1
|
Krevert C, Gunkel L, Sutter J, Meyer R, Schneider P, Nagata Y, Hunger J. Deciphering Spectroscopic Signatures of Competing Ca 2+ - Peptide Interactions. J Phys Chem B 2024; 128:10688-10698. [PMID: 39437793 PMCID: PMC11533179 DOI: 10.1021/acs.jpcb.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Calcium-protein interactions are of paramount importance in biochemistry. They are a key element in a number of biological processes, such as neuronal signaling. Therefore, an understanding of the interaction at the molecular level is highly desirable. Here, we study the zwitterionic model peptide l-alanyl-l-alanine (2Ala), which has two distinct and competing binding sites for Ca2+: The carbonyl of the peptide bond and the C-terminus, the carboxylate group. We perform linear and two-dimensional IR spectroscopy experiments and find that the spectroscopic signatures of both moieties in the IR spectra change in amplitude and peak position upon the addition of CaCl2: A blueshift of the asymmetric carboxylate band and a redshift for the amide I mode. Ab initio molecular dynamics simulations confirm the direct interaction of the Ca2+ ion at both the carboxylate and the amide CO site leading to different spectral responses. The blueshift of the asymmetric carboxylate band is caused by a localization of the charge, leading to a decoupling of the CO stretching modes of the carboxylate group. The slight redshift of the amide I mode of 2Ala upon the addition of CaCl2 contrasts the blueshift that has been observed for isolated amide motifs, such as N-methylacetamide (NMA). This difference is caused by the smaller number of water molecules being replaced by the Ca2+ ion for 2Ala's amide compared to less sterically hindered, isolated amide carbonyls, in conjunction with vibrational Stark effects. Our results highlight the importance of considering potential competing binding sites, such as the amide CO backbone, the termini and residues, as well as the nature of the hydration of both peptide and ion, when exploring ions' interacting with small peptides and larger proteins.
Collapse
Affiliation(s)
- Carola
S. Krevert
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Lucas Gunkel
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Sutter
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Raphael Meyer
- Department
of the Synthesis of Macromolecule, Max Planck
Insitute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Paul Schneider
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Hunger
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Hunger J, Buchner R, Hefter G. Ion Association and Hydration of Some Heavy-Metal Nitrate Salts in Aqueous Solution. J Phys Chem B 2024; 128:10238-10246. [PMID: 39361423 PMCID: PMC11492267 DOI: 10.1021/acs.jpcb.4c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Aqueous solutions of four heavy-metal nitrate salts (AgNO3, TlNO3, Cd(NO3)2 and Pb(NO3)2) have been studied at 25 °C using broadband dielectric relaxation spectroscopy (DRS) at frequencies 0.27 ≤ ν/GHz ≤ 115 over the approximate concentration range 0.2 ≲ c/mol L-1 ≲ 2.0 (0.08 ≲ c/mol L-1 ≲ 0.4 for the less-soluble TlNO3). The spectra for AgNO3, TlNO3, and Pb(NO3)2 were best described by assuming the presence of three relaxation processes. These consisted of one solute-related Debye mode centered at ∼2 GHz and two higher-frequency solvent-related modes: one an intense Cole-Cole mode centered at ∼18 GHz and the other a small-amplitude Debye mode at ∼500 GHz. These modes can be assigned, respectively, to the rotational diffusion of contact ion pairs (CIPs), the cooperative relaxation of solvent water molecules, and its preceding fast H-bond flip. For Cd(NO3)2 solutions an additional solute-related Debye mode of small-amplitude, centered at ∼0.5 GHz, was required to adequately fit the spectra. This mode was consistent with the presence of small amounts of solvent-shared ion pairs. Detailed analysis of the solvent modes indicated that all the cations are strongly solvated with, at infinite dilution, effective total hydration numbers (Zt0 values) of irrotationally bound water molecules of ∼5 for both Ag+ and Tl+, ∼10 for Pb2+, and ∼20 for Cd2+. These results clearly indicate the presence of a partial second hydration shell for Pb2+(aq) and an almost complete second shell for Cd2+(aq). However, the hydration numbers decline considerably with increasing solute concentration due to ion-ion interactions. Association constants for the formation of contact ion pairs indicated weak complexation that varies in the order: Tl+ < Ag+ < Pb2+ < Cd2+, consistent with the charge/radius ratios of the cations and their Gibbs energies of hydration. Where comparisons were possible the present constants mostly agreed well with the rather uncertain literature values.
