1
|
Karjee P, Debnath B, Mandal S, Saha S, Punniyamurthy T. One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chem Commun (Camb) 2024; 60:4068-4071. [PMID: 38506143 DOI: 10.1039/d4cc00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
One-pot C-N/C-C bond formation of donor-acceptor cyclopropanes (DACs) with tetrahydroisoquinolines (THIQs) has been achieved to furnish benzo-fused indolizines. These reactions involve a MgI2-catalyzed ring opening of DACs and oxidative annulation using Mn(OAc)3·2H2O. The substrate scope and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
2
|
To TA, Nguyen TV. Olefination of Aromatic Carbonyls via Site-Specific Activation of Cycloalkanone Ketals. Angew Chem Int Ed Engl 2024; 63:e202317003. [PMID: 37997004 DOI: 10.1002/anie.202317003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Skeletal editing is an important strategy in organic synthesis as it modifies the carbon backbone to tailor molecular structures with precision, enabling access to compounds with specific desired properties. Skeletal editing empowers chemists to transform synthetic approaches of target compounds across diverse applications from drug discovery to materials science. Herein, we introduce a new skeletal editing method to convert readily available aromatic carbonyl compounds into valuable unsaturated carboxylic acids with extended carbon chains. Our reaction setup enables a cascade reaction of enolization-[2+2]cycloaddition-[2+2]cycloreversion between aromatic carbonyl compounds and ketals of cyclic ketones to generate unsaturated carboxylic acids as ring-opening products. Through a simple design, our substrates are specifically activated to react at predetermined positions to enhance selectivity and efficiency. This practical method offers convenient access to versatile organic building blocks as well as provides fresh insights into manipulating traditional reaction pathways for new synthetic applications.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney Anzac Parade, Kensington, NSW 2052, Australia
| |
Collapse
|
3
|
Mishra G, Sasmal M, Chakraborty A, Thirupathi B. Synthesis of Highly Functionalized Spirocycles and Pentafulvene-Containing Dyes Involving 2-(2'-ketoalkyl)-1,3-indandiones. Chemistry 2023; 29:e202301976. [PMID: 37817469 DOI: 10.1002/chem.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Synthesis of highly functionalized spiro[4.4]nonane and spiro[4.5]decane motifs by the reaction of dimethylacetylenedicarboxylate (DMAD) with 2-(2'-ketoalkyl)-1,3-indandiones and 2-(3'-ketoalkyl)-1,3-indandiones, respectively, has been developed by utilizing a catalytic amount of DABCO. The tertiary hydroxy-containing spiro[4.4]nonane products were converted into fully conjugated pentafulvene π-systems in an acidic medium through dehydration and unprecedented C-C bond rearrangement.
Collapse
Affiliation(s)
- Gitanjali Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Mukesh Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Arundhuti Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| |
Collapse
|
4
|
Deswal S, Guin A, Biju AT. Benzotriazole-Triggered Three-Component Lewis Acid-Catalyzed Ring-Opening 1,3-Aminofunctionalization of Donor-Acceptor Cyclopropanes. Org Lett 2023; 25:1643-1648. [PMID: 36876870 DOI: 10.1021/acs.orglett.3c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of benzotriazoles as nucleophilic triggers in the three-component Yb(OTf)3-catalyzed ring-opening 1,3-aminofunctionalization of donor-acceptor (D-A) cyclopropanes is presented. Using N-halo succinimide (NXS) as the third component, the reaction afforded the 1,3-aminohalogenation product in up to an 84% yield. Moreover, using alkyl halides or Michael acceptors as the third components, the 3,1-carboaminated products are formed in up to a 96% yield in a one-pot operation. Employing Selectfluor as the electrophile, the reaction furnished the 1,3-aminofluorinated product in a 61% yield.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
5
|
Zhang D, Chen L, Deng H, Zhang Y, Cheng Q, Zhang QF. Asymmetric ring-opening reactions of donor-acceptor cyclopropanes with 1,3-cyclodiones. RSC Adv 2023; 13:7432-7435. [PMID: 36895764 PMCID: PMC9990749 DOI: 10.1039/d2ra08257h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Asymmetric ring-opening reactions of donor-acceptor cyclopropanes with 1,3-cyclodiones have been established for the synthesis of enantioenriched γ-hydroxybutyric acid derivatives in the presence of Cu(ii)/trisoxazoline catalyst. These reactions offered the desired products in 70% to 93% yields with 79% to 99% enantiomeric excesses.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Lvjia Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Huiqing Deng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Ying Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Qihang Cheng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| |
Collapse
|
6
|
Hazra A, Kanji T, Banerjee P. Merging Two Strained Carbocycles: Lewis Acid Catalyzed Remote Site-Selective Friedel-Crafts Alkylation of in Situ Generated β-Naphthol. J Org Chem 2023; 88:960-971. [PMID: 36578165 DOI: 10.1021/acs.joc.2c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lewis acid catalyzed tandem activation of the two smallest carbocycles, 3-ethoxy cyclobutanones, and donor-acceptor cyclopropanes has been demonstrated. The diphenyl-substituted 3-ethoxy cyclobutanone rearranges itself by intramolecular cyclization for the in situ generation of 1-phenyl 2-naphthol, which further undergoes remote site-selective Friedel-Crafts alkylation with donor-acceptor cyclopropane to synthesize a series of γ-naphthyl butyric acid derivatives. Further control experiments for mechanistic investigations and synthetic applications have also been carried out.
