1
|
Fu D, Li T, Xu S, Meng L, Wan Q, Zeng J. Gram-Scale Synthesis of the Fucose-Containing Fragments of Saccharomicins. Org Lett 2024; 26:9373-9377. [PMID: 39418398 DOI: 10.1021/acs.orglett.4c03599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A highly efficient synthetic route has been established for the gram-scale production of fucose-aglycon (Fuc-Agl) and fucose-saccharosamine (Fuc-Sac) fragments in saccharomicins A and B. The β-glycosidic bonds within these structural components were formed through successive rhodium(II) and Brønsted-acid-catalyzed glycosylation, utilizing a stable thioglycosyl donor. Subsequent steps involving the installation of protecting groups yielded highly functionalized synthetic fragments that are suitable for further assembly of saccharomicins.
Collapse
Affiliation(s)
- Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Shiwei Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
2
|
Wu P, Zeng J, Meng L, Wan Q. Glycosylation with sulfoxide-based glycosyl donors. Chem Commun (Camb) 2024. [PMID: 39046327 DOI: 10.1039/d4cc02838d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Sulfoxides have emerged as pivotal constituents in modern carbohydrate chemistry. As anomeric leaving groups, sulfinyl moieties may occupy positions directly at the anomeric position or at a more remote site. This feature article is focused on the evolution and notable advancements of glycosyl sulfoxide donors in glycosylation reactions. Its objective is to elucidate the obstacles and prospects within this evolving research domain, with the aim of enhancing comprehension and progress in the field of carbohydrate chemistry.
Collapse
Affiliation(s)
- Pinru Wu
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingkui Meng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qian Wan
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
3
|
Li J, Yan J, Liu YZ, Ma X. Stereoselective and controllable C3-Amination or C1,C3-di-amination of 2-nitroglycals. Carbohydr Res 2024; 540:109121. [PMID: 38692248 DOI: 10.1016/j.carres.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Precise and selective modification of carbohydrates is a critical strategy in producing diverse carbohydrate derivatives for exploiting their functions. We disclosed a simple, efficient, and highly regioselective and stereoselective protocol to controllable amination of 2-nitroglycals under mild conditions in 5 min. A range of 3-amino-carbohydrates including 3-arylamino-2-nitro-glycals and 1,3-di-amino-carbohydrate derivatives were obtained in good to excellent yield with excellent stereoselectivity. The produced 3-amino-2-nitro-glycals can be used as a precursor for further transformation.
Collapse
Affiliation(s)
- Jiangtao Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaxin Yan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ya-Zhou Liu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
4
|
Mendas I, Gastaldi S, Suppo JS. Strategies for Accessing cis-1-Amino-2-Indanol. Molecules 2024; 29:2442. [PMID: 38893318 PMCID: PMC11173559 DOI: 10.3390/molecules29112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its synthesis are the control of cis-selectivity, for which various strategies have been devised, and the enantioselectivity of the reaction. This review highlights the various methodologies implemented over the last few decades to access cis-1-amino-2-indanol in racemic and enantioselective manners. In addition, the various substitution patterns on the aromatic ring and their preparations are listed.
Collapse
|
5
|
Dubbu S. Versatile applications of 3-OxoGlycals: A review. Carbohydr Res 2024; 536:109016. [PMID: 38215663 DOI: 10.1016/j.carres.2023.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
3-Oxoglycals are versatile building blocks with extensive applications in glycochemistry, organic, and bio-organic sciences. They serve as powerful synthons, enabling the development of diverse organic structures. This review highlights the utility of easily obtainable 3-oxoglycals as fundamental building blocks for synthesizing various compounds, including rare sugars, N-inserted compounds, fused heterocycles, medium ring compounds, polycyclic molecules, cycloadducts, and axially chiral molecules. Some of these compounds exhibit significant biological activities, while others possess valuable photophysical properties. The simplicity of these reactions, using readily available starting materials under favorable conditions, makes 3-oxoglycals a valuable tool for creating novel molecules, benefiting the scientific community in various fields.
Collapse
Affiliation(s)
- Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Qin C, Tian G, Hu J, Zou X, Yin J. Recent chemical synthesis and immunological evaluation of glycans related to bacterial lipopolysaccharides. Curr Opin Chem Biol 2024; 78:102424. [PMID: 38168589 DOI: 10.1016/j.cbpa.2023.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
O-Antigens and core oligosaccharides from bacterial lipopolysaccharides (LPS) are often structurally unique and immunologically active, have become attractive targets in the development of antibacterial vaccines. Structurally well-defined and pure oligosaccharides can be used in identifying protective epitopes of the carbohydrate antigens, which is important for the design of an effective vaccine. Here, the recent progress on chemical synthesis and immunological evaluation of glycans related to O-antigens and core oligosaccharides from bacterial LPS are summarized.
Collapse
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
7
|
Ali I, Kamala Lakshmi MV, Perali RS. A Short Route to the Synthesis of Digoxose Trisaccharide Glycal Donor via Mislow-Evans Rearrangement. J Org Chem 2023; 88:12105-12114. [PMID: 37555372 DOI: 10.1021/acs.joc.3c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The Mislow-Evans rearrangement was used as a key reaction to construct digitoxose-derived glycals. The same rearrangement was iteratively performed on di- and trisaccharides to form the digoxose glycal donor component present in the cardenolides digitoxin, digoxin, and gitoxin. The scalability of the trisaccharide synthesis was shown by performing the reactions on a multigram scale. Glycosylation reactions were also performed between the synthesized digoxin glycal donor and aglycons digoxigenin and gitoxigenin to synthesize novel cardenolide derivatives.