Collapse
Affiliation(s)
- Johannes Hunger
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Glenn Hefter
- Chemistry
Department, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Armbruster C, Sellin M, Seiler M, Würz T, Oesten F, Schmucker M, Sterbak T, Fischer J, Radtke V, Hunger J, Krossing I. Pushing redox potentials to highly positive values using inert fluorobenzenes and weakly coordinating anions. Nat Commun 2024; 15:6721. [PMID: 39112470 PMCID: PMC11306567 DOI: 10.1038/s41467-024-50669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
While the development of weakly coordinating anions (WCAs) received much attention, the progress on weakly coordinating and inert solvents almost stagnated. Here we study the effect of strategic F-substitution on the solvent properties of fluorobenzenes C6FxH6-x (xFB, x = 1-5). Asymmetric fluorination leads to dielectric constants as high as 22.1 for 3FB that exceeds acetone (20.7). Combined with the WCAs [Al(ORF)4]- or [(FRO)3Al-F-Al(ORF)3]- (RF = C(CF3)3), the xFB solvents push the potentials of Ag+ and NO+ ions to +1.50/+1.52 V vs. Fc+/Fc. The xFB/WCA-system has electrochemical xFB stability windows that exceed 5 V for all xFBs with positive upper limits between +1.82 V (1FB) and +2.67 V (5FB) vs. Fc+/Fc. High-level ab initio calculations with inclusion of solvation energies show that these high potentials result from weak interactions of the ions with solvent and counterion. To access the available positive xFB potential range with stable reagents, the innocent deelectronator salts [anthraceneF]+∙[WCA]- and [phenanthreneF]+∙[WCA]- with potentials of +1.47 and +1.89 V vs. Fc+/Fc are introduced.
Collapse
Affiliation(s)
- Christian Armbruster
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Malte Sellin
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Matthis Seiler
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tanja Würz
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Friederike Oesten
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Maximilian Schmucker
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tabea Sterbak
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Fischer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max-Planck-Institut for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Rudani BA, Jakubowski A, Kriegs H, Wiegand S. Deciphering the guanidinium cation: Insights into thermal diffusion. J Chem Phys 2024; 160:214502. [PMID: 38828819 DOI: 10.1063/5.0215843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Thermophoresis, or thermodiffusion, is becoming a more popular method for investigating the interactions between proteins and ligands due to its high sensitivity to the interactions between solutes and water. Despite its growing use, the intricate mechanisms behind thermodiffusion remain unclear. This gap in knowledge stems from the complexities of thermodiffusion in solvents that have specific interactions as well as the intricate nature of systems that include many components with both non-ionic and ionic groups. To deepen our understanding, we reduce complexity by conducting systematic studies on aqueous salt solutions. In this work, we focused on how guanidinium salt solutions behave in a temperature gradient, using thermal diffusion forced Rayleigh scattering experiments at temperatures ranging from 15 to 35 °C. We looked at the thermodiffusive behavior of four guanidinium salts (thiocyanate, iodide, chloride, and carbonate) in solutions with concentrations ranging from 1 to 3 mol/kg. The guanidinium cation is disk-shaped and is characterized by flat hydrophobic surfaces and three amine groups, which enable directional hydrogen bonding along the edges. We compare our results to the behavior of salts with spherical cations, such as sodium, potassium, and lithium. Our discussions are framed around how different salts are solvated, specifically in the context of the Hofmeister series, which ranks ions based on their effects on the solvation of proteins.