Collapse
Affiliation(s)
- Arijit Hazra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Tanmay Kanji
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Karjee P, Mishra M, Debnath B, Punniyamurthy T. Expedient Ni(OTf) 2/visible light photoredox-catalyzed annulation of donor-acceptor cyclopropanes with cyclic secondary amines. Chem Commun (Camb) 2022; 58:8670-8673. [PMID: 35822543 DOI: 10.1039/d2cc02941c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annulative coupling of donor-acceptor cyclopropanes with cyclic secondary amines is reported using the combination of Ni(OTf)2 and visible light assisted eosin Y catalysis for tandem C-N and C-C bond formation. The reaction sequence provides a potential synthetic tool for the construction of pyrrolotetrahydroisoquinolines.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
8
|
Kar S, Sarkar T, Maharana PK, Guha AK, Punniyamurthy T. Bi-Catalyzed 1,2-Reactivity of Spirocyclopropyl Oxindoles with Dithianediol: Access to Spiroheterocycles. Org Lett 2022; 24:4965-4970. [PMID: 35770789 DOI: 10.1021/acs.orglett.2c01928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient Bi-catalyzed 1,2-reactivity of spirocyclopropyl oxindoles has been disclosed with dithianediols as the sulfur surrogate to furnish spiroheterocycles at moderate temperature. The procedure provides a potential approach for the construction of spirotetrahydrothiophene scaffolds with functional group diversity. The catalytic 1,2-reactivity of cyclopropanes, mechanistic studies using density functional theory studies, diastereoselectivity, and additive-free mild conditions are the important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prabhat K Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati 781001, India
| | | |
Collapse
|
9
|
Thangamalar S, Thangamani M, Srinivasan K. The Cloke-Wilson rearrangement of aroyl-substituted donor-acceptor cylopropanes containing arylethyl donors. Org Biomol Chem 2022; 20:3145-3153. [PMID: 35343561 DOI: 10.1039/d2ob00292b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemistry of donor-acceptor (D-A) cyclopropanes containing alkyl donors has been scantily investigated. In the present work, we have synthesized new D-A cyclopropanes containing arylethyl donors and explored their reactivity in the presence of Lewis acids. Upon treatment with SnCl4, these cyclopropanes underwent the Cloke-Wilson rearrangement to yield 3,4,5-trisubstituted γ-butyrolactones in good yields with high diastereoselectivity.
