1
|
Kim DH, Cha J, Woo Park G, Soo Kang I, Lee E, Hoon Jung Y, Min K. Biotechnological valorization of levulinic acid as a non-sugar feedstock: New paradigm in biorefineries. BIORESOURCE TECHNOLOGY 2024; 408:131178. [PMID: 39084536 DOI: 10.1016/j.biortech.2024.131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Due to the severe climate crisis, biorefineries have been highlighted as replacements for fossil fuel-derived refineries. In traditional sugar-based biorefineries, levulinic acid (LA) is a byproduct. Nonetheless, in 2002, the US Department of Energy noted that LA is a significant building block obtained from biomass, and the biorefinery paradigm has shifted from being sugar-based to non-sugar-based. Accordingly, LA is of interest in this review since it can be converted into useful precursors and ultimately can broaden the product spectrum toward more valuable products (e.g., fuels, plastics, and pharmaceuticals), thereby enabling the construction of economically viable biorefineries. This study comprehensively reviews LA production techniques utilizing various bioresources. Recent progress in enzymatic and microbial routes for LA valorization and the LA-derived product spectrum and its versatility are discussed. Finally, challenges and future outlooks for LA-based non-sugar biorefineries are suggested.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jaehyun Cha
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Im Soo Kang
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea
| | - Eunjin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
2
|
Miura T, Lee KJ, Katoh T, Suga H. In Vitro Selection of Macrocyclic l-α/d-α/β/γ-Hybrid Peptides Targeting IFN-γ/IFNGR1 Protein-Protein Interaction. J Am Chem Soc 2024; 146:17691-17699. [PMID: 38888290 PMCID: PMC11229689 DOI: 10.1021/jacs.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β2,3-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cβAA, and cγAA into a peptide is expected to yield l-α/d-α/β/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/β/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/β/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cβAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 μM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Ju Lee
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Sukumar G, Rahul, Nayani K, Mainkar PS, Prashanth J, Sridhar B, Sarma AVS, Bharatam J, Chandrasekhar S. 6-Strand to Stable 10/12 Helix Conformational Switch by Incorporating Flexible β-hGly in the Homooligomers of Camphor Derived β-Amino Acid: NMR and X-Ray Crystallographic Evidence. Angew Chem Int Ed Engl 2024; 63:e202403321. [PMID: 38482551 DOI: 10.1002/anie.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 04/07/2024]
Abstract
Rational design of unnatural amino acid building blocks capable of stabilizing predictable secondary structures similar to protein fragments is pivotal for foldamer chemistry/catalysis. Here, we introduce novel β-amino acid building blocks: [1S,2R,4R]exoCDA and [1S,2S,4R]endoCDA, derived from the abundantly available R(+)-camphor, which is traditionally known for its medicinal value. Further, we demonstrate that the homooligomers of exoCDA adopt 6-strand conformation, which switches to a robust 10/12-helix simply by inserting flexible β-hGly spacer at alternate positions (1 : 1 β-hGly/exoCDA heterooligomers), as evident by DFT-calculations, solution-state NMR spectroscopy and X-ray crystallography. To the best of our knowledge, this is the first example of crystalline-state structure of left-handed 10/12-mixed helix, that is free from the conventional approach of employing β-amino acids of either alternate chirality or alternate β2/β3 substitutions, to access the 10/12-helix. The results also show that the homooligomers of heterochiral exoCDA don't adopt helical fold, instead exhibit banana-shaped strands, whereas the homodimers of the other diastereomer endoCDA, nucleate 8-membered turns. Furthermore, the homo-exoCDA and hetero-[β-hGly-exoCDA] oligomers are found to exhibit self-association properties with distinct morphological features. Overall, the results offer new possibilties of constructing discrete stable secondary and tertiary structures based on CDAs, which can accommodate flexible residues with desired side-chain substitutions.
Collapse
Affiliation(s)
- Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh, 533296, India
| | - Rahul
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jupally Prashanth
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akella V S Sarma
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadeesh Bharatam
- Centre for NMR, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Yu Z, Kreitler DF, Chiu YTT, Xu R, Bruchs AT, Bingman CA, Gellman SH. Harnessing Aromatic-Histidine Interactions through Synergistic Backbone Extension and Side Chain Modification. Angew Chem Int Ed Engl 2023; 62:e202308100. [PMID: 37587780 PMCID: PMC10668598 DOI: 10.1002/anie.202308100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a His side chain on a target protein and an aromatic side chain on a synthetic peptide ligand can be engineered by rational and coordinated side chain modification and backbone extension. Side chain modification alone was unsuccessful. Binding measurements, high-resolution structural studies and pharmacological outcomes all support the synergy between backbone and side chain modification in engineered ligands of the parathyroid hormone receptor-1, which is targeted by osteoporosis drugs. These results should motivate other structure-based designs featuring coordinated side chain modification and backbone extension to enhance the engagement of peptide ligands with target proteins.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Yin Ting T Chiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ruiwen Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Austin T Bruchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
5
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Shi C, Kaffy J, Ha-Duong T, Gallard JF, Pruvost A, Mabondzo A, Ciccone L, Ongeri S, Tonali N. Proteolytically Stable Diaza-Peptide Foldamers Mimic Helical Hot Spots of Protein-Protein Interactions and Act as Natural Chaperones. J Med Chem 2023; 66:12005-12017. [PMID: 37632446 DOI: 10.1021/acs.jmedchem.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid β (Aβ) cross-interaction, and to decrease pathological Aβ aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Chenghui Shi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Jean-François Gallard
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190 Gif sur Yvette, France
| | - Alain Pruvost
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Aloise Mabondzo
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| |
Collapse
|
7
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
8
|
Chernykh AV, Kudryk OV, Olifir OS, Dobrydnev AV, Rusanov E, Moskvina VS, Volochnyuk DM, Grygorenko OO. Expanding the Chemical Space of 1,2-Difunctionalized Cyclobutanes. J Org Chem 2023. [PMID: 36780233 DOI: 10.1021/acs.joc.2c02892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
An efficient approach to the synthesis of previously unavailable or hardly accessible 1,2-difunctionalized cyclobutanes (mostly with NH2/NHBoc, OH, SH, or SO2F groups attached to the carbocycle either directly or via a CH2 unit) relying on the divergent strategy is described. This class of compounds provides sp3-enriched and conformationally restricted building blocks that are of special demand for medicinal chemistry. The target compounds were prepared not only as pure racemic (±)-cis- and (±)-trans-diastereomers but in some cases also as single enantiomers. The developed procedures are readily scaled up and allow obtaining the target compounds on an up to hundred-gram scale. On the basis of the results of 20 X-ray diffraction experiments, structural characterization of the 1,2-difunctionalized cyclobutane core was performed using the extended Cremer-Pople puckering parameters and exit vector (EVP) plots.