Collapse
Affiliation(s)
- Binny A Rudani
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Andre Jakubowski
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
5
|
Basu T, Das S, Majumdar S. Elucidating the influence of electrostatic force on the re-arrangement of H-bonds of protein polymers in the presence of salts. SOFT MATTER 2024; 20:2361-2373. [PMID: 38372459 DOI: 10.1039/d3sm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyampholytes/proteins have an intriguing network of hydrogen bonds (H-bonds), especially their secondary structure, which plays a crucial role in determining the conformational stability of the polymer. The changes in protein secondary structure in the protein-salt system have been extensively deciphered by researchers, yet their pathways for breakage and recreation are unknown. Understanding the mechanism of protein conformational changes towards their biological activities, like protein folding, remains one of the main challenges and requires multiscale analysis of this strongly correlated system. Herein, salts have been used to reveal the re-arrangement behavior in the H-bond network of proteins under the influence of electrostatic interactions, as the strength of electrostatic forces is much stronger than that of H-bonds. At lower salt concentrations, there are negligible changes in the secondary structures as the electrostatic forces induced by the salt ions are less. Later, the existing H-bonds break and reconstruct new H-bonds at higher salt concentrations due to the influence of the stronger electrostatic interaction induced by the large number of salt ions. Molecular dynamics (MD) simulations and FTIR studies have been used rigorously to decipher the reason behind the re-arrangement of the H-bonds within gelatin (protein). The re-arrangement in the H-bond has also been observed with time from simulations and experiments. Thus, this study could provide a fresh perspective on the conformational changes of polyampholytes/proteins and will also influence the studies of protein folding-unfolding interaction in the presence of salt ions.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| |
Collapse
|
6
|
Das S, Basu T, Majumdar S. Molecular interactions of acids and salts with polyampholytes. J Chem Phys 2024; 160:054901. [PMID: 38299631 DOI: 10.1063/5.0190821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The Hofmeister series characterizes the ability of salt anions to precipitate polyampholytes/proteins. However, the variation of protein size in the bulk solution of acids and the effect of salts on the same have not been studied well. In this article, the four acids (CH3COOH, HNO3, H2SO4, and HCl) and their effects on the hydrodynamic radius (RH) of gelatin in the bulk solution are investigated. The effects of Na salt with the same anions are also considered to draw a comparison between the interactions of acids and salts with polyampholytes. It is suggested that the interactions of polyampholytes with acids are different from those of salts. The interaction series of polyampholytes with acids with respect to the RH of the polyampholyte is CH3COO->NO3->Cl->SO42- whereas the interaction series with salts is SO42->CH3COO->Cl->NO3-. These different interactions are due to equilibration between acid dissociation and protonation of polyampholytes. Another important factor contributing to the interactions in weak acids is the fact that undissociated acid hinders the movement of dissociated acid. Experiments and simulations were performed to understand these interactions, and the results were identical in terms of the trend in RH (from the experiments) and the radius of gyration (Rg) (from the simulations). It is concluded that the valence of ions and dissociation affect the interaction in the case of acids. However, the interactions are influenced by the kosmotropic and chaotropic effect, hydration, and mobility in the case of salts.
Collapse
Affiliation(s)
- Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
7
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
8
|
Balos V, Wolf M, Kovalev S, Sajadi M. Optical rectification and electro-optic sampling in quartz. OPTICS EXPRESS 2023; 31:13317-13327. [PMID: 37157471 DOI: 10.1364/oe.480339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report the electro-optic sampling (EOS) response and the terahertz (THz) optical rectification (OR) of the z-cut α-quartz. Due to its small effective second-order nonlinearity, large transparency window and hardness, freestanding thin quartz plates can faithfully measure the waveform of intense THz pulses with MV/cm electric-field strength. We show that both its OR and EOS responses are broad with extension up to ∼8 THz. Strikingly, the latter responses are independent of the crystal thickness, a plausible indication of dominant surface contribution to the total second-order nonlinear susceptibility of quartz at THz frequencies. Our study introduces the crystalline quartz as a reliable THz electro-optic medium for high field THz detection, and characterize its emission as a common substrate.
Collapse
|
9
|
Cao G, Zhao L, Ji X, Peng Y, Yu M, Wang X, Li X, Ran F. "Salting out" in Hofmeister Effect Enhancing Mechanical and Electrochemical Performance of Amide-based Hydrogel Electrolytes for Flexible Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207610. [PMID: 37026666 DOI: 10.1002/smll.202207610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
With the development of flexible and wearable electronic devices, it is a new challenge for polymer hydrogel electrolytes to combine high mechanical flexibility and electrochemical performance into one membrane. In general, the high content of water in hydrogel electrolyte membranes always leads to poor mechanical strength, and limits their applications in flexible energy storage devices. In this work, based on the "salting out" phenomenon in Hofmeister effect, a kind of gelatin-based hydrogel electrolyte membrane is fabricated with high mechanical strength and ionic conductivity by soaking pre-gelated gelatin hydrogel in 2 m ZnSO4 aqueous. Among various gelatin-based electrolyte membranes, the gelatin-ZnSO4 electrolyte membrane delivers the "salting out" property of Hofmeister effect, which improves both the mechanical strength and electrochemical performance of gelatin-based electrolyte membranes. The breaking strength reaches 1.5 MPa. When applied to supercapacitors and zinc-ion batteries, it can sustain over 7500 and 9300 cycles for repeated charging and discharging processes. This study provides a very simple and universal method to prepare polymer hydrogel electrolytes with high strength, toughness, and stability, and its applications in flexible energy storage devices provide a new idea for the construction of secure and stable flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Guanghua Cao