Collapse
Affiliation(s)
| | - Murugesan Thangamani
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| |
Collapse
|
10
|
Guin A, Deswal S, Biju AT. Ring-Opening 1,3-Carbothiolation of Donor-Acceptor Cyclopropanes Using Alkyl Halides and In Situ Generated Dithiocarbamates. J Org Chem 2022; 87:6504-6513. [PMID: 35412311 DOI: 10.1021/acs.joc.2c00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two-step, ring-opening 1,3-carbothiolation of donor-acceptor (D-A) cyclopropanes employing alkyl halides and in situ generated dithiocarbamates (from amines and CS2) has been demonstrated under mild conditions. The reaction is operationally simple and works with good functional group compatibility. Three new bonds including C-N, C-S, and C-C are formed in this 1,3-bifunctionalization strategy. Electron-poor olefins can also be used as electrophiles instead of alkyl halides. The use of enantiomerically pure D-A cyclopropane afforded enantiopure 1,3-carbothiolated product, thus demonstrating the stereospecificity of the reaction.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Lewis-Acid-Catalyzed (3+2)-Cycloadditions of Donor-Acceptor Cyclopropanes with Thioketenes. European J Org Chem 2021; 2021:6250-6253. [PMID: 35875264 PMCID: PMC9290834 DOI: 10.1002/ejoc.202100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/28/2021] [Indexed: 11/06/2022]
Abstract
The reactivity of donor-acceptor (D-A) cyclopropanes towards thioketenes was investigated. In a (3+2)-cycloaddition using Sc(OTf)3 as a Lewis acidic catalyst, the corresponding exocyclic thioenol ethers (2-methylidene tetrahydrothiophenes) were formed in moderate to good yields. Unsymmetrical thioketenes provided E/Z mixtures at the double bond, with the Z isomer being preferred.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- University of ŁodźDepartment of Organic & Applied ChemistryTamka 1291-403ŁodźPoland
| | - Mateusz Kowalczyk
- University of ŁodźDepartment of Organic & Applied ChemistryTamka 1291-403ŁodźPoland
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
12
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. Transition-Metal-Free [3+2] Dehydration Cycloaddition of Donor-Acceptor Cyclopropanes With 2-Naphthols. Front Chem 2021; 9:711257. [PMID: 34336794 PMCID: PMC8322234 DOI: 10.3389/fchem.2021.711257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
A Brønsted acid-catalyzed domino ring-opening cyclization transformation of donor-acceptor (D-A) cyclopropanes and 2-naphthols has been developed. This formal [3+2] cyclization reaction provided novel and efficient access to the naphthalene-fused cyclopentanes in the absence of any transition-metal catalysts or additives. This robust procedure was completed smoothly on a gram-scale to afford the corresponding product with comparable efficiency. Furthermore, the synthetic application of the prepared product has been demonstrated by its transformation into a variety of synthetically useful molecules.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Kolb S, Ahlburg NL, Werz DB. Friedel-Crafts-Type Reactions with Electrochemically Generated Electrophiles from Donor-Acceptor Cyclopropanes and -Butanes. Org Lett 2021; 23:5549-5553. [PMID: 34231368 DOI: 10.1021/acs.orglett.1c01890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a general electrochemical method to functionalize donor-acceptor (D-A) cyclopropanes and -butanes with arenes utilizing Friedel-Crafts-type reactivity. The catalyst-free strategy relies on the direct anodic oxidation of the strained carbocycles, which leads after C(sp3)-C(sp3) cleavage to radical cations that act as electrophiles for the arylation reaction. Broad reaction scopes in regard to cyclopropanes, cyclobutanes, and aromatic reaction partners are presented. Additionally, a plausible electrolysis mechanism is proposed.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Nils L Ahlburg
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor-Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp 3 )-C(sp 3 ) Cleavage Mode. Angew Chem Int Ed Engl 2021; 60:15928-15934. [PMID: 33890714 PMCID: PMC8362004 DOI: 10.1002/anie.202101477] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Indexed: 12/03/2022]
Abstract
We describe the first electrochemical activation of D-A cyclopropanes and D-A cyclobutanes leading after C(sp3 )-C(sp3 ) cleavage to the formation of highly reactive radical cations. This concept is utilized to formally insert molecular oxygen after direct or DDQ-assisted anodic oxidation of the strained carbocycles, delivering β- and γ-hydroxy ketones and 1,2-dioxanes electrocatalytically. Furthermore, insights into the mechanism of the oxidative process, obtained experimentally and by additional quantum-chemical calculations are presented. The synthetic potential of the reaction products is demonstrated by diverse derivatizations.