Collapse
Affiliation(s)
- Intzar Ali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - M V Kamala Lakshmi
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - Ramu Sridhar Perali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
8
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Meng Y, Tao S, Wu XY, Huang SH, Hong R. Nitroso-Ene-type Cyclization Toward Diversified Synthesis of Amino Deoxysugars: A Proof of Concept. Org Lett 2023; 25:1929-1934. [PMID: 36913431 DOI: 10.1021/acs.orglett.3c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Amino deoxysugars are abundant in nature and play an important role in various biological functions, promoting numerous efforts to synthesize their structurally unique motifs. In this report, a de novo approach from a readily available lactic acid derivative is devised to construct several amino deoxysugars embedded in natural products, featuring a novel nitroso-ene-type cyclization to introduce a nitrogen atom into the carbon framework. This efficient synthesis provides an unprecedented synthetic route to explore the nitroso-ene cyclization to accumulate intriguing amino deoxysugars.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Shunan Tao
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Xiao-Yu Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Sha-Hua Huang
- School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
10
|
Geulin A, Bourne-Branchu Y, Ben Ayed K, Lecourt T, Joosten A. Ferrier/Aza-Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2-Trans 3-Amino-3-deoxyglycosides. Chemistry 2023; 29:e202203987. [PMID: 36793144 DOI: 10.1002/chem.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/17/2023]
Abstract
3-Amino-3-deoxyglycosides constitute an essential class of nitrogen-containing sugars. Among them, many important 3-amino-3-deoxyglycosides possess a 1,2-trans relationship. In view of their numerous biological applications, the synthesis of 3-amino-3-deoxyglycosyl donors giving rise to a 1,2-trans glycosidic linkage is thus an important challenge. Even though glycals are highly polyvalent donors, the synthesis and reactivity of 3-amino-3-deoxyglycals have been little studied. In this work, we describe a new sequence, involving a Ferrier rearrangement and subsequent aza-Wacker cyclization that allows the rapid synthesis of orthogonally protected 3-amino-3-deoxyglycals. Finally a 3-amino-3-deoxygalactal derivative was submitted for the first time to an epoxidation/glycosylation with high yield and great diastereoselectivity, highlighting FAWEG (Ferrier/Aza-Wacker/Epoxidation/Glycosylation) as a new approach to access 1,2-trans 3-amino-3-deoxyglycosides.
Collapse
Affiliation(s)
- Anselme Geulin
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Yann Bourne-Branchu
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Kawther Ben Ayed
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| |
Collapse
|
11
|
Fan L, Zhu X, Liu X, He F, Yang G, Xu C, Yang X. Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules 2023; 28:molecules28041647. [PMID: 36838635 PMCID: PMC9964631 DOI: 10.3390/molecules28041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
3,n-fused (n = 4-7) tricyclic indoles are pervasive motifs, embedded in a variety of biologically active molecules and natural products. Thus, numerous catalytic methods have been developed for the synthesis of these skeletons over the past few decades. In particular, palladium-catalyzed transformations have received much attention in recent years. This review summarizes recent developments in the synthesis of these tricyclic indoles with palladium-catalyzed domino reactions and their applications in the total synthesis of representative natural products.
Collapse
Affiliation(s)
- Liangxin Fan
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xinxin Zhu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingyuan Liu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangyu He
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoyu Yang
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Cuilian Xu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xifa Yang
- Institute of Pesticide, School of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| |
Collapse
|
12
|
Fu D, Zhang S, Xu B, Peng P, Wan Q, Zeng J. Selective Reduction Leading to 3,5- cis-3-Aminosugars: Synthesis and Stereoselective Glycosylation. J Org Chem 2023; 88:727-731. [PMID: 36516836 DOI: 10.1021/acs.joc.2c02364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthesis of 3,5-cis-3-amino glycals with a cis-fused cyclic sulfamidate group has been achieved by selective reduction of sulfamidate ketimine groups. The efficient access to the structurally unique glycals allowed the subsequent divergent synthesis of various naturally occurring 3-amino-2,3,6-trideoxysugars. In addition, Lewis acid-promoted glycosylation of the glycals provided a simple solution for the stereoselective installation of O- and C-linked aglycons on the amino sugar scaffolds.
Collapse
Affiliation(s)
- Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Bingbing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Peng Peng
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
13
|
Kukhtin-Ramirez-Reaction-Inspired Deprotection of Sulfamidates for the Synthesis of Amino Sugars. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010182. [PMID: 36615376 PMCID: PMC9822045 DOI: 10.3390/molecules28010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a mild strategy for deprotecting cyclic sulfamidates via the Kukhtin-Ramirez reaction to access amino sugars. The method features the removal of the sulfonic group of cyclic sulfamidates, which occurs through an N-H insertion reaction that implicates the Kukhtin-Ramirez adducts, followed by a base-promoted reductive N-S bond cleavage. The mild reaction conditions of the protocol enable the formation of amino alcohols including analogs that bear multiple functional groups.