Collapse
Affiliation(s)
- Anton V Chernykh
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr V Kudryk
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr S Olifir
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry at National Academy of Sciences of Ukraine, Akademik Kukhar Street 1, Kyïv 02094, Ukraine
| | - Alexey V Dobrydnev
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Eduard Rusanov
- Institute of Organic Chemistry at National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02094, Ukraine.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Viktoriia S Moskvina
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine.,V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry at National Academy of Sciences of Ukraine, Akademik Kukhar Street 1, Kyïv 02094, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine.,Institute of Organic Chemistry at National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
9
|
Nagata M, Watanabe M, Doi R, Uemura M, Ochiai N, Ichinose W, Fujiwara K, Sato Y, Kameda T, Takeuchi K, Shuto S. Helix-forming aliphatic homo-δ-peptide foldamers based on the conformational restriction effects of cyclopropane. Org Biomol Chem 2023; 21:970-980. [PMID: 36426637 DOI: 10.1039/d2ob01715f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable effort has been directed toward developing artificial peptide-based foldamers. However, detailed structural analysis of δ-peptide foldamers consisting of only aliphatic δ-amino acids has not been reported. Herein, we rationally designed and stereoselectively synthesized aliphatic homo-δ-peptides forming a stable helical structure by using a chiral cyclopropane δ-amino acid as a monomer unit. Structural analysis of the homo-δ-peptides using circular dichroism, infrared, and NMR spectroscopy indicated that they form a stable 14-helical structure in solution. Furthermore, we successfully conducted X-ray crystallographic analysis of the homo-δ-peptides, demonstrating a right-handed 14-helical structure. This helical structure of the crystal was consistent with those predicted by theoretical calculations and those obtained based on NMR spectroscopy in solution. This stable helical structure is due to the effective restriction of the backbone conformation by the structural characteristics of cyclopropane. This work reports the first example of aliphatic homo-δ-peptide foldamers having a stable helical structure both in the solution and crystal states.
Collapse
Affiliation(s)
- Makoto Nagata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mai Uemura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Nanase Ochiai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
10
|
Ur Rahim J, Ahmad SM, Amin T, Chowdhary R, Goswami A, Rai R. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022; 158:170897. [PMID: 36279986 DOI: 10.1016/j.peptides.2022.170897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
The present work describes the synthesis,conformation and cytotoxic activities of short β/γ hybrid peptides, Boc-β2,2-Ac6c-Gpn-NHMe, BG1; Boc-(β2,2-Ac6c-Gpn)2-OMe, BG2; Boc-(β2,2-Ac6c-Gpn)3-OMe, BG3; H-β2,2-Ac6c-Gpn-NHMe, BG4; H-(β2,2-Ac6c-Gpn)2-OMe, BG5; H-(β2,2-Ac6c-Gpn)3-OMe, BG6, Boc-β2,2-Ac6c-Gpn-OMe, BG7 and H-β2,2-Ac6c-Gpn-OMe, BG8. Mixed C6/C7 conformations were observed for β/γ hybrid peptides. Further, BG1-BG8 were screened against MCF-7 (Breast cancer), A549 (Lung Cancer), PC-3 (Prostate cancer), HCT-116 (Colon cancer), and MDA-MB-231 (Breast cancer) cell lines. Among all, BG6 exhibited potent cytotoxicity against all cancer cell lines with IC50 ranging from 1.6 μM to 6.3 μM with relatively low cytotoxicity against normal epithelial breast cell line fR-2 and human embryonic kidney cell line HEK-293. Minimal hemolytic activity was observed for BG6 against human erythrocytes. Peptide BG6 displayed anti-migratory and anti-invasive potentials showing strong interactions with intrinsic apoptotic markers Bcl-2, Bax, and cleaved-PARP, as well as the induction of the mitochondria maladjustment mediated apoptosis.
Collapse
Affiliation(s)
- Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022; 61:e202206604. [PMID: 35608961 PMCID: PMC9400978 DOI: 10.1002/anie.202206604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/26/2022]
Abstract
The experimental isolation of H-bond energetics from the typically dominant influence of the solvent remains challenging. Here we use synthetic molecular balances to quantify amine/amide H-bonds in competitive solvents. Over 200 conformational free energy differences were determined using 24 H-bonding balances in 9 solvents spanning a wide polarity range. The correlations between experimental interaction energies and gas-phase computed energies exhibited wild solvent-dependent variation. However, excellent correlations were found between the same computed energies and the experimental data following empirical dissection of solvent effects using Hunter's α/β solvation model. In addition to facilitating the direct comparison of experimental and computational data, changes in the fitted donor and acceptor constants reveal the energetics of secondary local interactions such as competing H-bonds.