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Lei Zhao
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiwei Ji
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiangya Wang
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recyclig of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
10
|
Hofmeister series: An insight into its application on gelatin and alginate-based dual-drug biomaterial design. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Zhang J, Gao B, Ye B, Sun Z, Qian Z, Yu L, Bi Y, Ma L, Ding Y, Du Y, Wang W, Mao Z. Mitochondrial-Targeted Delivery of Polyphenol-Mediated Antioxidases Complexes against Pyroptosis and Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208571. [PMID: 36648306 DOI: 10.1002/adma.202208571] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Excess accumulation of mitochondrial reactive oxygen species (mtROS) is a key target for inhibiting pyroptosis-induced inflammation and tissue damage. However, targeted delivery of drugs to mitochondria and efficient clearance of mtROS remain challenging. In current study, it is discovered that polyphenols such as tannic acid (TA) can mediate the targeting of polyphenol/antioxidases complexes to mitochondria. This affinity does not depend on mitochondrial membrane potential but stems from the strong binding of TA to mitochondrial outer membrane proteins. Taking advantage of the feasibility of self-assembly between TA and proteins, superoxide dismutase, catalase, and TA are assembled into complexes (referred to as TSC) for efficient enzymatic activity maintenance. In vitro fluorescence confocal imaging shows that TSC not only promoted the uptake of biological enzymes in hepatocytes but also highly overlapped with mitochondria after lysosomal escape. The results from an in vitro model of hepatocyte oxidative stress demonstrate that TSC efficiently scavenges excess mtROS and reverses mitochondrial depolarization, thereby inhibiting inflammasome-mediated pyroptosis. More interestingly, TSC maintain superior efficacy compared with the clinical gold standard drug N-acetylcysteine in both acetaminophen- and D-galactosamine/lipopolysaccharide-induced pyroptosis-related hepatitis mouse models. In conclusion, this study opens a new paradigm for targeting mitochondrial oxidative stress to inhibit pyroptosis and treat inflammatory diseases.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
| |
Collapse
|
12
|
Krevert CS, Gunkel L, Haese C, Hunger J. Ion-specific binding of cations to the carboxylate and of anions to the amide of alanylalanine. Commun Chem 2022; 5:173. [PMID: 36697920 PMCID: PMC9814750 DOI: 10.1038/s42004-022-00789-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Studies of ion-specific effects on oligopeptides have aided our understanding of Hofmeister effects on proteins, yet the use of different model peptides and different experimental sensitivities have led to conflicting conclusions. To resolve these controversies, we study a small model peptide, L-Alanyl-L-alanine (2Ala), carrying all fundamental chemical protein motifs: C-terminus, amide bond, and N-terminus. We elucidate the effect of GdmCl, LiCl, KCl, KI, and KSCN by combining dielectric relaxation, nuclear magnetic resonance (1H-NMR), and (two-dimensional) infrared spectroscopy. Our dielectric results show that all ions reduce the rotational mobility of 2Ala, yet the magnitude of the reduction is larger for denaturing cations than for anions. The NMR chemical shifts of the amide group are particularly sensitive to denaturing anions, indicative of anion-amide interactions. Infrared experiments reveal that LiCl alters the spectral homogeneity and dynamics of the carboxylate, but not the amide group. Interaction of LiCl with the negatively charged pole of 2Ala, the COO- group, can explain the marked cationic effect on dipolar rotation, while interaction of anions between the poles, at the amide, only weakly perturbs dipolar dynamics. As such, our results provide a unifying view on ions' preferential interaction sites at 2Ala and help rationalize Hofmeister effects on proteins.
Collapse
Affiliation(s)
- Carola Sophie Krevert
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Constantin Haese
- grid.419547.a0000 0001 1010 1663Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Wang X, Qiao C, Jiang S, Liu L, Yao J. Hofmeister effect in gelatin-based hydrogels with shape memory properties. Colloids Surf B Biointerfaces 2022; 217:112674. [PMID: 35785718 DOI: 10.1016/j.colsurfb.2022.112674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The soaking strategy with the Hofmeister effect has been proposed to fabricate gelatin- based hydrogels with excellent properties. However, the modulation mechanism of hydrogels lacks in-depth study. In this work, we studied in detail the effects of Hofmeister ions on the structural, thermal, viscoelastic and mechanical properties of gelatin hydrogels. The results showed that kosmotropic anions (Cit3-, SO42-, H2PO4- and S2O32-) enhanced hydrogen bonds and hydrophobic interactions between gelatin molecules, resulting in increases in the length and content of triple helices and thus improving the properties of gelatin hydrogels. In contrast, chaotropic anions (I- and SCN-) weakened the interactions between gelatin molecules, and thus attenuated the properties. Based on the Hofmeister effect, we successfully fabricated gelatin poly N-methylolacrylamide (PNMA) double network hydrogels with shape memory properties. The Hofmeister effect provides an excellent route for the rational design and fabrication of functional gelatin-based hydrogels.