Collapse
Affiliation(s)
- Simon Kolb
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Martin Petzold
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Felix Brandt
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph R. Jacob
- Technische Universität BraunschweigInstitute of Physical and Theoretical ChemistryGaußstraße 1738106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
15
|
Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Electrocatalytic Activation of Donor–Acceptor Cyclopropanes and Cyclobutanes: An Alternative C(sp
3
)−C(sp
3
) Cleavage Mode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Kolb
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Martin Petzold
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Felix Brandt
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig Institute of Physical and Theoretical Chemistry Gaußstraße 17 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
16
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. The Regioselective Functionalization Reaction of Unprotected Carbazoles with Donor-Acceptor Cyclopropanes. J Org Chem 2021; 86:9189-9199. [PMID: 34111921 DOI: 10.1021/acs.joc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regioselective functionalization reaction of unprotected carbazoles with donor-acceptor (D-A) cyclopropanes has been demonstrated for the first time. With Sc(OTf)3 as Lewis acid catalyst, the N-H functionalization of carbazoles takes place through a highly selective nitrogen-initiated nucleophilic ring opening reaction. Significantly, by engaging TfOH as Brønsted acid catalyst, a straightforward C-H functionalization at the 3-position of the unprotected carbazole proceeds via Friedel-Crafts-type addition. This strategy facilitates the diversity-oriented synthesis of carbazole-containing heterocycles and expands the novel application of D-A cyclopropanes.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
17
|
Piperidine‐Mediated [3+2] Cyclization of Donor‐Acceptor Cyclopropanes and β‐Nitrostyrenes: Access to Polysubsituted Cyclopentenes with High Diastereoselectivity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Ghosh K, Das S. Recent advances in ring-opening of donor acceptor cyclopropanes using C-nucleophiles. Org Biomol Chem 2021; 19:965-982. [PMID: 33471020 DOI: 10.1039/d0ob02437f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ring-opening transformations of donor-acceptor cyclopropanes (DAC) with carbon-centered nucleophiles is a simple, straight-forward approach to 1,3-bifunctional compounds that has witnessed remarkable progress over the past several years. To date, different reactivity patterns of DACs have been successfully exploited in racemic/stereoselective syntheses of various acyclic compounds or carbocycles with an impressive structural diversity. The thriving strategies have been successfully utilized in multistep synthesis of complex target molecules. Herein, the recent advances (2015-present) in the ring-opening of DAC involving electron rich arenes and indoles, active methylene compounds, various dipolarophiles, organoborates/boronates, vinyl ethers etc. following Friedel-Crafts alkylation, annulation/formal cycloaddition reaction, organocatalytic reaction, Nazarov cyclisation etc. are presented.
Collapse
Affiliation(s)
- Koena Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India.
| | - Subhomoy Das
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Augustin AU, Werz DB. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry. Acc Chem Res 2021; 54:1528-1541. [PMID: 33661599 DOI: 10.1021/acs.accounts.1c00023] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) cyclopropanes have gained increased momentum over the past two decades. The use of these highly strained three-membered entities paved the way to innovative and original transformations yielding complex cyclic and acyclic architectures that otherwise might be difficult to address. Since the fundamentals were laid by Wenkert and Reissig in the late 1970s, the field has flourished impressively including asymmetric transformations as well as elegant synthetic applications in the construction of natural occurring products. In this Account, we aim to highlight especially our efforts in the context of an efficient access to sulfur- and selenium-containing compounds, of either cyclic or open-chain nature, by exploiting D-A cyclopropane chemistry. Light will be shed on the three fundamental transformations: ring-opening reactions, cycloadditions, and rearrangements.Our synthetic endeavors started back in 2011 guided by quantum chemical studies to obtain 3,3'-linked bisthiophenes along with an unprecedented rearrangement delivering sulfur- and selenium-containing cagelike scaffolds. Inspired by these surprising results, we further deepened our efforts to the construction of new sulfur-carbon and selenium-carbon bonds within the context of D-A cyclopropane chemistry. In the first instance, we capitalized on the great versatility of organosulfur and organoselenium compounds regarding their amphiphilic character to act either as nucleophilic or as electrophilic species. By such an approach, ring-openings via a nucleophilic attack of sulfenyl and selenyl halides furnished 1,3-bishalochalcogenated products. A similar protocol led us to a desymmetrization reaction of meso-cyclopropyl carbaldehydes employing novel chiral imidazolidinone organocatalysts. In contrast, electrophilic sulfur was supplied by N-(arylthio)succinimide substrates to access thiolated γ-amino acid derivatives and their selenium equivalents.Combining the highly reactive thiocarbonyl compounds and vicinal donor-acceptor substituted cyclopropanes opened new vistas in the field of atom-economic cycloaddition reactions to build up sulfur-containing heterocycles of various sizes. The first systematic study of such transformations was made by our group in 2017 leading to highly decorated thiolanes, whereas an intramolecular approach furnished thia-[n.2.1]bicyclic ring systems. Our investigations were then successfully extended to the synthesis of tetrahydroselenophenes by using capricious selenoketones. Recently, we were able to yield the unsaturated analogues, selenophenes, by a (3 + 2)-cycloaddition of D-A cyclopropanes with ammonium selenocyanates followed by oxidation. The formal insertion of thioketenes was realized by employing 3-thioxocyclobutanones as surrogates for disubstituted thioketenes to obtain 2-substituted tetrahydrothiophenes bearing a semicyclic double bond via a (3 + 2) spiroannulation/(2 + 2) cycloreversion sequence. Even the formation of seven-membered S-heterocycles was realized by (4 + 3)-cycloaddition processes. In 2016, we demonstrated the synthesis of benzo-fused dithiepines from in situ generated ortho-bisthioquinones, whereas the utilization of thia-Michael systems as a hetero-4π-component delivered tetrahydrothiepine derivatives containing just one sulfur atom embedded in the ring system.