Collapse
|
14
|
Sridhar PR, Ali I, Lakshmi MVK. Synthesis of Hexenuloses and a Library of Disaccharides Possessing 3-oxo-glycal Unit. J Org Chem 2022; 87:8939-8955. [PMID: 35772022 DOI: 10.1021/acs.joc.2c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious method for the synthesis of monosaccharides and disaccharides possessing 3-oxo-glycal units is revealed. Several monosaccharides and disaccharide-derived glycals are converted to the corresponding hexenuloses in three steps involving halo-alkoxylation, dehydrohalogenation, and ketalyzation reactions. A number of 3-oxo-glycals are synthesized to show the methodology's importance and generality. Further, the protocol is successfully applied to synthesize a rare-sugar disaccharide donor unit present as part of the trisaccharide moiety in the reported natural product, versipelostatin.
Collapse
Affiliation(s)
- Perali Ramu Sridhar
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - Intzar Ali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - M V Kamala Lakshmi
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
15
|
QIN CJ, DING MR, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical approaches towards installation of rare functional groups in bacterial surface glycans. Chin J Nat Med 2022; 20:401-420. [DOI: 10.1016/s1875-5364(22)60177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 11/24/2022]
|
16
|
QIN CJ, HOU HL, DING MR, QI YK, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical synthesis of a synthetically useful L-galactosaminuronic acid building block. Chin J Nat Med 2022; 20:387-392. [DOI: 10.1016/s1875-5364(22)60149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/03/2022]
|
17
|
Bosko C, Vannam R, Peczuh MW. Synthesis of ring-expanded homologs of 3-amino pyranosides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Yalamanchili S, Nguyen T, Zsikla A, Stamper G, DeYong AE, Florek J, Vasquez O, Pohl NLB, Bennett CS. Automated, Multistep Continuous‐Flow Synthesis of 2,6‐Dideoxy and 3‐Amino‐2,3,6‐trideoxy Monosaccharide Building Blocks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Tu‐Anh Nguyen
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | | | - Gavin Stamper
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - Ashley E. DeYong
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - John Florek
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | - Olivea Vasquez
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | - Nicola L. B. Pohl
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - Clay S. Bennett
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| |
Collapse
|
19
|
Yalamanchili S, Nguyen TA, Zsikla A, Stamper G, DeYong AE, Florek J, Vasquez O, Pohl NLB, Bennett CS. Automated, Multistep Continuous-Flow Synthesis of 2,6-Dideoxy and 3-Amino-2,3,6-trideoxy Monosaccharide Building Blocks. Angew Chem Int Ed Engl 2021; 60:23171-23175. [PMID: 34463017 PMCID: PMC8511145 DOI: 10.1002/anie.202109887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/31/2022]
Abstract
An automated continuous flow system capable of producing protected deoxy-sugar donors from commercial material is described. Four 2,6-dideoxy and two 3-amino-2,3,6-trideoxy sugars with orthogonal protecting groups were synthesized in 11-32 % overall yields in 74-131.5 minutes of total reaction time. Several of the reactions were able to be concatenated into a continuous process, avoiding the need for chromatographic purification of intermediates. The modular nature of the experimental setup allowed for reaction streams to be split into different lines for the parallel synthesis of multiple donors. Further, the continuous flow processes were fully automated and described through the design of an open-source Python-controlled automation platform.
Collapse
Affiliation(s)
| | - Tu-Anh Nguyen
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | | | - Gavin Stamper
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - Ashley E. DeYong
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - John Florek
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | - Olivea Vasquez
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | - Nicola L. B. Pohl
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - Clay S. Bennett
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| |
Collapse
|
20
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
21
|
Ramesh NG. From Glycals to Nitrogen Heterocycles and Carbocycles via "Cleavage-Intramolecular Recombination Strategy". CHEM REC 2021; 21:2930-2957. [PMID: 34472196 DOI: 10.1002/tcr.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Glycals (carbohydrate enol-ethers) have enjoyed profound applications in organic synthesis for more than a century. They not only serve as versatile glycosyl donors or as substrates for Ferrier rearrangement, but also find extensive synthetic applications especially as a "chiral pool" for accomplishing the synthesis of a variety of natural and biologically important compounds. As cyclic enol ethers, they demonstrate high reactivity and are among the most and variously transformable monosaccharide derivatives. The uniqueness of the reactivity of glycals is that they can be synthetically tuned to get a library of derivatives through stereo- and regioselective introduction of a variety of functional groups at C1, C2, C3 as well as C4 carbons of the sugar. We have developed a practical approach for stereoselective mono- and diamination of glycals and over the years utilized these scaffolds for the synthesis of a variety of biologically important nitrogen heterocycles and carbocycles through a "Diversity Oriented Approach". Our synthetic strategy in this direction mainly relied on the cleavage of ring O-C bond of the sugar followed by an "intramolecular recombination" reaction. Utilizing this strategy, we have accomplished the synthesis of several biologically important natural products, their analogues and related unnatural derivatives. Examples of such compounds reported from our group include polyhydroxypyrrolidines, DMDP, anisomycin, steviamine, pochonicine, conduramines, bulgecinine, aminocyclitols, azepanes, 4-hydroxy-D-proline, azanucleosides and their analogues. A personal account highlighting these syntheses is presented here.
