1
|
Gaspar-Morales EA, Waterston A, Sadqi M, Diaz-Parga P, Smith AM, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and Engineered Isoforms of the Inflammasome Adaptor ASC Form Noncovalent, pH-Responsive Hydrogels. Biomacromolecules 2023; 24:5563-5577. [PMID: 37930828 DOI: 10.1021/acs.biomac.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create noncovalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired by the ASC structure that also form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy and studied their viscoelastic behavior using shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
2
|
Gaspar-Morales EA, Waterston A, Diaz-Parga P, Smith AM, Sadqi M, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and engineered isoforms of the inflammasome adaptor ASC form non-covalent, pH-responsive hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539154. [PMID: 37205378 PMCID: PMC10187214 DOI: 10.1101/2023.05.03.539154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create non-covalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired in the ASC structure that successfully form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy, and studied their viscoelastic behavior by shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
3
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
4
|
Liu N, Wu S, Tian X, Li X. Fabrication of injectable hydrogels from an anticancer peptide for local therapeutic delivery and synergistic photothermal-chemotherapy. J Mater Chem B 2022; 10:5165-5173. [PMID: 35734944 DOI: 10.1039/d2tb00917j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The susceptibility of anticancer peptides to proteolytic degradation is often considered as a major weakness that limits systemic therapeutic applications. However, localized delivery of anticancer peptides via injectable hydrogels is expected to improve drug efficacy and reduce systemic toxicity. Herein, an injectable hydrogel with drug releasing properties, NIR responsiveness and pH sensitivity was developed from an anticancer peptide (KL), Fe3+ ions and protocatechualdehyde via dynamic and reversible interactions. Benefiting from the formation of Fe(III)-catechol complexes between Fe3+ ions and protocatechualdehyde within gel networks, the obtained hydrogel exhibited intrinsic NIR absorption properties for photothermal ablation of tumor cells, and remote light control of drug release. Besides, the pH-labile imine bonds between KL and protocatechualdehyde endowed the injectable gel with pH sensitivity for sustained release of KL under a mildly acidic environment, inducing membrane destabilization and facilitating the cell uptake of DOX for combinational chemotherapy. Both in vitro and in vivo experiments revealed that the injectable hydrogel exhibited a synergistic therapeutic effect on inhibiting tumor growth via combinational photothermal-chemotherapy. Therefore, this work provides a promising attempt to develop a therapeutic hydrogel from an anticancer peptide, which could work as a localized drug delivery platform for synergistic photothermal-chemotherapy.
Collapse
Affiliation(s)
- Na Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shunjie Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Chitosan crosslinking with pyridoxal 5-phosphate vitamer toward biocompatible hydrogels for in vivo applications. Int J Biol Macromol 2021; 193:1734-1743. [PMID: 34785198 DOI: 10.1016/j.ijbiomac.2021.10.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/29/2022]
Abstract
Vitamin B6 is an essential micronutrient in the mammalian diet, with role of coenzyme and synergistic effect with some antibiotics and antitumor drugs. Based on these, we hypothesized that its use for the preparation of hydrogels can yield multifunctional biomaterials suitable for in vivo applications. To this aim, chitosan was reacted with the active form of vitamin B6, pyridoxal 5-phosphate, via acid condensation, when clear hydrogels were obtained. Their investigation by structural characterization methods proved that the hydrogelation was a consequence of both covalent imine formation and physical interactions. The novel hydrogels had microporous morphology and showed shrinking effect in phosphate buffer, indicating good shape preservation and slow dissolution in in vivo environment. Their enzymatic biodegradation could be controlled by the imination degree, varying from 40 to 61% in 21 days. They demonstrated very good in vitro cytocompatibility on normal human dermal fibroblasts cells and no harmful effect on experimental mice, confirming their safely use for in vivo application.
