1
|
Ha W, Shin SJ, Ji YS, Youn SW. KO tBu-Promoted [4+2] Annulation-Dehydration Cascade Enabling the Construction of Diverse 2-Pyridone-Fused Uracils. Org Lett 2024; 26:10409-10413. [PMID: 39570191 DOI: 10.1021/acs.orglett.4c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A KOtBu-promoted [4+2] annulation-dehydration cascade reaction has been developed, enabling the efficient synthesis of diverse 2-pyridone-fused uracils through a vinylogous enolization strategy involving o-quinodimethane (oQDM) dienolate intermediates. This method provides a simple yet robust approach for constructing structurally interesting fused N-heterocycles that incorporate two privileged scaffolds, both of which are widely recognized in drug discovery. Consequently, these compounds hold significant potential for biological and pharmacological applications. Moreover, further transformations of the products obtained from this process allow access to highly functionalized and structurally diverse uracil derivatives, expanding the scope of accessible chemical diversity.
Collapse
Affiliation(s)
- Wonbin Ha
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sang Jae Shin
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yeong Shin Ji
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
2
|
Tan X, Jing Y, Wu J, Li J, Yang Z, Wu W, Ke Z, Jiang H. Palladium catalyzed ortho-C(sp 2)-H activation/cyclization of aryl amines assisted by imine and vinylacetic acid. Nat Commun 2024; 15:9877. [PMID: 39543115 PMCID: PMC11564760 DOI: 10.1038/s41467-024-54018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Palladium-catalyzed directed C - H functionalization/cyclization is an effective approach for synthesizing nitrogen heterocycles. Imine, known for its ease of installation/removal, has been extensively used in the C-H activation of aldehydes, ketones, and alkylamines. Nevertheless, it has been rarely explored in the C(sp2)-H activation of aryl amines because of the generation of a strained four-membered palladacycle. Herein, an imine directed palladium catalyzed C(sp2)-H functionalization of aryl amines assisted by vinylacetic acid is established, providing access to a variety of γ-lactone fused tetrahydroquinolines under mild reaction conditions. The methodology demonstrates broad substrate scope and good functional group tolerance, representing notable advancement in organic synthesis. Mechanistic experiments are performed to clarify how the C(sp2)-H activation occurs, indicating the crucial role of vinylacetic acid. DFT calculations supports the observations, elucidating the strained four-membered ring C-H activation barrier is overcome via coordination and hydrogen bond interaction of vinylacetic acid.
Collapse
Affiliation(s)
- Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jiatian Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhenjie Yang
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Liu S, Liu Q, Cheng L, Liu L. Construction of 2-Substituted-3-aryl Benzofurans and Indoles through an Acid-Catalyzed Cascade Intramolecular Friedel-Crafts Reaction/Rearrangement/Aromatization Process. J Org Chem 2024; 89:11716-11726. [PMID: 39066704 DOI: 10.1021/acs.joc.4c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We present here a new method for the synthesis of 2-substituted-3-aryl benzoheterocycles through a more challenging constrained [1,5]-type Friedel-Crafts reaction/rearrangement and aromatization process. By using the readily available 2-aryoxy-1,3-indandiones and 2-arylamino-1,3-indandiones, a range of 2-substituted-3-aryl benzofurans and indoles were prepared in good to excellent yields (yields up to 86%) under the catalysis of CF3SO3H or Sm(OTf)3. Compared with previous methods for constructing similar structures, this approach offers several advantages, including the use of easily accessible starting materials, mild reaction conditions, high yield, excellent regio- and diastereoselectivity, and a broad substrate scope.
Collapse
Affiliation(s)
- Shaodong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Barman M, Mishra M, Mandal S, Punniyamurthy T. Palladium Catalysis Enabled Sequential C(sp 3)-H/C-C Activation: Access to Vinyl γ-Lactams. Org Lett 2024; 26:3722-3726. [PMID: 38678543 DOI: 10.1021/acs.orglett.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A Pd(II)-catalyzed tandem reaction of aliphatic amides with vinylcyclopropanes (VCPs) was accomplished by merging C(sp3)-H and C-C activation. The reaction of VCP revealed alkenylation/cyclization, followed by ring opening via C-C cleavage, delivering vinyl γ-lactams with (E)-selectivity. The role of ligands, site-selectivity, functional group diversity, mechanistic insight, and synthetic utilities are important practical features.