Collapse
Affiliation(s)
- Xujie Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Song Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Libin Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
14
|
Rogers BA, Okur HI, Yan C, Yang T, Heyda J, Cremer PS. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat Chem 2022; 14:40-45. [PMID: 34725491 DOI: 10.1038/s41557-021-00805-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.
Collapse
Affiliation(s)
- Bradley A Rogers
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Halil I Okur
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Chuanyu Yan
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Dejvice, Czech Republic
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Wang X, Qiao C, Song K, Jiang S, Yao J. Hofmeister effect on the viscosity properties of gelatin in dilute solutions. Colloids Surf B Biointerfaces 2021; 206:111944. [PMID: 34214840 DOI: 10.1016/j.colsurfb.2021.111944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
The effect of various Hofmeister anions on the molecular conformation of gelatin in dilute solutions was investigated by viscosity, optical rotation and dynamic light scattering (DLS). The results showed that the intrinsic viscosity of gelatin decreased in the presence of the kosmotropic anions such as Citrate3-, SO42-, H2PO4- and MeCOO-, whereas it was increased with the addition of chaotropes such as Cl- and KSCN-. Furthermore, the intrinsic viscosity of gelatin was directly correlated to the hydration entropy of kosmotropic anions, suggesting that the decrease of the intrinsic viscosity was attributed to the strong hydration effect of kosmotropes. The strong dehydration of gelatin facilitated the folding of the polymer chains into helix bundles, validated by the results of optical rotation. On the contrary, the chaotropic anions could interact directly with polypeptide backbones, and the intrachain hydrogen bonds were destroyed. As a result, the polymer chains expanded, which was confirmed by DLS data, and the intrinsic viscosity was increased. These observations indicate that the molecular conformation of gelatin can be modulated by Hofmeister anions.
Collapse
Affiliation(s)
- Xujie Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Kai Song
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Song Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
16
|
Dreier C, Prädel L, Ehrhard AA, Wagner M, Hunger J. Association Equilibria of Organo-Phosphoric Acids with Imines from a Combined Dielectric and Nuclear Magnetic Resonance Spectroscopy Approach. Anal Chem 2021; 93:3914-3921. [PMID: 33600142 PMCID: PMC7931174 DOI: 10.1021/acs.analchem.0c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Aggregates formed between organo-phosphoric acids and imine bases in aprotic solvents are the reactive intermediates in Brønsted acid organo-catalysis. Due to the strong hydrogen-bonding interaction of the acids in solution, multiple homo- and heteroaggregates are formed with profound effects on catalytic activity. Yet, due to the similar binding motifs-hydrogen-bonds-it is challenging to experimentally quantify the abundance of these aggregates in solution. Here we demonstrate that a combination of nuclear magnetic resonance (NMR) and dielectric relaxation spectroscopy (DRS) allows for accurate speciation of these aggregates in solution. We show that only by using the observables of both experiments heteroaggregates can be discriminated with simultaneously taking homoaggregation into account. Comparison of the association of diphenyl phosphoric acid and quinaldine or phenylquinaline in chloroform, dichloromethane, or tetrahydrofuran suggests that the basicity of the base largely determines the association of one acid and one base molecule to form an ion-pair. We find the ion-pair formation constants to be highest in chloroform, slightly lower in dichloromethane and lowest in tetrahydrofuran, which indicates that the hydrogen-bonding ability of the solvent also alters ion-pairing equilibria. We find evidence for the formation of multimers, consisting of one imine base and multiple diphenyl phosphoric acid molecules for both bases in all three solvents. This subsequent association of an acid to an ion-pair is however little affected by the nature of the base or the solvent. As such our findings provide routes to enhance the overall fraction of these multimers in solution, which have been reported to open new catalytic pathways.