Collapse
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Stefan Borsley
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Christopher M. Baker
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Kenneth B. Ling
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
12
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Stefan Borsley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Ivan V. Smolyar
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Christopher M. Baker
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Kenneth B. Ling
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
13
|
Gao BR, Wu YJ, Xu L, Zou H, Zhou L, Liu N, Wu ZQ. Synthesis of Optically Active Helical Polycarbenes through Helix-Sense-Selective Polymerization Strategy and Their Application in Chiral Separation. ACS Macro Lett 2022; 11:785-791. [PMID: 35653295 DOI: 10.1021/acsmacrolett.2c00212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, helical polycarbenes with optical activity were designed and facilely synthesized through the helix-sense-selective polymerization (HSSP) of the diazoacetate monomer with a dimethylbenzyl ester pendant catalyzed by π-allylPdCl with chiral phosphine ligands at room temperature. The polymerization was carried out in a living and controlled style, and a range of helical polycarbenes with the desired number-average molecular weights and narrow molecular weight distributions were obtained. Circular dichroism and UV-vis analyses revealed that these polycarbenes exhibited a stable helical conformation with a preferred handedness, and their helical directions were dependent on the chirality of the chiral phosphine ligands. Further studies showed that the helical conformation of the obtained polycarbenes was from the polymeric backbone rather than the intermolecular aggregation in the solutions. Moreover, the prepared, optically active, helical polycarbenes possessed excellent enantioselective crystallization ability for threonine racemates. The enantiomeric excess (e.e.) of the induced crystals could be up to 83% via utilizing the prepared helical polycarbenes as a chiral separation agent.
Collapse
Affiliation(s)
- Bao-Rui Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
15
|
Shin YH, Yang H. Exploration of α/β/γ-peptidomimetics design for BH3 helical domains. Chem Commun (Camb) 2022; 58:945-948. [PMID: 34985060 DOI: 10.1039/d1cc05758h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic incorporation of ring-constrained β- and γ-amino acid residues into α-helix mimetics engenders stable helical secondary structures. In this paper, functional α/β/γ-helical peptidomimetics were explored for mimicry of BH3 helical domains, Bim as a pioneering study. The Bim-based α/β/γ-peptides in an αγααβα-hexad repeat with five helical turns inhibited the interaction between Bak and Bcl-xL with excellent resistance towards proteolytic digestion. Further optimization of the α/β/γ-backbone strategy will considerably expand the utility of functional α/β/γ-peptidomimetics, in particular due to its prominent stability against proteolysis.
Collapse
Affiliation(s)
- Young-Hee Shin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, Siheung 15073, South Korea.
| | - Hyunjun Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Zhou F, Xu Y, Mu X, Nie Y. A Sustainable Approach for Synthesizing ( R)-4-Aminopentanoic Acid From Levulinic Acid Catalyzed by Structure-Guided Tailored Glutamate Dehydrogenase. Front Bioeng Biotechnol 2022; 9:770302. [PMID: 35083200 PMCID: PMC8784811 DOI: 10.3389/fbioe.2021.770302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, a novel enzymatic approach to transform levulinic acid (LA), which can be obtained from biomass, into value-added (R)-4-aminopentanoic acid using an engineered glutamate dehydrogenase from Escherichia coli (EcGDH) was developed. Through crystal structure comparison, two residues (K116 and N348), especially residue 116, were identified to affect the substrate specificity of EcGDH. After targeted saturation mutagenesis, the mutant EcGDHK116C, which was active toward LA, was identified. Screening of the two-site combinatorial saturation mutagenesis library with EcGDHK116C as positive control, the k cat/K m of the obtained EcGDHK116Q/N348M for LA and NADPH were 42.0- and 7.9-fold higher, respectively, than that of EcGDHK116C. A molecular docking investigation was conducted to explain the catalytic activity of the mutants and stereoconfiguration of the product. Coupled with formate dehydrogenase, EcGDHK116Q/N348M was found to be able to convert 0.4 M LA by more than 97% in 11 h, generating (R)-4-aminopentanoic acid with >99% enantiomeric excess (ee). This dual-enzyme system used sustainable raw materials to synthesize (R)-4-aminopentanoic acid with high atom utilization as it utilizes cheap ammonia as the amino donor, and the inorganic carbonate is the sole by-product.
Collapse
Affiliation(s)
- Feng Zhou
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoqing Mu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute of Industrial Technology, Suqian Jiangnan University, Suqian, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Hahm H, Kim J, Ryoo JY, Han MS, Hong S. Photocatalytic carbocarboxylation of styrenes with CO 2 for the synthesis of γ-aminobutyric esters. Org Biomol Chem 2021; 19:6301-6312. [PMID: 34212945 DOI: 10.1039/d1ob00866h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free photoredox-catalyzed carbocarboxylation of various styrenes with carbon dioxide (CO2) and amines to obtain γ-aminobutyric ester derivatives has been developed (up to 91% yield, 36 examples). The radical anion of (2,3,4,6)-3-benzyl-2,4,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBnBN) possessing a high reduction potential (-1.72 V vs. saturated calomel electrode (SCE)) easily reduces both electron-donating and electron-withdrawing group-substituted styrenes.
Collapse
Affiliation(s)
- Hyungwoo Hahm
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiyun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. and School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
18
|
Discovery of α-helix-mimicking sulfono-γ-AApeptides as p53-MDM2 inhibitors. Future Med Chem 2021; 13:1021-1023. [PMID: 33906432 DOI: 10.4155/fmc-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Mbianda J, Bakail M, André C, Moal G, Perrin ME, Pinna G, Guerois R, Becher F, Legrand P, Traoré S, Douat C, Guichard G, Ochsenbein F. Optimal anchoring of a foldamer inhibitor of ASF1 histone chaperone through backbone plasticity. SCIENCE ADVANCES 2021; 7:7/12/eabd9153. [PMID: 33741589 PMCID: PMC7978421 DOI: 10.1126/sciadv.abd9153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.