Collapse
Affiliation(s)
- Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | |
Collapse
|
5
|
Chen S, Ji YS, Choi Y, Youn SW. One-Pot Three-Component Reaction for the Synthesis of 3,4-Dihydroquinazolines and Quinazolin-4(3 H)-ones. J Org Chem 2024; 89:6428-6443. [PMID: 38608000 DOI: 10.1021/acs.joc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A highly efficient and straightforward one-pot synthesis of diversely substituted 3,4-dihydroquinazolines and quinazolin-4(3H)-ones has been achieved through a domino three-component assembly reaction of arenediazonium salts, nitriles, and bifunctional aniline derivatives. This new protocol involves three C-N bond formations through the initial formation of N-arylnitrilium intermediates from arenediazonium salts and nitriles, followed by the sequential nucleophilic addition and cyclization reactions with bifunctional anilines, leading to such N-heterocyclic compounds of biological and pharmacological importance. This method offers a simple, expedient, and robust approach with the use of amenable and easily accessible reactants/reagents under metal-free mild conditions, good functional group tolerance, and high efficiency. The synthetic applications were also demonstrated by derivatization of the products obtained from these processes and syntheses of a diverse range of valuable polycyclic N-heterocycles.
Collapse
Affiliation(s)
- Shiwei Chen
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yeong Shin Ji
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yuri Choi
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Mallick S, Mandal T, Kumari N, Roy L, De Sarkar S. Divergent Electrochemical Synthesis of Indoles through pK a Regulation of Amides: Synthetic and Mechanistic Insights. Chemistry 2024; 30:e202304002. [PMID: 38290995 DOI: 10.1002/chem.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.
Collapse
Affiliation(s)
- Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus, Bhubaneswar, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
7
|
Jin F, Wen Y, Lin G, Yu S, Wang C, Ye W, Zhang J. Design, synthesis, and analgesia evaluation of novel Transient Receptor Potential Vanilloid 1 (TRPV1) agonists modified from Cannabidiol (CBD). Bioorg Med Chem 2023; 90:117379. [PMID: 37336082 DOI: 10.1016/j.bmc.2023.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Pain-relief is a long-term research hotspot with huge demand in clinical treatment. The analgesics currently used have several side effects, such as being addictive and causing gastrointestinal bleeding. Therefore, new drugs and targets in analgesic field are both desirable. Transient Receptor Potential Vanilloid 1 (TRPV1) plays an essential role in pain perception and regulation, providing a new strategy for the development of antinociceptive agents. Here, a series of novel TRPV1 agonists were designed and synthesized based on Cannabidiol (CBD), a widely used pain-relieving agent with weak agonistic activity on TRPV1. According to the results of systematic in vitro and in vivo biological assays, compound 10f was finally identified as a promising TRPV1 agonist, with higher target affinity, stronger analgesic activity, and weak side effect of hyperthermia. Molecular docking simulations revealed a significant hydrogen bond interaction between 10f and Arg557, an amino acid residue key to the activity of TRPV1 protein. Taken together, compound 10f can be used as a lead compound for further optimization.
Collapse
Affiliation(s)
- Fangjie Jin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuting Wen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chao Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Kuang Y, Maeda K, Matsubara R, Hayashi M. One-Pot Synthesis of 3-Substiuted Indoles from 2-(2-Nitro-1-phenylethyl)cyclohexanone Derivatives. J Org Chem 2023; 88:5791-5800. [PMID: 37023265 DOI: 10.1021/acs.joc.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Herein, a one-pot synthesis of 3-substituted indoles from 2-(2-nitro-1-phenylethyl)cyclohexanone derivatives catalyzed by Pd/C is reported. The starting materials can be easily prepared by the reaction of substituted ketones and nitroalkenes. The facile experimental procedure comprises the treatment of 2-(2-nitro-1-phenylethyl)cyclohexanone derivatives with H2 as a hydrogen donor in the presence of 10 mol % Pd/C. Subsequently, the exchange of H2 with CH2═CH2 as a hydrogen acceptor affords a variety of 3-substituted indoles in high yields. The formation of intermediate nitrones is essential for a smooth reaction.