Collapse
Affiliation(s)
- Christian Dreier
- Max
Planck Institute for Polymer Research, Department for Molecular Spectroscopy, Ackermannweg 10, 55128 Mainz, Germany
| | - Leon Prädel
- Max
Planck Institute for Polymer Research, Department for Molecular Spectroscopy, Ackermannweg 10, 55128 Mainz, Germany
| | - Amelie A. Ehrhard
- Max
Planck Institute for Polymer Research, Department for Molecular Spectroscopy, Ackermannweg 10, 55128 Mainz, Germany
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Department for Molecular Spectroscopy, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max
Planck Institute for Polymer Research, Department for Molecular Spectroscopy, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
17
|
Zhao H, Tan Y, Zhang R, Zhao Y, Zhang C, Zhang L. Anion-water hydrogen bond vibration revealed by the terahertz Kerr effect. OPTICS LETTERS 2021; 46:230-233. [PMID: 33448994 DOI: 10.1364/ol.409849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The microscopic mechanism for ionic influence on the hydrogen bond network of water has not been fully understood. Here we employ the terahertz Kerr effect (TKE) technique to map the intermolecular hydrogen bond dynamics in a series of aqueous halide solutions at the sub-picosecond scale. Compared with pure water, the significantly enhanced bipolar TKE response associated with polarization anisotropy in an ionic aqueous solution is successfully captured. We decompose the measured TKE response into different molecular motion modes and demonstrate that the obviously increasing positive polarity response is mainly due to the anion-water hydrogen bond vibration mode with the resonant THz electric field excitation. Our measurement results provide an experimental basis for further insight into the effects of ions on the structure and dynamics of a hydrogen bond in water.
Collapse
|
18
|
Influence of salts in the Hofmeister series on the physical gelation behavior of gelatin in aqueous solutions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Makinde ZO, van der Heijden NJ, Domigan LJ, McGillivray DJ, Williams DE. Aligned Assembly in a 2-D Gel of a Water-Soluble Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11292-11302. [PMID: 32882136 DOI: 10.1021/acs.langmuir.0c01944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the assembly of a compact, gel-like Langmuir-Blodgett film of rods formed by self-assembly of a β-sheet-forming water-soluble peptide, Ac-IKHLSVN-NH2, at the surface of aqueous electrolytes. We characterize surface pressure hysteresis and demonstrate shear stiffening of the surface caused by area cycling, which we interpret as due to rearrangement and alignment of the rods. We show strong effects of the electrolyte on the assembly of the elementary rods, which can be related to the Hofmeister series and interpreted by effects on the interaction energies mediated by ions and water. Formation of β-sheet structures and assembly of these into surface-segregated semicrystalline gels was strongly promoted by ammonium sulfate electrolyte. With ammonium sulfate electrolyte as subphase for Langmuir-Blodgett film deposition, shear stiffening by surface area cycling resulted in very compact films on transfer to a substrate.
Collapse
Affiliation(s)
- Zainab O Makinde
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Nadine J van der Heijden
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
20
|
Cracchiolo OM, Geremia DK, Corcelli SA, Serrano AL. Hydrogen Bond Exchange and Ca2+ Binding of Aqueous N-Methylacetamide Revealed by 2DIR Spectroscopy. J Phys Chem B 2020; 124:6947-6954. [DOI: 10.1021/acs.jpcb.0c02444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Olivia M. Cracchiolo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Danielle K. Geremia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arnaldo L. Serrano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
21
|
Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nat Commun 2020; 11:1611. [PMID: 32235854 PMCID: PMC7109088 DOI: 10.1038/s41467-020-15450-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism of ionic conductivity at moderate to high electrolyte concentrations remains largely unresolved. Using a combination of dielectric spectroscopy and molecular dynamics simulations, we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local environment of ions. The magnitude of these high-frequency ionic motions scales linearly with conductivity for a wide range of ions and concentrations. This scaling is rationalized within a harmonic oscillator model based on the potential of mean force extracted from simulations. Our results thus suggest that long-ranged ionic transport is intimately related to the local energy landscape and to the friction for short-ranged ion dynamics: a high macroscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at a molecular scale.
Collapse
|
22
|
Ensing B, Tiwari A, Tros M, Hunger J, Domingos SR, Pérez C, Smits G, Bonn M, Bonn D, Woutersen S. On the origin of the extremely different solubilities of polyethers in water. Nat Commun 2019; 10:2893. [PMID: 31253797 PMCID: PMC6599002 DOI: 10.1038/s41467-019-10783-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2019] [Indexed: 11/09/2022] Open
Abstract
The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([-CH2-CH2-O-]n) which is infinitely soluble, and polyoxymethylene ([-CH2-O-]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities.