Collapse
Affiliation(s)
- Johanne Mbianda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - May Bakail
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe André
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gwenaëlle Moal
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie E Perrin
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaël Guerois
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Francois Becher
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F91190 Gif-sur-Yvette, France
| | - Seydou Traoré
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Douat
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France.
| | - Françoise Ochsenbein
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
20
|
Ahmad T, Ullah N. The oxa-Michael reaction in the synthesis of 5- and 6-membered oxygen-containing heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01312a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we provide an updated account on the recent advances and applications of oxa-Michael reaction in the synthesis 5- and 6-membered monocyclic oxygen-containing heterocyclic compounds published in the literature since 2013 to date.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Nisar Ullah
- Chemistry Department
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| |
Collapse
|
21
|
Zwillinger M, Reddy PS, Wicher B, Mandal PK, Csékei M, Fischer L, Kotschy A, Huc I. Aromatic Foldamer Helices as α-Helix Extended Surface Mimetics. Chemistry 2020; 26:17366-17370. [PMID: 32910480 PMCID: PMC7839445 DOI: 10.1002/chem.202004064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityBudapestHungary
| | - Post Sai Reddy
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660780PoznanPoland
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Márton Csékei
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Lucile Fischer
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
| | - András Kotschy
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
22
|
Cussol L, Mauran‐Ambrosino L, Buratto J, Belorusova AY, Neuville M, Osz J, Fribourg S, Fremaux J, Dolain C, Goudreau SR, Rochel N, Guichard G. Structural Basis for α‐Helix Mimicry and Inhibition of Protein–Protein Interactions with Oligourea Foldamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Léonie Cussol
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
| | - Laura Mauran‐Ambrosino
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
- Ureka Pharma SAS 2 rue Robert Escarpit F-33607 Pessac France
| | - Jérémie Buratto
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
| | - Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) INSERM U1258/CNRS UMR 7104/ Univ. Strasbourg 67404 Illkirch France
| | - Maxime Neuville
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
- Ureka Pharma SAS 2 rue Robert Escarpit F-33607 Pessac France
| | - Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) INSERM U1258/CNRS UMR 7104/ Univ. Strasbourg 67404 Illkirch France
| | - Sébastien Fribourg
- ARNA Laboratory INSERM U1212 UMR CNRS 5320 Univ. Bordeaux Bordeaux France
| | | | - Christel Dolain
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
| | | | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) INSERM U1258/CNRS UMR 7104/ Univ. Strasbourg 67404 Illkirch France
| | - Gilles Guichard
- Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Institut Européen de Chimie et Biologie 2 rue Robert Escarpit F-33607 Pessac France
| |
Collapse
|
23
|
Structural Basis for α‐Helix Mimicry and Inhibition of Protein–Protein Interactions with Oligourea Foldamers. Angew Chem Int Ed Engl 2020; 60:2296-2303. [DOI: 10.1002/anie.202008992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Indexed: 12/16/2022]
|
24
|
Shi Y, Sang P, Lu J, Higbee P, Chen L, Yang L, Odom T, Daughdrill G, Chen J, Cai J. Rational Design of Right-Handed Heterogeneous Peptidomimetics as Inhibitors of Protein-Protein Interactions. J Med Chem 2020; 63:13187-13196. [PMID: 33140956 DOI: 10.1021/acs.jmedchem.0c01638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptidomimetics have gained great attention for their function as protein-protein interaction (PPI) inhibitors. Herein, we report the design and investigation of a series of right-handed helical heterogeneous 1:1 α/Sulfono-γ-AA peptides as unprecedented inhibitors for p53-MDM2 and p53-MDMX. The most potent helical heterogeneous 1:1 α/Sulfono-γ-AA peptides were shown to bind tightly to MDM2 and MDMX, with Kd of 19.3 and 66.8 nM, respectively. Circular dichroism spectra, 2D-NMR spectroscopy, and the computational simulations suggested that these helical sulfono-γ-AA peptides could mimic the critical side chains of p53 and disrupt p53/MDM2 PPI effectively. It was noted that these 1:1 α/Sulfono-γ-AA peptides were completely resistant to proteolytic degradation, boosting their potential for biomedical applications. Furthermore, effective cellular activity is achieved by the stapled 1:1 α/Sulfono-γ-AA peptides, evidenced by significantly enhanced p53 transcriptional activity and much more induced level of MDM2 and p21. The 1:1 α/Sulfono-γ-AA peptides could be an alternative strategy to antagonize a myriad of PPIs.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Junhao Lu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Pirada Higbee
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Lihong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Leixiang Yang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Sang P, Shi Y, Higbee P, Wang M, Abdulkadir S, Lu J, Daughdrill G, Chen J, Cai J. Rational Design and Synthesis of Right-Handed d-Sulfono-γ-AApeptide Helical Foldamers as Potent Inhibitors of Protein-Protein Interactions. J Org Chem 2020; 85:10552-10560. [PMID: 32700908 DOI: 10.1021/acs.joc.0c00996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel unprecedented helical foldamers have been effectively designed and synthesized. The homogeneous right-handed d-sulfono-γ-AApeptides represent a new generation of unnatural helical peptidomimetics, which have similar folding conformation to α-peptides, making them an ideal molecular scaffold to design α-helical mimetics. As demonstrated with p53-MDM2 PPI as a model application, the right-handed d-sulfono-γ-AApeptides reveal much-enhanced binding affinity compared to the p53 peptide. The design of d-sulfono-γ-AApeptides may provide a new and alternative strategy to modulate protein-protein interactions.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Pirada Higbee
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Sami Abdulkadir
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| | - Junhao Lu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Jiandong Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
| |
Collapse
|
26
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
27
|
Sang P, Shi Y, Lu J, Chen L, Yang L, Borcherds W, Abdulkadir S, Li Q, Daughdrill G, Chen J, Cai J. α-Helix-Mimicking Sulfono-γ-AApeptide Inhibitors for p53-MDM2/MDMX Protein-Protein Interactions. J Med Chem 2020; 63:975-986. [PMID: 31971801 PMCID: PMC7025332 DOI: 10.1021/acs.jmedchem.9b00993] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of peptidomimetic scaffolds is a promising strategy for the inhibition of protein-protein interactions (PPIs). Herein, we demonstrate that sulfono-γ-AApeptides can be rationally designed to mimic the p53 α-helix and inhibit p53-MDM2 PPIs. The best inhibitor, with Kd and IC50 values of 26 nM and 0.891 μM toward MDM2, respectively, is among the most potent unnatural peptidomimetic inhibitors disrupting the p53-MDM2/MDMX interaction. Using fluorescence polarization assays, circular dichroism, nuclear magnetic resonance spectroscopy, and computational simulations, we demonstrate that sulfono-γ-AApeptides adopt helical structures resembling p53 and competitively inhibit the p53-MDM2 interaction by binding to the hydrophobic cleft of MDM2. Intriguingly, the stapled sulfono-γ-AApeptides showed promising cellular activity by enhancing p53 transcriptional activity and inducing expression of MDM2 and p21. Moreover, sulfono-γ-AApeptides exhibited remarkable resistance to proteolysis, augmenting their biological potential. Our results suggest that sulfono-γ-AApeptides are a new class of unnatural helical foldamers that disrupt PPIs.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Yan Shi