Collapse
Affiliation(s)
- Yangjin Kuang
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Katsumi Maeda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
9
|
Kim YH, Kim DB, Jang SS, Youn SW. Pd-Catalyzed Regioselective Intramolecular Allylic C-H Amination of 1,1-Disubstituted Alkenyl Amines. J Org Chem 2022; 87:7574-7580. [PMID: 35549260 DOI: 10.1021/acs.joc.2c00781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd-Catalyzed intramolecular allylic C-H amination of 1,1-disubstituted alkenyl amines with various allylic tethers (X = O, NMs, CH2) was developed. This process allows for the divergent synthesis of 1,3-X,N-heterocycles through a regioselective allylic C-H cleavage and π-allylpalladium formation. Particularly noteworthy is the use of substrates containing a labile allylic moiety and new simple catalytic systems capable of promoting highly chemo- and regioselective allylic C-H amination by overcoming significant challenges.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dong Bin Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Su San Jang
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Thombal RS, Rubio PYM, Lee D, Maiti D, Lee YR. Modern Palladium-Catalyzed Transformations Involving C–H Activation and Subsequent Annulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Raju S. Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Yuosef M. Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Yu Y, Wang Y, Li B, Tan Y, Zhao H, Li Z, Zhang C, Ma W. Ruthenium‐Catalyzed Vinylene Carbonate Annulation by C−H/N−H Functionalizations: Step‐Economical Access to Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao Yu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Huan Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Chunran Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610052 People's Republic of China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610041 People's Republic of China
| |
Collapse
|
12
|
Son SH, Shin JW, Won HJ, Yoo HS, Cho YY, Kim SL, Jang YH, Park BY, Kim NJ. Synthesis of meta-(Indol-3-yl)phenols from Indoles and Cyclohexenone via Palladium(II)-Catalyzed Oxidative Heck Reaction and Dehydrogenative Aromatization in a One-Step Sequence. Org Lett 2021; 23:7467-7471. [PMID: 34523938 DOI: 10.1021/acs.orglett.1c02679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile construction of a meta-(indol-3-yl)phenol framework with a wide substrate scope (a total of 25 compounds) via a palladium(II)-catalyzed oxidative Heck reaction and dehydrogenative aromatization in a one-step sequence is reported. This methodology affords a novel route for the privileged structures that are challenging to access via a direct link between indole and phenol, in a highly efficient and atom-economical manner.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Boyoung Y Park
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
San Jang S, Kim YH, Youn SW. Divergent Syntheses of Indoles and Quinolines Involving N1-C2-C3 Bond Formation through Two Distinct Pd Catalyses. Org Lett 2020; 22:9151-9157. [PMID: 33048557 DOI: 10.1021/acs.orglett.0c02898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pd-catalyzed annulative couplings of 2-alkenylanilines with aldehydes using alcohols as both the solvent and hydrogen source have been developed. These domino processes allow divergent syntheses of two significant N-heterocycles, indoles and quinolines, from the same substrate by tuning reaction parameters, which seems to invoke two distinct mechanisms. The nature of the ligand and alcoholic solvent had a profound influence on the selectivity and efficiency of these protocols. Particularly noteworthy is that indole formation was achieved by overcoming two significant challenges, regioselective hydropalladation of alkenes and subsequent reactions between the resulting Csp3-Pd species and less reactive imines.