Collapse
|
6
|
Zhang Y, Ding Y, Li X, Zheng D, Gao J, Yang Z. Supramolecular hydrogels of self-assembled zwitterionic-peptides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
8
|
|
9
|
Wang H, Feng Z, Xu B. Assemblies of Peptides in a Complex Environment and their Applications. Angew Chem Int Ed Engl 2019; 58:10423-10432. [PMID: 30903643 PMCID: PMC6656613 DOI: 10.1002/anie.201814552] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 01/28/2023]
Abstract
Using peptide assemblies with emergent properties to achieve elaborate functions has attracted increasing attention in recent years. Besides tailoring the self-assembly of peptides in vitro, peptide research is advancing into a new and exciting frontier: the rational design of peptide assemblies (or their derivatives) for biological functions in a complex environment. This Minireview highlights recent developments in peptide assemblies and their applications in biological systems. After introducing the unique merits of peptide assemblies, we discuss the recent progress in designing peptides (or peptide derivatives) for self-assembly with conformational control. Then, we describe biological functions of peptide assemblies, with an emphasis on approach-instructed assembly for spatiotemporal control of peptide assemblies, in the cellular context. Finally, we discuss the future promises and challenges of this exciting area of chemistry.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA
| | - Zhaoqianqi Feng
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA
| | - Bing Xu
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA
| |
Collapse
|
10
|
Zhu K, Hou D, Fei Y, Peng B, Wang Z, Xu W, Zhu B, Li LL, Wang H. Thermosensitive Hydrogel Interface Switching from Hydrophilic Lubrication to Infection Defense. ACS APPLIED BIO MATERIALS 2019; 2:3582-3590. [DOI: 10.1021/acsabm.9b00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Zhu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China
| | - Dayong Hou
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Yue Fei
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Bo Peng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Ziqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Yiyuan Street no. 37, Nangang District, Harbin, 150001, China
| | - Baoning Zhu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beiyitiao no. 11, Haidian
District, Beijing 100190, China
| |
Collapse
|
11
|
Wang H, Feng Z, Xu B. Assemblies of Peptides in a Complex Environment and their Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huaimin Wang
- Department of Chemistry Brandeis University 415 South St Waltham MA 02454 USA
| | - Zhaoqianqi Feng
- Department of Chemistry Brandeis University 415 South St Waltham MA 02454 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South St Waltham MA 02454 USA
| |
Collapse
|
12
|
Cong Y, Qiao ZY, Wang H. Molecular Self-Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Cong
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
13
|
Gui S, Huang Y, Hu F, Jin Y, Zhang G, Zhang D, Zhao R. Bioinspired Peptide for Imaging Hg2+ Distribution in Living Cells and Zebrafish Based on Coordination-Mediated Supramolecular Assembling. Anal Chem 2018; 90:9708-9715. [DOI: 10.1021/acs.analchem.8b00059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shilang Gui
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Hu
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Wang H, Feng Z, Qin Y, Wang J, Xu B. Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angew Chem Int Ed Engl 2018; 57:4931-4935. [PMID: 29451962 PMCID: PMC6014697 DOI: 10.1002/anie.201712834] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Herein, we report that assemblies of nucleopeptides selectively sequester ATP in complex conditions (for example, serum and cytosol). We developed assemblies of nucleopeptides that selectively sequester ATP over ADP. Counteracting enzymes interconvert ATP and ADP to modulate the nanostructures formed by the nucleopeptides and the nucleotides. The nucleopeptides, sequestering ATP effectively in cells, slow down efflux pumps in multidrug-resistant cancer cells, thus boosting the efficacy of doxorubicin, an anticancer drug. Investigation of 11 nucleopeptides (including d- and l-enantiomers) yields five more nucleopeptides that differentiate ATP and ADP through either precipitation or gelation. As the first example of assemblies of nucleopeptides that interact with ATP and disrupt intracellular ATP dynamics, this work illustrates the use of supramolecular assemblies to interact with small and essential biological molecules for controlling cell behavior.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Zhaoqianqi Feng
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Yanan Qin