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Junhao Lu
- Department of Molecular Oncology , H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612 , United States
| | - Lihong Chen
- Department of Molecular Oncology , H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612 , United States
| | - Leixiang Yang
- Department of Molecular Oncology , H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612 , United States
| | - Wade Borcherds
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Sami Abdulkadir
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Qi Li
- Department of Medical Oncology , Shuguang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Jiandong Chen
- Department of Molecular Oncology , H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612 , United States
| | - Jianfeng Cai
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| |
Collapse
|
28
|
Peptidomimetic Synthesis: Drug Discovery for Alzheimer's Disease. Methods Mol Biol 2019. [PMID: 31879928 DOI: 10.1007/978-1-0716-0227-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The biomolecular system mainly consists of nucleic acids, proteins, peptides, and sugar chains, and they play a critical role in cell growth, differentiation induction, apoptosis, and immunity. Among these components, peptides are the most commonly studied due to their relatively low molecular weight and high biocompatibility as well as in vitro and in vivo lability and often applied as drugs, agricultural chemicals, food, and tools in diagnostic and biological research. Peptidomimetics have been reported to function as protein-protein interaction inhibitors and thus could serve in many biomolecular systems. This chapter describes the synthesis of peptidomimetics used for discovery of drugs that target β-secretase inhibitors and amyloid-β aggregation inhibitors in Alzheimer's disease. For this purpose, natural amino acids and other synthetic acids or amines were used in a solid-phase peptide synthesis (SPPS).
Collapse
|
29
|
Corvaglia V, Carbajo D, Prabhakaran P, Ziach K, Mandal PK, Santos VD, Legeay C, Vogel R, Parissi V, Pourquier P, Huc I. Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificial analogues of DNA mimic proteins. Nucleic Acids Res 2019; 47:5511-5521. [PMID: 31073604 PMCID: PMC6582331 DOI: 10.1093/nar/gkz352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inspired by DNA mimic proteins, we have introduced aromatic foldamers bearing phosphonate groups as synthetic mimics of the charge surface of B-DNA and competitive inhibitors of some therapeutically relevant DNA-binding enzymes: the human DNA Topoisomerase 1 (Top1) and the human HIV-1 integrase (HIV-1 IN). We now report on variants of these anionic foldamers bearing carboxylates instead of phosphonates. Several new monomers have been synthesized with protecting groups suitable for solid phase synthesis (SPS). Six hexadecaamides have been prepared using SPS. Proof of their resemblance to B-DNA was brought by the first crystal structure of one of these DNA-mimic foldamers in its polyanionic form. While some of the foldamers were found to be as active as, or even more active than, the original phosphonate oligomers, others had no activity at all or could even stimulate enzyme activity in vitro. Some foldamers were found to have differential inhibitory effects on the two enzymes. These results demonstrate a strong dependence of inhibitory activity on foldamer structure and charge distribution. They open broad avenues for the development of new classes of derivatives that could inhibit the interaction of specific proteins with their DNA target thereby influencing the cellular pathways in which they are involved.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Daniel Carbajo
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Panchami Prabhakaran
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Krzysztof Ziach
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Pradeep Kumar Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| | | | - Carole Legeay
- Sanofi recherche & développement, Montpellier 34184, France
| | - Rachel Vogel
- Sanofi recherche & développement, Montpellier 34184, France
| | - Vincent Parissi
- Université de Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (UMR 5234), Bordeaux 33146, France
| | - Philippe Pourquier
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier, Montpellier 34298, France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, München 81377, Germany.,Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, Pessac 33600, France
| |
Collapse
|
30
|
Wang Y, Peng Y, Zhang B, Zhang X, Li H, Wilson AJ, Mineev KS, Wang X. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem Sci 2019; 10:7584-7590. [PMID: 31588309 PMCID: PMC6761861 DOI: 10.1039/c9sc02474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
A peptide inhibitor was designed in silico and validated experimentally to disrupt homotrimeric transmembrane helix assembly.
Protein–protein interactions are involved in diverse biological processes. These interactions are therefore vital targets for drug development. However, the design of peptide modulators targeting membrane-based protein–protein interactions is a challenging goal owing to the lack of experimentally-determined structures and efficient protocols to probe their functions. Here we employed rational peptide design and molecular dynamics simulations to design a membrane-insertable peptide that disrupts the strong trimeric self-association of the fifth transmembrane domain (TMD5) of the oncogenic Epstein–Barr virus (EBV) latent membrane protein-1 (LMP-1). The designed anti-TMD5 peptide formed 1 : 2 heterotrimers with TMD5 in micelles and inhibited TMD5 oligomerization in bacterial membranes. Moreover, the designed peptide inhibited LMP-1 homotrimerization based on NF-κB activity in EVB positive lymphoma cells. The results indicated that the designed anti-TMD5 peptide may represent a promising starting point for elaboration of anti-EBV therapeutics via inhibition of LMP-1 oligomerization. To the best of our knowledge, this represents the first example of disrupting homotrimeric transmembrane helices using a designed peptide inhibitor.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals , Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Bo Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Hongyuan Li
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , 117997 , Russian
| | - Xiaohui Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,Department of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
31
|
Declerck V, Pérez‐Mellor A, Guillot R, Aitken DJ, Mons M, Zehnacker A. Vibrational circular dichroism as a probe of solid‐state organisation of derivatives of cyclic β‐amino acids:
Cis
‐ and
trans
‐2‐aminocyclobutane‐1‐carboxylic acid. Chirality 2019; 31:547-560. [DOI: 10.1002/chir.23083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Valérie Declerck
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Ariel Pérez‐Mellor
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| | - Régis Guillot
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - David J. Aitken
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Michel Mons
- Laboratoire Interactions Dynamiques et Lasers (LIDYL)Université Paris Saclay Paris France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| |
Collapse
|
32
|
Ghisu L, Melis N, Serusi L, Luridiana A, Soddu F, Secci F, Caboni P, Guillot R, Aitken DJ, Frongia A. Synthesis of β-sulfinyl cyclobutane carboxylic amides via a formal α to β sulphoxide migration process. Org Biomol Chem 2019; 17:6143-6147. [PMID: 31180093 DOI: 10.1039/c9ob00758j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An original tandem reaction consisting of a thermal elimination-addition process was developed. Highly substituted β-sulfinyl cyclobutane carboxylic acid derivatives were obtained from isomeric α-sulfinyl derivatives in a single operation in good to high yields and with high trans diastereoselectivity.