Collapse
Affiliation(s)
- Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
22
|
Carder HM, Suh CE, Wendlandt AE. A Unified Strategy to Access 2- and 4-Deoxygenated Sugars Enabled by Manganese-Promoted 1,2-Radical Migration. J Am Chem Soc 2021; 143:13798-13805. [PMID: 34406756 DOI: 10.1021/jacs.1c05993] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective manipulation of carbohydrate scaffolds is challenging due to the presence of multiple, nearly chemically indistinguishable O-H and C-H bonds. As a result, protecting-group-based synthetic strategies are typically necessary for carbohydrate modification. Here we report a concise semisynthetic strategy to access diverse 2- and 4-deoxygenated carbohydrates without relying on the exhaustive use of protecting groups to achieve site-selective reaction outcomes. Our approach leverages a Mn2+-promoted redox isomerization step, which proceeds via sugar radical intermediates accessed by neutral hydrogen atom abstraction under visible light-mediated photoredox conditions. The resulting deoxyketopyranosides feature chemically distinguishable functional groups and are readily transformed into diverse carbohydrate structures. To showcase the versatility of this method, we report expedient syntheses of the rare sugars l-ristosamine, l-olivose, l-mycarose, and l-digitoxose from commercial l-rhamnose. The findings presented here validate the potential for radical intermediates to facilitate the selective transformation of carbohydrates and showcase the step and efficiency advantages attendant to synthetic strategies that minimize a reliance upon protecting groups.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Barpuzary B, Kim M, Rhee YH. Synthetic Study toward Saccharomicin Based upon Asymmetric Metal Catalysis. Org Lett 2021; 23:5969-5972. [PMID: 34292756 DOI: 10.1021/acs.orglett.1c02060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a de novo metal-catalyzed approach toward the stereoselective glycosidic bond formation in saccharomicin. The signature step is highlighted by the Pd-catalyzed asymmetric coupling of ene-alkoxyallenes and highly functionalized alcohol substrates. The reaction showed high chemo-, regio-, and ligand-driven diastereoselectivity. In combination with the ring-closing metathesis and late-stage functionalization, this method led to highly efficient synthesis of saccharosamine-rhamnose and rhamnose-fucose fragments.
Collapse
Affiliation(s)
- Bhawna Barpuzary
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Mijin Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Hyoja-dong San 31, Pohang 790-784, Republic of Korea
| |
Collapse
|
24
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Wander DA, van der Zanden SY, Vriends MBL, van Veen BC, Vlaming JGC, Bruyning T, Hansen T, van der Marel GA, Overkleeft HS, Neefjes JJC, Codée JDC. Synthetic ( N, N-Dimethyl)doxorubicin Glycosyl Diastereomers to Dissect Modes of Action of Anthracycline Anticancer Drugs. J Org Chem 2021; 86:5757-5770. [PMID: 33783212 PMCID: PMC8056385 DOI: 10.1021/acs.joc.1c00220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Anthracyclines are effective drugs in the treatment of various cancers, but their use comes with severe side effects. The archetypal anthracycline drug, doxorubicin, displays two molecular modes of action: DNA double-strand break formation (through topoisomerase IIα poisoning) and chromatin damage (via eviction of histones). These biological activities can be modulated and toxic side effects can be reduced by separating these two modes of action through alteration of the aminoglycoside moiety of doxorubicin. We herein report on the design, synthesis, and evaluation of a coherent set of configurational doxorubicin analogues featuring all possible stereoisomers of the 1,2-amino-alcohol characteristic for the doxorubicin 3-amino-2,3-dideoxyfucoside, each in nonsubstituted and N,N-dimethylated forms. The set of doxorubicin analogues was synthesized using appropriately protected 2,3,6-dideoxy-3-amino glycosyl donors, equipped with an alkynylbenzoate anomeric leaving group, and the doxorubicin aglycon acceptor. The majority of these glycosylations proceeded in a highly stereoselective manner to provide the desired axial α-linkage. We show that both stereochemistry of the 3-amine carbon and N-substitution state are critical for anthracycline cytotoxicity and generally improve cellular uptake. N,N-Dimethylepirubicin is identified as the most potent anthracycline that does not induce DNA damage while remaining cytotoxic.