Collapse
Affiliation(s)
- Su San Jang
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Xu C, Xie W, Xu J. Metal-free and regiospecific synthesis of 3-arylindoles. Org Biomol Chem 2020; 18:2661-2671. [PMID: 32196059 DOI: 10.1039/d0ob00317d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A convenient, metal-free, and organic acid-base promoted synthetic method to prepare 3-arylindoles from 3-aryloxirane-2-carbonitriles and arylhydrazine hydrochlorides has been developed. In the reaction, the organic acid catalyzes a tandem nucleophilic ring-opening reaction of aryloxiranecarbonitriles and arylhydrazine hydrochlorides and Fischer indolization. The organic base triethylamine plays a crucial role in the final elimination step in the Fischer indole synthesis, affording 3-arylindoles regiospecifically. The reaction features advantages of microwave acceleration, non-metal participation, short reaction time, organic acid-base co-catalysis, and broad substrate scope.
Collapse
Affiliation(s)
- Chuangchuang Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenlai Xie
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
15
|
Wang Q, Wang P, Gao X, Wang D, Wang S, Liang X, Wang L, Zhang H, Lei A. Regioselective/electro-oxidative intermolecular [3 + 2] annulation for the preparation of indolines. Chem Sci 2020; 11:2181-2186. [PMID: 34123309 PMCID: PMC8150106 DOI: 10.1039/c9sc05729c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Compared with the reported intramolecular electro-oxidative cyclization of alkenyl amines or vinyl anilines for the preparation of pyrrolidines or indolines, the intermolecular version is less studied. Herein, this electrochemical intermolecular oxidative annulation of anilines and alkenes for the preparation of indolines proceeded under external oxidant-free conditions. The most noteworthy achievement of our work is the facile generation of indolines with quaternary centers at the 2-position. In addition, alkenes and anilines bearing various functional groups can be well tolerated. Remarkably, electrolyte-free conditions were used in an electrochemical flow cell, which shows the application potential of this method.
Collapse
Affiliation(s)
- Qingqing Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Pan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Xinlong Gao
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Xingan Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China .,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
16
|
Kim YH, Yoo HJ, Youn SW. Facile one-pot synthesis of 2-aminoindoles from simple anilines and ynamides. Chem Commun (Camb) 2020; 56:13963-13966. [DOI: 10.1039/d0cc06490d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly effective and facile one-pot reaction has been developed for the synthesis of 2-aminoindoles directly from anilines and ynamides.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis
- Department of Chemistry and Research Institute for Natural Sciences
- Hanyang University
- Seoul 04763
- Korea
| | - Huen Ji Yoo
- Center for New Directions in Organic Synthesis
- Department of Chemistry and Research Institute for Natural Sciences
- Hanyang University
- Seoul 04763
- Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis
- Department of Chemistry and Research Institute for Natural Sciences
- Hanyang University
- Seoul 04763
- Korea
| |
Collapse
|
17
|
Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Rhodium(i)-catalyzed C6-selective C-H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chem Sci 2019; 10:10089-10096. [PMID: 32055363 PMCID: PMC6991184 DOI: 10.1039/c9sc03672e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023] Open
Abstract
A versatile Rh(i)-catalyzed C6-selective decarbonylative C-H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C-H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc2O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C-H bond cleavage is likely the turnover-limiting step.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Bohan Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| |
Collapse
|
18
|
Tian C, Wang Q, Wang X, An G, Li G. Visible-Light Mediated ortho-Trifluoromethylation of Aniline Derivatives. J Org Chem 2019; 84:14241-14247. [DOI: 10.1021/acs.joc.9b01987] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chao Tian
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Qiyue Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Xueqi Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| |
Collapse
|
19
|
Abstract
Heterocycles are very common substructures in a number of pharmaceuticals. Over the past several years, the use of palladium-catalyzed oxidative cyclization for heterocyclic synthesis has become much more prevalent. This review collects recent reports using palladium catalysis to synthesize a wide variety of heterocyclic scaffolds. Many of these reactions use oxygen as the terminal oxidant. Some salient mechanistic features are discussed.