Collapse
Affiliation(s)
- Bernd Ensing
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| | - Ambuj Tiwari
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Martijn Tros
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Department of Molecular spectroscopy, Ackermannweg 10, 55128, Mainz, Germany.
| | - Sérgio R Domingos
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Gertien Smits
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Department of Molecular spectroscopy, Ackermannweg 10, 55128, Mainz, Germany.
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Balos V, Marekha B, Malm C, Wagner M, Nagata Y, Bonn M, Hunger J. Spezifische Ionen-Effekte am Beispiel eines Oligopeptids: die Rolle zweizähniger Koordination beim Guanidinium-Kation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vasileios Balos
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Derzeitige Adresse: Abteilung für physikalische Chemie; Fritz Haber Institut der Max-Planck-Gesellschaft; Faradayweg 4 14195 Berlin Deutschland
| | - Bogdan Marekha
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Christian Malm
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Manfred Wagner
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Yuki Nagata
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Johannes Hunger
- Arbeitskreis molekulare Spektroskopie; Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
24
|
Balos V, Marekha B, Malm C, Wagner M, Nagata Y, Bonn M, Hunger J. Specific Ion Effects on an Oligopeptide: Bidentate Binding Matters for the Guanidinium Cation. Angew Chem Int Ed Engl 2019; 58:332-337. [PMID: 30403434 DOI: 10.1002/anie.201811029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Indexed: 01/11/2023]
Abstract
Ion-protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion-protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li+ , guanidinium (Gdm+ )) and anions (I- , SCN- ) than for weakly denaturing ones (K+ , Cl- ). The effects of Gdm+ and Li+ were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm+ and Li+ to triglycine, yet with a different binding geometry: While Li+ predominantly binds to the C-terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm+ . This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm+ salts.
Collapse
Affiliation(s)
- Vasileios Balos
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Present address: Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4, 14195, Berlin, Germany
| | - Bogdan Marekha
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christian Malm
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
25
|
Picosecond orientational dynamics of water in living cells. Nat Commun 2017; 8:904. [PMID: 29026086 PMCID: PMC5714959 DOI: 10.1038/s41467-017-00858-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions. The cytoplasm’s crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.
Collapse
|
26
|
Malm C, Kim H, Wagner M, Hunger J. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines. Chemistry 2017; 23:10853-10860. [PMID: 28597513 PMCID: PMC5582606 DOI: 10.1002/chem.201701576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis.
Collapse
Affiliation(s)
- Christian Malm
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Heejae Kim
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Manfred Wagner
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Johannes Hunger
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
27
|
|
28
|
Parsons DF, Duignan TT, Salis A. Cation effects on haemoglobin aggregation: balance of chemisorption against physisorption of ions. Interface Focus 2017. [PMID: 28630674 DOI: 10.1098/rsfs.2016.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A theoretical model of haemoglobin is presented to explain an anomalous cationic Hofmeister effect observed in protein aggregation. The model quantifies competing proposed mechanisms of non-electrostatic physisorption and chemisorption. Non-electrostatic physisorption is stronger for larger, more polarizable ions with a Hofmeister series Li+< K+< Cs+. Chemisorption at carboxylate groups is stronger for smaller kosmotropic ions, with the reverse series Li+ > K+ > Cs+. We assess aggregation using second virial coefficients calculated from theoretical protein-protein interaction energies. Taking Cs+ to not chemisorb, comparison with experiment yields mildly repulsive cation-carboxylate binding energies of 0.48 kBT for Li+ and 3.0 kBT for K+. Aggregation behaviour is predominantly controlled by short-range protein interactions. Overall, adsorption of the K+ ion in the middle of the Hofmeister series is stronger than ions at either extreme since it includes contributions from both physisorption and chemisorption. This results in stronger attractive forces and greater aggregation with K+, leading to the non-conventional Hofmeister series K+ > Cs+ ≈ Li+.