Collapse
Affiliation(s)
- Dennis
P. A. Wander
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sabina Y. van der Zanden
- ONCODE
Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Merijn B. L. Vriends
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Branca C. van Veen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Joey G. C. Vlaming
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas Bruyning
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas Hansen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Theoretical Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMSS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacques J. C. Neefjes
- ONCODE
Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
26
|
Huang Y, Ye H, Zhu F, Hu C, Zheng Y. The role of Chito-oligosaccharide in regulating ovarian germ stem cells function and restoring ovarian function in chemotherapy mice. Reprod Biol Endocrinol 2021; 19:14. [PMID: 33494759 PMCID: PMC7830852 DOI: 10.1186/s12958-021-00699-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, the discovery of ovarian germ stem cells (OGSCs) has provided a new research direction for the treatment of female infertility. The ovarian microenvironment affects the proliferation and differentiation of OGSCs, and immune cells and related cytokines are important components of the microenvironment. However, whether improving the ovarian microenvironment can regulate the proliferation of OGSCs and remodel ovarian function has not been reported. In this study, we chelated chito-oligosaccharide (COS) with fluorescein isothiocyanate (FITC) to track the distribution of COS in the body. COS was given to mice through the best route of administration, and the changes in ovarian and immune function were detected using assays of organ index, follicle counting, serum estrogen (E2) and anti-Mullerian hormone (AMH) levels, and the expression of IL-2 and TNF-α in the ovaries. We found that COS significantly increased the organ index of the ovary and immune organs, reduced the rate of follicular atresia, increased the levels of E2 and AMH hormones, and increased the protein expression of IL-2 and TNF-α in the ovary. Then, COS and OGSCs were co-cultured to observe the combination of COS and OGSCs, and measure the survival rate of OGSCs. With increasing time, the fluorescence intensity of cells gradually increased, and the cytokines IL-2 and TNF-α significantly promoted the proliferation of OGSCs. In conclusion, COS could significantly improve the ovarian and immune function of chemotherapy model mice, and improve the survival rate of OGSCs, which provided a preliminary blueprint for further exploring the mechanism of COS in protecting ovarian function.
Collapse
Affiliation(s)
- Yaoqi Huang
- Department of Obstetrics & Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haifeng Ye
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Feiyin Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Hu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Yuehui Zheng
- Department of reproductive health, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, van Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, van der Marel GA, Codée JDC. Reactivity-Stereoselectivity Mapping for the Assembly of Mycobacterium marinum Lipooligosaccharides. Angew Chem Int Ed Engl 2021; 60:937-945. [PMID: 32856761 PMCID: PMC7821131 DOI: 10.1002/anie.202010280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/08/2023]
Abstract
The assembly of complex bacterial glycans presenting rare structural motifs and cis-glycosidic linkages is significantly obstructed by the lack of knowledge of the reactivity of the constituting building blocks and the stereoselectivity of the reactions in which they partake. We here report a strategy to map the reactivity of carbohydrate building blocks and apply it to understand the reactivity of the bacterial sugar, caryophyllose, a rare C12-monosaccharide, containing a characteristic tetrasubstituted stereocenter. We mapped reactivity-stereoselectivity relationships for caryophyllose donor and acceptor glycosides by a systematic series of glycosylations in combination with the detection and characterization of different reactive intermediates using experimental and computational techniques. The insights garnered from these studies enabled the rational design of building blocks with the required properties to assemble mycobacterial lipooligosaccharide fragments of M. marinum.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tim P. Ofman
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Joey G. C. Vlaming
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Ivan A. Gagarinov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jessey van Beek
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tessa A. Goté
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jacoba M. Tichem
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Gijs Ruijgrok
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
28
|
Nicolaou KC, Chen Q, Li R, Anami Y, Tsuchikama K. Total Synthesis of the Monomeric Unit of Lomaiviticin A. J Am Chem Soc 2020; 142:20201-20207. [DOI: 10.1021/jacs.0c10660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qifeng Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
29
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Reactivity–Stereoselectivity Mapping for the Assembly of
Mycobacterium marinum
Lipooligosaccharides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas Hansen
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tim P. Ofman
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joey G. C. Vlaming
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ivan A. Gagarinov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jessey Beek
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tessa A. Goté
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jacoba M. Tichem
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijs Ruijgrok
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
30
|
Qin C, Liu Z, Ding M, Cai J, Fu J, Hu J, Seeberger PH, Yin J. Chemical synthesis of the Pseudomonas aeruginosa O11 O-antigen trisaccharide based on neighboring electron-donating effect. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1839479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Pham QH, Hyland CJT, Pyne SG. Five-membered cyclic sulfamidate imines: versatile scaffolds for organic synthesis. Org Biomol Chem 2020; 18:7467-7484. [PMID: 32930695 DOI: 10.1039/d0ob01568g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, five-membered ring cyclic sulfamidate imines (5H-1,2,3-oxathiazole 2,2-dioxides) have received increasing attention as useful precursors for the stereoselective synthesis of many valuable heterocycles. Bearing a reactive N-sulfonyl imine moiety as part of the stereodefined skeleton, this sulfamidate imine platform has been utilised as a substrate in many reactions, including nucleophilic additions and reductions, to prepare highly functionalised cyclic sulfamidates. In addition, cyclic sulfamidate imines can also readily participate as nucleophiles in many chemical transformations, owing to the acidic proton(s) adjacent to the imine moiety. This short review highlights recent developments involving cyclic sulfamidate imines, including their synthesis and reactivity, with a focus on stereoselective processes.