Collapse
Affiliation(s)
- John C. Hershberger
- Department of Chemistry and Physics, Arkansas State University, State University, AR, United States
| |
Collapse
|
20
|
Subhedar DD, Mishra AA, Bhanage BM. N
‐Methoxybenzamide: A Versatile Directing Group for Palladium‐, Rhodium‐ and Ruthenium‐Catalyzed C−H Bond Activations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900405] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ashish A. Mishra
- Department of ChemistryInstitute of Chemical Technology, Matunga Mumbai 400019 India
| | | |
Collapse
|
21
|
Giraud F, Pereira E, Anizon F, Moreau P. Synthesis and Applications of Dihydropyrrolocarbazoles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Francis Giraud
- CNRS, SIGMA Clermont, ICCF Université Clermont Auvergne 63000 Clermont‐Ferrand France
| | - Elisabeth Pereira
- CNRS, SIGMA Clermont, ICCF Université Clermont Auvergne 63000 Clermont‐Ferrand France
| | - Fabrice Anizon
- CNRS, SIGMA Clermont, ICCF Université Clermont Auvergne 63000 Clermont‐Ferrand France
| | - Pascale Moreau
- CNRS, SIGMA Clermont, ICCF Université Clermont Auvergne 63000 Clermont‐Ferrand France
| |
Collapse
|
22
|
Halder P, Humne VT, Mhaske SB. Transition-Metal-Free Regioselective One-Pot Synthesis of Aryl Sulfones from Sodium Sulfinates via Quinone Imine Ketal. J Org Chem 2019; 84:1372-1378. [PMID: 30623654 DOI: 10.1021/acs.joc.8b02835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel, efficient, and regioselective transition-metal-free one-pot synthesis of aryl sulfones via the reactive quinone imine ketal intermediate is demonstrated using easily accessible bench-stable sulfinate salts. A broad range of functionality on p-anisidine substrates as well as sulfinate salts was tolerated under mild reaction conditions to provide the corresponding aryl sulfones in good to excellent yields.
Collapse
Affiliation(s)
- Priyanka Halder
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Vivek T Humne
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Santosh B Mhaske
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
23
|
Liu Y, Yang Y, Wang C, Wang Z, You J. Rhodium(iii)-catalyzed regioselective oxidative annulation of anilines and allylbenzenes via C(sp3)–H/C(sp2)–H bond cleavage. Chem Commun (Camb) 2019; 55:1068-1071. [DOI: 10.1039/c8cc09099h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As a proof-of-concept, we disclose the rhodium-catalyzed oxidative annulation of anilines with allylbenzenes to afford a variety of indoles, in which the allylic C(sp3)–H activation and directed C(sp2)–H activation are merged into a single approach for the first time.
Collapse
Affiliation(s)
- Yunqi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- 29 Wangjiang Road
- Chengdu 610064
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- 29 Wangjiang Road
- Chengdu 610064
| | - Chunxia Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- 29 Wangjiang Road
- Chengdu 610064
| | - Zhishuo Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- 29 Wangjiang Road
- Chengdu 610064
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- 29 Wangjiang Road
- Chengdu 610064
| |
Collapse
|
24
|
Li J, Zhang J, Li M, Zhang C, Yuan Y, Liu R. Naphtho[2,3-b]furan-4,9-dione synthesis via palladium-catalyzed reverse hydrogenolysis. Chem Commun (Camb) 2019; 55:2348-2351. [DOI: 10.1039/c8cc09369e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reverse hydrogenolysis process has been developed for two-site coupling of 2-hydroxy-1,4-naphthoquinones with olefins to produce naphtha[2,3-b]furan-4,9-diones and hydrogen (H2).