Collapse
Affiliation(s)
- Lorenza Ghisu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Olajos G, Hetényi A, Wéber E, Szögi T, Fülöp L, Martinek TA. Peripheral cyclic β-amino acids balance the stability and edge-protection of β-sandwiches. Org Biomol Chem 2019; 16:5492-5499. [PMID: 30024580 DOI: 10.1039/c8ob01322e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering water-soluble stand-alone β-sandwich mimetics is a current challenge because of the difficulties associated with tailoring long-range interactions. In this work, single cis-(1R,2S)-2-aminocyclohexanecarboxylic acid mutations were introduced into the edge strands of the eight-stranded β-sandwich mimetic structures from the betabellin family. Temperature-dependent NMR and CD measurements, together with thermodynamic analyses, demonstrated that the modified peripheral strands exhibited an irregular and partially disordered structure but were able to exert sufficient shielding on the hydrophobic core to retain the predominantly β-sandwich structure. Although the frustrated interactions decreased the free energy of unfolding, the temperature of the maximum stabilities increased to or remained at physiologically relevant temperatures. We found that the irregular peripheral strands were able to prevent edge-to-edge association and fibril formation in the aggregation-prone model. These findings establish a β-sandwich stabilization and aggregation inhibition approach, which does not interfere with the pillars of the peptide bond or change the net charge of the peptide.
Collapse
Affiliation(s)
- Gábor Olajos
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Edit Wéber
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary.
| | - Titanilla Szögi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| |
Collapse
|
34
|
Hegedus Z, Grison CM, Miles JA, Rodriguez-Marin S, Warriner SL, Webb ME, Wilson AJ. A catalytic protein-proteomimetic complex: using aromatic oligoamide foldamers as activators of RNase S. Chem Sci 2019; 10:3956-3962. [PMID: 31015935 PMCID: PMC6461108 DOI: 10.1039/c9sc00374f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Foldamers are abiotic molecules that mimic the ability of bio-macromolecules to adopt well-defined and organised secondary, tertiary or quaternary structure. Such templates have enabled the generation of defined architectures which present structurally defined surfaces that can achieve molecular recognition of diverse and complex targets. Far less explored is whether this mimicry of nature can extend to more advanced functions of biological macromolecules such as the generation and activation of catalytic function. In this work, we adopt a novel replacement strategy whereby a segment of protein structure (the S-peptide from RNase S) is replaced by a foldamer that mimics an α-helix. The resultant prosthetic replacement forms a non-covalent complex with the S-protein leading to restoration of catalytic function, despite the absence of a key catalytic residue. Thus this functional protein-proteomimetic complex provides proof that significant segments of protein can be replaced with non-natural building blocks that may, in turn, confer advantageous properties.
Collapse
Affiliation(s)
- Zsofia Hegedus
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Claire M Grison
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Silvia Rodriguez-Marin
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Michael E Webb
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
35
|
Ma Y, Li W, Zhou Z, Qin X, Wang D, Gao Y, Yu Z, Yin F, Li Z. Peptide-Aptamer Coassembly Nanocarrier for Cancer Therapy. Bioconjug Chem 2019; 30:536-540. [PMID: 30702869 DOI: 10.1021/acs.bioconjchem.8b00903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We reported methionine bis-alkylated nonapeptide Wpc as an efficient siRNA vehicle previously. Herein, we report an aptamer could also spontaneously coassemble with Wpc to form uniformed nanoparticles for efficient delivery. This unique peptide-based aptamer nanocarrier showed significantly improved cell penetration and antiproliferation effect with high biocompatibility toward various cancer cell lines.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,Chemical Biology Laboratory for Infectious Diseases, State Key Discipline of Infectious Diseases , Shenzhen Third People's Hospital , Shenzhen 518020 , China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yubo Gao
- School of Information Engineering , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening , Southern Medical University , Guangzhou 510515 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
36
|
Ďuriš A, Berkeš D, Jakubec P. Stereodivergent synthesis of cyclic γ-aminobutyric acid – GABA analogues. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Amabili P, Calvaresi M, Martelli G, Orena M, Rinaldi S, Sgolastra F. Imidazolidinone-Tethered α-Hydrazidopeptides - Synthesis and Conformational Investigation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paolo Amabili
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Matteo Calvaresi
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Gianluca Martelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Mario Orena
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| | - Federica Sgolastra
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Via Brecce Bianche 60131 Ancona Italy
| |
Collapse
|
38
|
Vallade M, Jewginski M, Fischer L, Buratto J, Bathany K, Schmitter JM, Stupfel M, Godde F, Mackereth CD, Huc I. Assessing Interactions between Helical Aromatic Oligoamide Foldamers and Protein Surfaces: A Tethering Approach. Bioconjug Chem 2019; 30:54-62. [PMID: 30395443 DOI: 10.1021/acs.bioconjchem.8b00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helically folded aromatic foldamers may constitute suitable candidates for the ab initio design of ligands for protein surfaces. As preliminary steps toward the exploration of this hypothesis, a tethering approach was developed to detect interactions between a protein and a foldamer by confining the former at the surface of the latter. Cysteine mutants of two therapeutically relevant enzymes, CypA and IL4, were produced. Two series of ten foldamers were synthesized bearing different proteinogenic side chains and either a long or a short linker functionalized with an activated disulfide. Disulfide exchange between the mutated cysteines and the activated disulfides yielded 20 foldamer-IL4 and 20 foldamer-CypA adducts. Effectiveness of the reaction was demonstrated by LC-MS, by MS analysis after proteolytic digestion, and by 2D NMR. Circular dichroism then revealed diastereoselective interactions between the proteins and the foldamers confined at their surface which resulted in a preferred handedness of the foldamer helix. Helix sense bias occurred sometimes with both the short and the long linkers and sometimes with only one of them. In a few cases, helix handedness preference is found to be close to quantitative. These cases constitute valid candidates for structural elucidation of the interactions involved.