Collapse
Affiliation(s)
- Drew F Parsons
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Timothy T Duignan
- Physical Science Division, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari-CSGI and CNBS Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato (CA), Italy
| |
Collapse
|
29
|
Balos V, Bonn M, Hunger J. Anionic and cationic Hofmeister effects are non-additive for guanidinium salts. Phys Chem Chem Phys 2017; 19:9724-9728. [PMID: 28361132 DOI: 10.1039/c7cp00790f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand specific ion effects on a molecular level we explore the effect of salts on the rotational mobility of a model amide using dielectric spectroscopy. Based on our previous studies on the effect of strong denaturing anions or cations, here we study the additivity of the anionic and cationic effect. Using salts consisting of denaturing spherical anions and spherical cations we find such salts to affect the amide according to what one expects based on the additive activity of the individual ions. The guanidinium (Gdm+) cation appears to be a notable exception, as our results suggest that GdmI (and accordingly GdmSCN) is less efficient in hindering the rotation of the amide than KI or GdmCl.
Collapse
Affiliation(s)
- V Balos
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | |
Collapse
|
30
|
Bröhl A, Albrecht B, Zhang Y, Maginn E, Giernoth R. Influence of Hofmeister Ions on the Structure of Proline-Based Peptide Models: A Combined Experimental and Molecular Modeling Study. J Phys Chem B 2017; 121:2062-2072. [PMID: 28191953 DOI: 10.1021/acs.jpcb.6b12465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of three sodium salts, covering a wide range of the Hofmeister series, on the conformation of three proline-based peptide models in aqueous solution is examined using a combination of nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The anions preferentially interact with the cis conformers of the peptide models, which is rationalized by the respective electrostatic potential surfaces. These preferred interactions have a strong impact on the thermodynamics of the cis/trans equilibria, leading to a higher population of the cis conformers. In distinct cases, these equilibria are nearly independent of temperature, showing that the salts are also able to stabilize the conformers over wide temperature ranges.
Collapse
Affiliation(s)
- Andreas Bröhl
- Department of Chemistry, Organic Chemistry, University of Cologne , Greinstrasse 4, 50939 Cologne, Germany
| | - Benjamin Albrecht
- Department of Chemistry, Organic Chemistry, University of Cologne , Greinstrasse 4, 50939 Cologne, Germany
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Edward Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Ralf Giernoth
- Department of Chemistry, Organic Chemistry, University of Cologne , Greinstrasse 4, 50939 Cologne, Germany
| |
Collapse
|
31
|
Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, Cremer PS, Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J Phys Chem B 2017; 121:1997-2014. [PMID: 28094985 DOI: 10.1021/acs.jpcb.6b10797] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ions differ in their ability to salt out proteins from solution as expressed in the lyotropic or Hofmeister series of cations and anions. Since its first formulation in 1888, this series has been invoked in a plethora of effects, going beyond the original salting out/salting in idea to include enzyme activities and the crystallization of proteins, as well as to processes not involving proteins like ion exchange, the surface tension of electrolytes, or bubble coalescence. Although it has been clear that the Hofmeister series is intimately connected to ion hydration in homogeneous and heterogeneous environments and to ion pairing, its molecular origin has not been fully understood. This situation could have been summarized as follows: Many chemists used the Hofmeister series as a mantra to put a label on ion-specific behavior in various environments, rather than to reach a molecular level understanding and, consequently, an ability to predict a particular effect of a given salt ion on proteins in solutions. In this Feature Article we show that the cationic and anionic Hofmeister series can now be rationalized primarily in terms of specific interactions of salt ions with the backbone and charged side chain groups at the protein surface in solution. At the same time, we demonstrate the limitations of separating Hofmeister effects into independent cationic and anionic contributions due to the electroneutrality condition, as well as specific ion pairing, leading to interactions of ions of opposite polarity. Finally, we outline the route beyond Hofmeister chemistry in the direction of understanding specific roles of ions in various biological functionalities, where generic Hofmeister-type interactions can be complemented or even overruled by particular steric arrangements in various ion binding sites.
Collapse
Affiliation(s)
- Halil I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Jana Hladílková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic.,Division of Theoretical Chemistry, Lund University , P.O.B. 124, SE-22100 Lund, Sweden
| | | | - Younhee Cho
- Department of Chemistry, Texas A&M University , College Station 77843, Texas, United States
| | - Jan Heyda
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Department of Physical Chemistry, University of Chemistry and Technology, Prague , Technická 5, 16628 Prague 6, Czech Republic
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstrasse 15, 12489 Berlin, Germany
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
32
|
Liu L, Kou R, Liu G. Ion specificities of artificial macromolecules. SOFT MATTER 2016; 13:68-80. [PMID: 27906410 DOI: 10.1039/c6sm01773h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.
Collapse
Affiliation(s)
- Lvdan Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| | - Ran Kou
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| | - Guangming Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| |
Collapse
|