Collapse
Affiliation(s)
- Jimei Li
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jie Zhang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Mingfei Li
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chenyang Zhang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | | | - Renhua Liu
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
25
|
Qiao Y, Zhao J, Chang J, Wei D. Insights into the Oxidative Palladium-Catalyzed Regioselective Synthesis of 3-Arylindoles from N−Ts-Anilines and Styrenes: A Computational Study. ChemCatChem 2018. [DOI: 10.1002/cctc.201801531] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yan Qiao
- School of Basic Medical Sciences; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Jimin Zhao
- School of Basic Medical Sciences; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Science Avenue Zhengzhou Henan Province 450001 P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering; Zhengzhou University; 100 Science Avenue Zhengzhou Henan Province 450001 P.R. China
| |
Collapse
|
26
|
Youn SW, Kim YH, Jo YH. Palladium‐Catalyzed Regioselective Synthesis of 1‐Hydroxycarbazoles Under Aerobic Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| | - Yoon Hyung Jo
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| |
Collapse
|
27
|
Youn SW, Ko TY, Kim YH, Kim YA. Pd(II)/Cu(II)-Catalyzed Regio- and Stereoselective Synthesis of (E)-3-Arylmethyleneisoindolin-1-ones Using Air as the Terminal Oxidant. Org Lett 2018; 20:7869-7874. [DOI: 10.1021/acs.orglett.8b03409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yun Ah Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
28
|
Lu L, Chen C, Jiang H, Yin B. Three-Component Ring-Opening Reactions of Cyclic Ethers, α-Diazo Esters, and Weak Nucleophiles under Metal-Free Conditions. J Org Chem 2018; 83:14385-14395. [PMID: 30403140 DOI: 10.1021/acs.joc.8b02091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lin Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuwei Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
29
|
Abstract
Indole is the most frequently found heterocyclic core structures in pharmaceuticals, natural products, agrochemicals, dyes and fragrances. For about 150 years, chemists were absorbed in finding new and easier synthetic strategies to build this nucleus. Many books and reviews have been written, but the number of new syntheses that appear in the literature, make necessary continuous updates. This reviews aims to give a comprehensive overview on indole synthesis catalyzed by transition metals appeared in the literature in the years 2016 and 2017.
Collapse
|
30
|
Mishra AA, Subhedar D, Bhanage BM. Nickel, Cobalt and Palladium Catalysed C−H Functionalization of Un‐Activated C(sp
3
)−H Bond. CHEM REC 2018; 19:1829-1857. [DOI: 10.1002/tcr.201800093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ashish A. Mishra
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Dnyaneshwar Subhedar
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Bhalchandra M. Bhanage
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| |
Collapse
|
31
|
Damas L, Carrilho RMB, Nunes SCC, Pais AACC, Kollár L, Pineiro M, Pereira MM. A novel Pd-catalysed sequential carbonylation/cyclization approach toward bis- N-heterocycles: rationalization by electronic structure calculations. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181140. [PMID: 30839738 PMCID: PMC6170558 DOI: 10.1098/rsos.181140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
An unprecedented palladium-catalysed sequential aminocarbonylation/cyclization synthetic strategy, using carbon monoxide and structurally different aliphatic diamines as N-nucleophiles, gives access, in one pot, to a new family of indole-based N-heterocyclic derivatives (hydropyrazinones, benzodiazepinones and hydroquinoxalines). Optimization of the reaction conditions towards double carbonylation (P CO = 30 bar, T = 80°C, iodoindole/diamine ratio = 1 : 1.5, toluene as solvent) allowed the target cyclic products, which are formed in situ via intramolecular cyclization of the ketocarboxamide intermediates, to be obtained through a nucleophilic addition/elimination reaction with the pendant terminal amine groups. The structure of the diamine nucleophile was revealed to affect the reaction's selectivity, with the best yields for the cyclic products being obtained in the presence of (1S,2S)-(+)-cyclohexane-1,2-diamine (a) as the nucleophile, using either 5- or 7-iodoindole as the substrate. The reaction's selectivity was rationalized based on electronic structure calculations, which explain the effect of the diamine structure on the predominant formation of the cyclic products.
