalytic synthesis of terminal epoxides, starting from long chain aldehydes, is the key-step of our methodology, followed by ring opening with vinylmagnesium bromide. Ozonolysis and subsequent oxidation leads to the target products. MacMillan’s third generation imidazolidinone organocatalyst has been employed for the epoxide formation, ensuring products in high enantiomeric purity. Furthermore, a route for the incorporation of deuterium on the carbon atom carrying the hydroxy group was developed allowing the synthesis of deuterated derivatives, which may be useful in biological studies and in mass spectrometry studies. In addition, the synthesis of fatty γ-lactones, corresponding to 4-hydroxy fatty acids, was also explored.
Collapse
Affiliation(s)
- Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Olga G Mountanea
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
8
|
Aljahdali AZ, Foster KA, O'Doherty GA. The asymmetric syntheses of cryptocaryols A and B. Chem Commun (Camb) 2018; 54:3428-3435. [PMID: 29547218 DOI: 10.1039/c8cc00482j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent total syntheses of cryptocaryols A and B are reviewed. These efforts include the correction of the initially assigned absolute and relative stereochemistry of this class of natural products. In addition to enabling the initial structure activity relationships for this class of natural products, these syntheses demonstrated the practical utility of several novel synthetic approaches.
Collapse
|
9
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Chen P, Wu Y, Zhu S, Jiang H, Ma Z. Ir-Catalyzed reactions in natural product synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00665a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review highlights the recent applications of Ir-catalyzed reactions in the total synthesis of natural products.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
11
|
Abstract
An overview of the highlights in total synthesis of natural products using iridium as a catalyst is given.
Collapse
Affiliation(s)
- Changchun Yuan
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- PR China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
12
|
Xiong B, Jiang J, Zhang S, Jiang H, Ke Z, Zhang M. Ruthenium-Catalyzed Direct Synthesis of Semisaturated Bicyclic Pyrimidines via Selective Transfer Hydrogenation. Org Lett 2017; 19:2730-2733. [DOI: 10.1021/acs.orglett.7b01081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biao Xiong
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jingxing Jiang
- School
of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shudi Zhang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhuofeng Ke
- School
of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Zhang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Feng J, Kasun ZA, Krische MJ. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J Am Chem Soc 2016; 138:5467-78. [PMID: 27113543 PMCID: PMC4871165 DOI: 10.1021/jacs.6b02019] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and application of stereoselective and site-selective catalytic methods that directly convert lower alcohols to higher alcohols are described. These processes merge the characteristics of transfer hydrogenation and carbonyl addition, exploiting alcohols and π-unsaturated reactants as redox pairs, which upon hydrogen transfer generate transient carbonyl-organometal pairs en route to products of C-C coupling. Unlike classical carbonyl additions, stoichiometric organometallic reagents and discrete alcohol-to-carbonyl redox reactions are not required. Additionally, due to a kinetic preference for primary alcohol dehydrogenation, the site-selective modification of glycols and higher polyols is possible, streamlining or eliminating use of protecting groups. The total syntheses of several iconic type I polyketide natural products were undertaken using these methods. In each case, the target compounds were prepared in significantly fewer steps than previously achieved.
Collapse
Affiliation(s)
- Jiajie Feng
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Zachary A. Kasun
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
14
|
Xiong B, Zhang SD, Chen L, Li B, Jiang HF, Zhang M. An annulative transfer hydrogenation strategy enables straightforward access to tetrahydro fused-pyrazine derivatives. Chem Commun (Camb) 2016; 52:10636-9. [DOI: 10.1039/c6cc05329g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium-catalyzed annulative transfer hydrogenation strategy, enabling straightforward access to tetrahydro fused-pyrazine derivatives from N-heteroaryl diamines and vicinal diols, is demonstrated.
Collapse
Affiliation(s)
- Biao Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shu-Di Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lu Chen
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Bin Li
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Huan-Feng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|