Collapse
Affiliation(s)
- Maëlle Vallade
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Michal Jewginski
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , 50-370 Wrocław , Poland
| | - Lucile Fischer
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jérémie Buratto
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Katell Bathany
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jean-Marie Schmitter
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Marine Stupfel
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Frédéric Godde
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Cameron D Mackereth
- Université Bordeaux, INSERM, CNRS, ARNA (U 1212 and UMR 5320), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| |
Collapse
|
39
|
Eddinger GA, Gellman SH. Differential Effects of β 3 - versus β 2 -Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides. Angew Chem Int Ed Engl 2018; 57:13829-13832. [PMID: 30161284 DOI: 10.1002/anie.201806909] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Indexed: 01/07/2023]
Abstract
Oligomers containing α- and β-amino acid residues (α/β-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from β3 -amino acids or cyclic β-amino acids, but the impact of incorporating β2 residues has received little attention. The effects of β2 residues on the conformation and recognition behavior of α/β-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/β backbones that differ only in the placement of certain side chains along the backbone (β3 vs. β2 substitution) was compared. Circular dichroism data suggest that β2 residues can be helix-destabilizing relative to β3 residues, although the size of this effect seems to depend on side chain identity. Binding data show that β3 →β2 substitution at sites that contact a partner protein, Bcl-xL , can influence affinity in a way that transcends effects on helicity.
Collapse
Affiliation(s)
- Geoffrey A Eddinger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
40
|
Eddinger GA, Gellman SH. Differential Effects of β
3
‐ versus β
2
‐Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3‐Derived α/β‐Peptides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Geoffrey A. Eddinger
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Samuel H. Gellman
- Department of ChemistryUniversity of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
41
|
Fletcher JM, Horner KA, Bartlett GJ, Rhys GG, Wilson AJ, Woolfson DN. De novo coiled-coil peptides as scaffolds for disrupting protein-protein interactions. Chem Sci 2018; 9:7656-7665. [PMID: 30393526 PMCID: PMC6182421 DOI: 10.1039/c8sc02643b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Homo- and hetero-dimeric coiled coils as scaffolds for the presentation of α-helical protein-binding motifs.
Protein–protein interactions (PPIs) play pivotal roles in the majority of biological processes. Therefore, improved approaches to target and disrupt PPIs would provide tools for chemical biology and leads for therapeutic development. PPIs with α-helical components are appealing targets given that the secondary structure is well understood and can be mimicked or stabilised to render small-molecule and constrained-peptide-based inhibitors. Here we present a strategy to target α-helix-mediated PPIs that exploits de novo coiled-coil assemblies and test this using the MCL-1/NOXA-B PPI. First, computational alanine scanning is used to identify key α-helical residues from NOXA-B that contribute to the interface. Next, these residues are grafted onto the exposed surfaces of de novo designed homodimeric or heterodimeric coiled-coil peptides. The resulting synthetic peptides selectively inhibit a cognate MCL-1/BID complex in the mid-nM range. Furthermore, the heterodimeric system affords control as inhibition occurs only when both the grafted peptide and its designed partner are present. This establishes proof of concept for exploiting peptides stabilised in de novo coiled coils as inhibitors of PPIs. This dependence on supramolecular assembly introduces new possibilities for regulation and control.
Collapse
Affiliation(s)
- Jordan M Fletcher
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Katherine A Horner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Gail J Bartlett
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Guto G Rhys
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Derek N Woolfson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ; .,School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK.,BrisSynBio , University of Bristol , Life Sciences Building, Tyndall Avenue , Bristol , BS8 1TQ , UK
| |
Collapse
|
42
|
Ragab SS, Kassir AF, Guillot R, Scherrmann MC, Boddaert T, Aitken DJ. Cooperative 5- and 10-membered ring interactions in the 10-helix folding of oxetin homo-oligomers. Chem Commun (Camb) 2018; 54:1968-1971. [PMID: 29399690 DOI: 10.1039/c7cc09964a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homo-oligomers of the natural product oxetin (cis-3-amino-2-oxetanecarboxylic acid) were prepared and their conformational behaviour studied in solution and solid state and by molecular modelling. The predominant secondary structure was a 10-helix, propiciously stabilized by a network of 5-membered ring H-bonds implicating ring oxygens and neighboring amide hydrogen atoms.