Collapse
Affiliation(s)
- Liliana Damas
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Rui M. B. Carrilho
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Sandra C. C. Nunes
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Alberto A. C. C. Pais
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - László Kollár
- Department of Inorganic Chemistry, University of Pécs and Szentágothai Research Centre, PO Box 266, 7624 Pécs, Hungary
- MTA-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6, 7624 Pécs, Hungary
| | - Marta Pineiro
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Mariette M. Pereira
- Coimbra Chemistry Centre, Departamento de Química, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
32
|
Hou ZW, Yan H, Song JS, Xu HC. Electrochemical Synthesis of (Aza)indolinesviaDehydrogenative [3+2] Annulation: Application to Total Synthesis of (±)-Hinckdentine A. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800301] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhong-Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Hong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Jin-Shuai Song
- Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences; Fuzhou Fujian 350002 China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iChEM and College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
33
|
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Natural Sciences; Hanyang University; Seoul 04763 Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Institute for Natural Sciences; Hanyang University; Seoul 04763 Korea
| |
Collapse
|
34
|
Astakhova VV, Moskalik MY, Ganin AS, Sterkhova IV, Shainyan BA. Iodotriflamdation vs. Electrophilic Aromatic Iodination in the Reaction of N‐Phenyltriflamide with Alkenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201801379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vera V. Astakhova
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of Russian Academy of Sciences 664033 Irkutsk 1 Favorsky Street
| | - Mikhail Yu. Moskalik
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of Russian Academy of Sciences 664033 Irkutsk 1 Favorsky Street
| | - Anton S. Ganin
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of Russian Academy of Sciences 664033 Irkutsk 1 Favorsky Street
| | - Irina V. Sterkhova
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of Russian Academy of Sciences 664033 Irkutsk 1 Favorsky Street
| | - Bagrat A. Shainyan
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of Russian Academy of Sciences 664033 Irkutsk 1 Favorsky Street
| |
Collapse
|
35
|
Li M, Kwong FY. Cobalt‐Catalyzed Tandem C−H Activation/C−C Cleavage/C−H Cyclization of Aromatic Amides with Alkylidenecyclopropanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201801706] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mingliang Li
- Department of ChemistryThe Chinese University of Hong Kong Shatin New Territories Hong Kong Hong Kong
| | - Fuk Yee Kwong
- Department of ChemistryThe Chinese University of Hong Kong Shatin New Territories Hong Kong Hong Kong
| |
Collapse
|
36
|
Shen J, Xu B, Zhang M, Su W. Branched-Selective Decarboxylative Heck Reaction with Electronically Unbiased Olefins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jianchen Shen
- College of Chemistry; Fuzhou University; 350108 Fuzhou Fujian China
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Yangqiao West Road 155 350002 Fuzhou Fujian China
| | - Biping Xu
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Yangqiao West Road 155 350002 Fuzhou Fujian China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Yangqiao West Road 155 350002 Fuzhou Fujian China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Yangqiao West Road 155 350002 Fuzhou Fujian China
| |
Collapse
|
37
|
Li M, Kwong FY. Cobalt‐Catalyzed Tandem C−H Activation/C−C Cleavage/C−H Cyclization of Aromatic Amides with Alkylidenecyclopropanes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingliang Li
- Department of ChemistryThe Chinese University of Hong Kong Shatin New Territories Hong Kong Hong Kong
| | - Fuk Yee Kwong
- Department of ChemistryThe Chinese University of Hong Kong Shatin New Territories Hong Kong Hong Kong
| |
Collapse
|
38
|
Gattu R, Bhattacharjee S, Mahato K, Khan AT. Electronic effect of substituents on anilines favors 1,4-addition totrans-β-nitrostyrenes: access toN-substituted 3-arylindoles and 3-arylindoles. Org Biomol Chem 2018; 16:3760-3770. [DOI: 10.1039/c8ob00736e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and an efficient method for the regioselective synthesis ofN-alkyl/aryl/H 3-arylindole derivatives fromN-substituted anilines andtrans-β-nitrostyrenes has been described using 10 mol% of bismuth(iii) triflate as a catalyst in acetonitrile at 80 °C.
Collapse
Affiliation(s)
- Radhakrishna Gattu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | | | - Karuna Mahato
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| |
Collapse
|
39
|
Yu R, Li D, Zeng F. Palladium-Catalyzed Sequential Vinylic C–H Arylation/Amination of 2-Vinylanilines with Aryl boronic Acids: Access to 2-Arylindoles. J Org Chem 2017; 83:323-329. [DOI: 10.1021/acs.joc.7b02728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruixia Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| | - Dejun Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| |
Collapse
|