Collapse
Affiliation(s)
- Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | | | | |
Collapse
|
32
|
Li BH, Ye XS. Recent advances in glycan synthesis. Curr Opin Chem Biol 2020; 58:20-27. [PMID: 32480314 DOI: 10.1016/j.cbpa.2020.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Carbohydrates play important roles in life science, but their synthesis is always hampered by their complicated chemical structures. Scientists have never stopped trying to solve the problem of glycan synthesis from various aspects. Here a brief overview of recent progress in glycan synthesis, including chemical approaches, chemoenzymatic approaches, and automated synthesis, will be discussed, focusing on the efficiency of new glycosylation methods, the stereoselectivity of coupled products, and their applications in the assembly of complex glycan chains.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
33
|
Yalamanchili S, Miller W, Chen X, Bennett CS. Rapid de Novo Preparation of 2,6-Dideoxy Sugar Libraries through Gold-Catalyzed Homopropargyl Orthoester Cyclization. Org Lett 2019; 21:9646-9651. [PMID: 31755271 PMCID: PMC6956608 DOI: 10.1021/acs.orglett.9b03812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A flexible de novo route capable of producing libraries of 2,6-dideoxy sugars is described. We have found that Au(JackiePhos)SbF6MeCN promotes the conversion of homopropargyl orthoesters into functionalized 2,3-dihydro-4H-pyran-4-ones in good to excellent yields (71-90%). These latter compounds can be easily converted into a number of otherwise difficult to access 2,6-dideoxy sugars.
Collapse
Affiliation(s)
- Subbarao Yalamanchili
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - William Miller
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Xizhao Chen
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Harit VK, Ramesh NG. Ring closing metathesis (RCM) approach to the synthesis of conduramine B-2, ent-conduramine F-2, aminocyclopentitol and trihydroxyazepane. Org Biomol Chem 2019; 17:5951-5961. [PMID: 31166343 DOI: 10.1039/c9ob01010f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of conduramine B-2, ent-conduramine F-2, aminocyclopentitol and trihydroxyazepane were accomplished from a common precursor, through a divergent approach using ring closing metathesis (RCM) as the key step. Tri-O-benzyl-d-glucal was converted to 3,4,6-tri-O-benzyl-1,2-dideoxy-2-iodo-1-p-toluenesulfonamido-α-d-mannose. Exposure to NaBH4 in MeOH resulted in a facile 1,2-transposition of the -NHTs group with concomitant glycosylation to give methyl 3,4,6-tri-O-benzyl-2-deoxy-2-p-toluenesulfonamido-β-d-glucoside, which was converted into methyl 6-deoxy-6-iodo-glucoside in three steps. Zinc-mediated Vasella's rearrangement proceeded smoothly to give the pluripotent formyl-olefin, possessing both electrophilic and nucleophilic sites, which was used as a common precursor in our diversity-oriented approach. Vinylation of the carbonyl group followed by RCM and subsequent deprotection resulted in the successful synthesis of conduramine B-2 and ent-conduramine F-2 for the first time. On the other hand, the Wittig reaction of the formyl-olefin affords the diene that undergoes Grubbs' I catalyzed RCM and deprotection/reduction to provide 3-amino-cyclopentan-1,2-diol. Utilizing the nucleophilic site at the nitrogen of the common precursor, base mediated N-allylation was carried out to obtain the corresponding diene that underwent a smooth RCM to afford trihydroxyazepane.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | | |
Collapse
|
35
|
Zeng J, Wang R, Zhang S, Fang J, Liu S, Sun G, Xu B, Xiao Y, Fu D, Zhang W, Hu Y, Wan Q. Hydrogen-Bonding-Assisted Exogenous Nucleophilic Reagent Effect for β-Selective Glycosylation of Rare 3-Amino Sugars. J Am Chem Soc 2019; 141:8509-8515. [PMID: 31067044 DOI: 10.1021/jacs.9b01862] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Challenges for stereoselective glycosylation of deoxy sugars are notorious in carbohydrate chemistry. We herein report a novel strategy for the construction of the less investigated β-glycosidic bonds of 3,5- trans-3-amino-2,3,6-trideoxy sugars (3,5- trans-3-ADSs), which constitute the core structure of several biologically important antibiotics. Current protocol leverages a C-3 axial sulfonamide group in 3,5- trans-3-ADSs as a hydrogen-bond (H-bond) donor and repurposes substoichiometric phosphine oxide as an exogenous nucleophilic reagent (exNu) to establish an intramolecular H-bond between the former and the derived α-oxyphosphonium ion. This pivotal interaction stabilizes the α-face-covered intermediate to inhibit the formation of the more reactive β-intermediate, thereby yielding reversed β-selectivity, which is unconventional for an exNu-mediated glycosylation system. A wide range of substrates was accommodated, and good to excellent β-selectivities were ensured by this H-bonding-assisted exNu effect. The robustness of the current strategy was further attested by the architectural modification of natural products and drugs containing 3,5- trans-3-ADSs, as well as the synthesis of a trisaccharide unit in avidinorubicin.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Shanshan Liu
- The Institute for Advanced Studies , Wuhan University , 299 Bayi Street , Wuhan , Hubei 430072 , China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Bingbing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Wenqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Yixin Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China.,Institute of Brain Research , Huazhong University of Science and Technology , 13 Hangkong Road , Wuhan , Hubei 430030 , China
| |
Collapse
|
36
|
Wang X, Wang P, Li D, Li M. 2,4-Dinitrobenzenesulfonamide-Directed S N2-Type Displacement Reaction Enables Synthesis of β-d-Glycosaminosides. Org Lett 2019; 21:2402-2407. [PMID: 30900906 DOI: 10.1021/acs.orglett.9b00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient protocol to construct β-d-gluco-/galactosaminosyl linkages was established using nonparticipating and strong electron-withdrawing C-2-2,4-dinitrobenzenesulfonamide (DNsNH)-directed SN2-like glycosylation of glycosyl ortho-hexynylbenzoates. The reaction is applicable to a wide range of O-, N-, and C-nucleophiles and features convenient conversion of DNsNH into AcNH in high yield under mild conditions. Oligomerization-ready trisaccharide, composed of β-d-(1→3)-glucosamino residues, has been achieved, setting a solid foundation for the synthesis of oligosaccharides associated with Neisseria meningitidis capsular polysaccharide.