Collapse
Affiliation(s)
- Sherif S Ragab
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris-Sud, Université Paris-Saclay, 15 Rue Georges Clemenceau, 91405 Orsay cedex, France.
| | | | | | | | | | | |
Collapse
|
43
|
Shin YH, Gellman SH. Impact of Backbone Pattern and Residue Substitution on Helicity in α/β/γ-Peptides. J Am Chem Soc 2018; 140:1394-1400. [PMID: 29350033 DOI: 10.1021/jacs.7b10868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have evaluated the impact of changes in the chemical structure of peptidic oligomers containing α-, β-, and γ-amino acid residues (α/β/γ-peptides) on the propensities of these oligomers to adopt helical conformations in aqueous and alcoholic solutions. These studies were inspired by our previous discovery that α/β/γ-peptides containing a regular αγααβα hexad repeat adopt an α-helix-like conformation in which the β and γ residues are aligned in a stripe along one side, and the remainder of the helix surface is defined by the α residues. This helix was found to be most stable when the β and γ residues were rigidified with specific cyclic constraints. Relaxation of the β residue constraints caused profound conformational destabilization, but relaxation of the γ residue constraints led to only a moderate drop in helicity. The new work more broadly characterizes the effect of γ residue substitution on helix stability, based on circular dichroism and two-dimensional NMR measurements. We find that even a fully unsubstituted γ residue (derived from γ-aminobutyric acid) supports a moderate helical propensity, which is surprising in light of the strong destabilizing effect of glycine residues on α-helix stability. Additional studies examine the effects of altering sequence in terms of amino acid type, by comparing a prototype with the αγααβα hexad pattern to isomers with irregular arrangements of the α, β, and γ residues along the backbone. The data indicate that the strong helix-forming propensity previously discovered for α/β/γ-peptide 12-mers is retained when sequence is varied, with small variations detected across diverse α-β-γ placements. These structural findings suggest that α/β/γ-peptide scaffolds represent versatile scaffolds for the design of peptidic foldamers that display specific functions.
Collapse
Affiliation(s)
- Young-Hee Shin
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Konda M, Jadhav RG, Maiti S, Mobin SM, Kauffmann B, Das AK. Understanding the conformational analysis of gababutin based hybrid peptides. Org Biomol Chem 2018; 16:1728-1735. [DOI: 10.1039/c8ob00035b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new class of gababutin-based tetrapeptide shows a C12/C10 hydrogen-bonded hybrid turn.
Collapse
Affiliation(s)
- Maruthi Konda
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rohit G. Jadhav
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Sayan Maiti
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Brice Kauffmann
- Université de Bordeaux
- CNRS
- UMS 3033
- INSERM US001 Institut Européen de Chimie et de Biologie (IECB)
- 33600 Pessac
| | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
45
|
Chang Z, Boyaud F, Guillot R, Boddaert T, Aitken DJ. A Photochemical Route to 3- and 4-Hydroxy Derivatives of 2-Aminocyclobutane-1-carboxylic Acid with an all-cis Geometry. J Org Chem 2017; 83:527-534. [DOI: 10.1021/acs.joc.7b02559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zong Chang
- CP3A
Organic Synthesis Group, ICMMO, CNRS UMR 8182, Université Paris
Sud, Université Paris Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - France Boyaud
- CP3A
Organic Synthesis Group, ICMMO, CNRS UMR 8182, Université Paris
Sud, Université Paris Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Régis Guillot
- Services
Communs, ICMMO, CNRS UMR 8182, Université Paris Sud, Université Paris Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Thomas Boddaert
- CP3A
Organic Synthesis Group, ICMMO, CNRS UMR 8182, Université Paris
Sud, Université Paris Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - David J. Aitken
- CP3A
Organic Synthesis Group, ICMMO, CNRS UMR 8182, Université Paris
Sud, Université Paris Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| |
Collapse
|
46
|
Illa O, Olivares JA, Nolis P, Ortuño RM. The relevance of the relative configuration in the folding of hybrid peptides containing β-cyclobutane amino acids and γ-amino- l -proline residues. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Richard M, Felten AS, Chrétien F, Averlant-Petit MC, Pellegrini-Moïse N. Synthesis and conformational studies of short mixed γ/α-glycopeptides based on sugar γ 3,3 -amino acids. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Bruzzoni-Giovanelli H, Alezra V, Wolff N, Dong CZ, Tuffery P, Rebollo A. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 2017; 23:272-285. [PMID: 29097277 DOI: 10.1016/j.drudis.2017.10.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are well recognized as promising therapeutic targets. Consequently, interfering peptides (IPs) - natural or synthetic peptides capable of interfering with PPIs - are receiving increasing attention. Given their physicochemical characteristics, IPs seem better suited than small molecules to interfere with the large surfaces implicated in PPIs. Progress on peptide administration, stability, biodelivery and safety are also encouraging the interest in peptide drug development. The concept of IPs has been validated for several PPIs, generating great expectations for their therapeutic potential. Here, we describe approaches and methods useful for IPs identification and in silico, physicochemical and biological-based strategies for their design and optimization. Selected promising in-vivo-validated examples are described and advantages, limitations and potential of IPs as therapeutic tools are discussed.
Collapse
Affiliation(s)
- Heriberto Bruzzoni-Giovanelli
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; UMRS 1160 Inserm, Paris, France; Centre d'Investigation Clinique 1427 Inserm/AP-HP Hôpital Saint Louis, Paris, France
| | - Valerie Alezra
- Université Paris-Sud, Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS, Université Paris-Saclay, Faculté des Sciences d'Orsay, France
| | - Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS, UMR 3528, Institut Pasteur, F-75015 Paris, France
| | - Chang-Zhi Dong
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; ITODYS, UMR 7086 CNRS, Paris, France
| | - Pierre Tuffery
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; Inserm UMR-S 973, RPBS, Paris, France
| | - Angelita Rebollo
- CIMI Paris, UPMC, Inserm U1135, Hôpital Pitié Salpétrière, Paris, France.
| |
Collapse
|
49
|
Gómez JE, Guo W, Gaspa S, Kleij AW. Copper-Catalyzed Synthesis of γ-Amino Acids Featuring Quaternary Stereocenters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Wusheng Guo
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Silvia Gaspa
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
50
|
Gómez JE, Guo W, Gaspa S, Kleij AW. Copper-Catalyzed Synthesis of γ-Amino Acids Featuring Quaternary Stereocenters. Angew Chem Int Ed Engl 2017; 56:15035-15038. [DOI: 10.1002/anie.201709511] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Wusheng Guo
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Silvia Gaspa
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ); the Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA); Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|