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Jiaqing Wang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA
| |
Collapse
|
15
|
Zhao Y, Wang Z, Mei C, Jiang Z, Feng Y, Gao R, Wang Q, Huang J. Protein Enables Conformation Transition of a Hydrogel Based on Pentapeptide and Boosts Immune Response in Vivo. Bioconjug Chem 2018; 29:1519-1524. [PMID: 29633831 DOI: 10.1021/acs.bioconjchem.8b00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yune Zhao
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325027
- Key Laboratory of Vision Science, Ministry of Health of the People’s Republic of China, Wenzhou, Zhejiang, China 325027
| | - Zhen Wang
- Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China 310014
| | - Chenyang Mei
- Key Laboratory of Vision Science, Ministry of Health of the People’s Republic of China, Wenzhou, Zhejiang, China 325027
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China 230601
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China 200032
| | - Rongrong Gao
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325027
- Key Laboratory of Vision Science, Ministry of Health of the People’s Republic of China, Wenzhou, Zhejiang, China 325027
| | - Qinmei Wang
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325027
- Key Laboratory of Vision Science, Ministry of Health of the People’s Republic of China, Wenzhou, Zhejiang, China 325027
| | - Jinhai Huang
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325027
- Key Laboratory of Vision Science, Ministry of Health of the People’s Republic of China, Wenzhou, Zhejiang, China 325027
| |
Collapse
|
16
|
Ji W, Zhang S, Yukawa S, Onomura S, Sasaki T, Miyazawa K, Zhang Y. Regulating Higher-Order Organization through the Synergy of Two Self-Sorted Assemblies. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Ji
- Bioinspired Soft Matter Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Shijin Zhang
- Bioinspired Soft Matter Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Shogo Onomura
- Shimadzu Techno-Research Co. Ltd.; 1 Nishinokyo, Nakagyo-ku Kyoto 604-8436 Japan
| | - Toshio Sasaki
- Imaging Section; Okinawa Institute of Science and Technology Graduate School; Japan
| | - Kun'ichi Miyazawa
- Imaging Section; Okinawa Institute of Science and Technology Graduate School; Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit; Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| |
Collapse
|
17
|
Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ji W, Zhang S, Yukawa S, Onomura S, Sasaki T, Miyazawa K, Zhang Y. Regulating Higher-Order Organization through the Synergy of Two Self-Sorted Assemblies. Angew Chem Int Ed Engl 2018; 57:3636-3640. [PMID: 29411922 DOI: 10.1002/anie.201712575] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/12/2022]
Abstract
The extracellular matrix (ECM) is the natural fibrous scaffold that regulates cell behavior in a hierarchical manner. By mimicking the dynamic and reciprocal interactions between ECM and cells, higher-order molecular self-assembly (SA), mediated through the dynamic growth of scaffold-like nanostructures assembled by different molecular components, was developed. Designed and synthesized were two self-sorted coumarin-based gelators, a peptide molecule and a benzoate molecule, which self-assemble into nanofibers and nanobelts, respectively, with different dynamic profiles. Upon the dynamic growth of the fibrous scaffold assembled from peptide gelators, nanobelts assembled from benzoate gelators transform into a layer-by-layer nanosheet, reaching ninefold increase in height. By using light and an enzyme, the spatial-temporal growth of the scaffold can be modified, leading to in situ height regulation of the higher-order architecture.
Collapse
Affiliation(s)
- Wei Ji
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Sachie Yukawa
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shogo Onomura
- Shimadzu Techno-Research Co. Ltd., 1 Nishinokyo, Nakagyo-ku, Kyoto, 604-8436, Japan
| | - Toshio Sasaki
- Imaging Section, Okinawa Institute of Science and Technology Graduate School, Japan
| | - Kun'ichi Miyazawa
- Imaging Section, Okinawa Institute of Science and Technology Graduate School, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
19
|
Wei S, Zhou XR, Huang Z, Yao Q, Gao Y. Hydrogen sulfide induced supramolecular self-assembly in living cells. Chem Commun (Camb) 2018; 54:9051-9054. [DOI: 10.1039/c8cc05174g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gasotransmitter mediated reduction instructs supramolecular self-assembly in multiple living cell lines, revealing the variation in intracellular H2S production.
Collapse
Affiliation(s)
- Simin Wei
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xi-Rui Zhou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|