Collapse
Affiliation(s)
- Xianyang Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Peng Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Dongwei Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Ming Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| |
Collapse
|
37
|
Chen W, Zeng J, Liao Z, Teng S, Xiao X, Meng L, Wan Q. Mechanism investigations of the activation process of S-2-[(propan-2-yl)sulfinyl]benzyl (SPSB) glycosides. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1541998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Teng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Lenci E, Innocenti R, Menchi G, Trabocchi A. Diversity-Oriented Synthesis and Chemoinformatic Analysis of the Molecular Diversity of sp 3-Rich Morpholine Peptidomimetics. Front Chem 2018; 6:522. [PMID: 30425982 PMCID: PMC6218424 DOI: 10.3389/fchem.2018.00522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 12/03/2022] Open
Abstract
Diversity-Oriented Synthesis (DOS) consists of generating structurally diverse compounds from a complexity-generating reaction followed by cyclization steps and appendage diversity. DOS has gathered interest to systematically explore the chemical space by generating high-quality small-molecule collections as probes to investigate biological pathways. The generation of heterocycles using amino acid and sugar derivatives as building blocks is a powerful approach to access chemical and geometrical diversity thanks to the high number of stereocenters and the polyfunctionality of such compounds. Our efforts in this field are focused on the generation of diversity-oriented molecules of peptidomimetic nature as a tool addressing protein-protein interactions, taking advantage of amino acid- and sugar-derived polyfunctional building blocks to be applied in couple-pair synthetic approaches. In this paper, the combination of diversity-oriented synthesis and chemoinformatics analysis of chemical space and molecular diversity of heterocyclic peptidomimetics are reported, with particular interest toward carbohydrate- and amino acid-derived morpholine scaffolds with a higher fraction of sp3 carbon atoms. Also, the chemoinformatic analysis of chemical space and molecular diversity of 186 morpholine peptidomimetics is outlined.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | | | | | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Yao H, Vu MD, Liu XW. Recent advances in reagent-controlled stereoselective/stereospecific glycosylation. Carbohydr Res 2018; 473:72-81. [PMID: 30641292 DOI: 10.1016/j.carres.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
The formation of O-glycosidic linkage is arguably one of the most important topics in glycoscience due to the prevalence of O-glycosides in nature. Great efforts have been devoted to this field by many carbohydrate chemists to develop stereoselective/stereospecific glycosylation methodologies. Although glycosyl donor- and acceptor-controlled strategies have significantly progressed, the tedious design and pre-synthesis of substrates could not be avoided. On the other hand, reagent-controlled glycosylation can overcome these challenges and produce the desired selectivity by only altering external factors such as concentration, reagents or other reaction conditions. This mini-review discusses selected recent novel methodologies on reagent-mediated stereo-controlled glycosylation in the last decade, classified by the types of glycosyl donors.
Collapse
Affiliation(s)
- Hui Yao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Minh Duy Vu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| |
Collapse
|
40
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
41
|
Xiao Y, Lu Z, Zhao X, Wu P, Chen W, Wang R, Zeng J, Wan Q. Practical synthesis of active O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides via a catalytic and metal free oxidation of latent O-2-(2-propylthiol)benzyl (OPTB) glycosides. Carbohydr Res 2018; 469:10-13. [PMID: 30172109 DOI: 10.1016/j.carres.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
A catalytic and metal free sulfoxidation of O-2-(2-propylthiol)benzyl (OPTB) glycosides to O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides has been developed by introducing NOBF4 as catalyst, oxygen as terminal oxidant and TBAB as additive. Wide variety of OPTB glycosides were efficiently oxidized without observation of over oxidation. The allowance of large scale synthesis, easy operation and purification highlighted its practical application in construction of complex oligosaccharides and glycoconjugates employing interrupted Pummerer reaction mediated glycosylation strategy.
Collapse
Affiliation(s)
- Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Pinru Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
42
|
Bylsma M, Bennett CS. Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B. Org Lett 2018; 20:4695-4698. [PMID: 30015496 PMCID: PMC6094934 DOI: 10.1021/acs.orglett.8b02028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A synthetic route has been developed for constructing the d-saccharosamine-l-rhamnose-d-fucose (Sac-Rha-Fuc) trisaccharide fragment present in the antibacterial natural product saccharomicin B. The Sac monosaccharide was synthesized through a modified nine step procedure starting from d-rhamnal in 23% overall yield. 1- O-TBS Sac donors were used to construct the β-linked Sac-Rha disaccharide. This disaccharide was coupled to a Fuc acceptor under BSP/Tf2O conditions to afford a trisaccharide properly functionalized for elaboration to saccharomicin B.
Collapse
Affiliation(s)
- Marissa Bylsma
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
43
|
Zeng J, Liu Y, Chen W, Zhao X, Meng L, Wan Q. Glycosyl Sulfoxides in Glycosylation Reactions. Top Curr Chem (Cham) 2018; 376:27. [DOI: 10.1007/s41061-018-0205-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
|
44
|
Abstract
Naturally occurring glycans and glycoconjugates have extremely diverse structures and biological functions. Syntheses of these molecules and their artificial mimics, which have attracted the interest of those developing new therapeutic agents, rely on glycosylation methodologies to construct the various glycosidic linkages. In this regard, a wide array of glycosylation methods have been developed, and they mainly involve the substitution of a leaving group on the anomeric carbon of a glycosyl donor with an acceptor (a nucleophile) under the action of a particular promoter (usually a stoichiometric electrophile). However, glycosylations involving inherently unstable or unreactive donors/acceptors are still problematic. In those systems, reactions involving nucleophilic, electrophilic, or acidic species present on the leaving group and the promoter could become competitive and detrimental to the glycosylation. To address this problem, we applied the recently developed chemistry of alkynophilic gold(I) catalysts to the development of new glycosylation reactions that would avoid the use of the conventional leaving groups and promoters. Gratifyingly, glycosyl o-alkynylbenzoates (namely, glycosyl o-hexynyl- and o-cyclopropylethynylbenzoates) turned out to be privileged donors under gold(I) catalysis with Ph3PAuNTf2 and Ph3PAuOTf. The merits of this new glycosylation protocol include the following: (1) the donors are easily prepared and are generally shelf-stable; (2) the promotion is catalytic; (3) the substrate scope is extremely wide; (4) relatively few side reactions are observed; (5) the glycosylation conditions are orthogonal to those of conventional methods; and (6) the method is operationally simple. Indeed, this method has been successfully applied in the synthesis of a wide variety of complex glycans and glycoconjugates, including complex glycosides of epoxides, nucleobases, flavonoids, lignans, steroids, triterpenes, and peptides. The direct glycosylation of some sensitive aglycones, such as dammarane C20-ol and sugar oximes, and the glycosylation-initiated polymerization of tetrahydrofuran were achieved for the first time. The gold(I) catalytic cycle of the present glycosylation protocol has been fully elucidated. In particular, key intermediates, such as the 1-glycosyloxyisochromenylium-4-gold(I) and isochromen-4-ylgold(I) complexes, have been unambiguously characterized. Exploiting the former glycosyloxypyrylium intermediate, SN2-type glycosylations were realized in specific cases, such as β-mannosylation/rhamnosylation. The protodeauration of the latter vinylgold(I) intermediate has been reported to be critically important for the gold(I) catalytic cycle. Thus, the addition of a strong acid as a cocatalyst can dramatically reduce the required loading of the gold(I) catalyst (down to 0.001 equiv). C-Glycosylation with silyl nucleophiles can proceed catalytically when moisture, which is sequestered by molecular sieves, can serve as the H+ donor for the required protodeauration step. Indeed, the unique mechanism explains the merits and broad applicability of the present glycosylation method and provides a foundation for future developments in glycosylation methodologies that mainly involve improving the diastereoselectivity and catalytic efficiency of glycosylations.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
45
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
46
|
Zeng J, Wang R, Yao W, Zhang S, Sun G, Liao Z, Meng L, Wan Q. Diversified synthesis and α-selective glycosylation of 3-amino-2,3,6-trideoxy sugars. Org Chem Front 2018. [DOI: 10.1039/c8qo00948a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quick access to various unnatural 3-amino-2,3,6-trideoxy sugars was achieved by sequential functionalization of a glycal intermediate. This strategy and the further glycosylation method allowed the efficient late-stage modification of bioactive natural products and drugs.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
- Institute of Brain Research
| |
Collapse
|
47
|
Liu Y, Zeng J, Sun J, Cai L, Zhao Y, Fang J, Hu B, Shu P, Meng L, Wan Q. 1,4-Dithiothreitol mediated cleavage of the acetal and ketal type of diol protecting groups. Org Chem Front 2018. [DOI: 10.1039/c8qo00247a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An efficient deprotection of the ketal and acetal type protecting groups has been achieved with Brønsted acid as a catalyst and 1,4-dithiothreitol as a ketal or acetal exchange reagent.
Collapse
|
48
|
Chen W, Zeng J, Wang H, Xiao X, Meng L, Wan Q. Tracking the leaving group in the remote activation of O -2-[(propan-2-yl)sulfinyl]benzyl (OPSB) glycoside. Carbohydr Res 2017; 452:1-5. [DOI: 10.1016/j.carres.2017.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
|
49
|
Chen X, Shao X, Li W, Zhang X, Yu B. Total Synthesis of Echinoside A, a Representative Triterpene Glycoside of Sea Cucumbers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Xiaofei Shao
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Xiaheng Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
50
|
Chen X, Shao X, Li W, Zhang X, Yu B. Total Synthesis of Echinoside A, a Representative Triterpene Glycoside of Sea Cucumbers. Angew Chem Int Ed Engl 2017; 56:7648-7652. [DOI: 10.1002/anie.201703610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Xiaofei Shao
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Xiaheng Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|