Collapse
Affiliation(s)
- André U. Augustin
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
20
|
Zhang D, Cai H, Chen Y, Yin L, Zhong J, Zhang Y, Zhang QF. Ring Opening of Donor-Acceptor Cyclopropanes with Acyclic 1,3-Diketones for the Synthesis of 1,6-Dicarbonyl Compounds. J Org Chem 2020; 85:14262-14270. [PMID: 33115228 DOI: 10.1021/acs.joc.0c02290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1,6-Dicarbonyl compounds, representing the formal addition products of the α-position of acetophenone derivatives to donor-acceptor cyclopropanes, were synthesized in two steps via first ring opening of donor-acceptor cyclopropanes with acyclic 1,3-diketones followed by DBU catalyzed retro-Claisen-type C-C bond cleavage reactions. In the first step, acyclic 1,3-diketones selectively worked as C-nucleophiles to add to donor-acceptor cyclopropanes. In the second step, the alkyl ketone part of the ring-opening products resulting from unsymmetrical 1,3-diketones was selectively cleaved in the presence of DBU in methanol.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Hu Cai
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Yan Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Lei Yin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Junchao Zhong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Ying Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| |
Collapse
|
21
|
Jacob A, Jones PG, Werz DB. (3 + 2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Selenocyanate: Synthesis of Dihydroselenophenes and Selenophenes. Org Lett 2020; 22:8720-8724. [DOI: 10.1021/acs.orglett.0c03329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anu Jacob
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
22
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C−H Functionalization of Heteroarene
N
‐Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
23
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C-H Functionalization of Heteroarene N-Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020; 59:22675-22683. [PMID: 32888227 DOI: 10.1002/anie.202010597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Although N-alkenoxyheteroarenium salts have been widely used as umpoled synthons with nucleophilic (hetero)arenes, the use of electron-poor heteroarenes has remained unexplored. To overcome the inherent electron deficiency of quinolinium salts, a traceless nucleophile-triggered strategy was designed, wherein the quinolinium segment is converted into a dearomatized intermediate, thereby allowing simultaneous C8-functionalization of quinolines at room temperature. Experimental and computational studies support the traceless operation of a nucleophile, which enables the previously inaccessible transformation of N-alkenoxyheteroarenium salts. Remarkably, the generality of this strategy has been further demonstrated by broad applications in the regioselective C-H functionalization of other electron-deficient heteroarenes such as phenanthridine, isoquinoline, and pyridine N-oxides, offering a practical tool for the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
24
|
Xu C, Wei N, Zhu D, Wang M. Cyclopentene Synthesis by a Catalytic [3+2] Annulation of Donor‐Acceptor Cyclopropanes with Polarized Alkenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Na Wei
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Dongsheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University 5268 Renmin Street Changchun, 130024 China
| |
Collapse
|
25
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020; 59:17511-17516. [DOI: 10.1002/anie.202008435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
26
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
27
|
Guo Y, Pei C, Koenigs RM. Substrate‐Controlled Cyclopropanation Reactions of Glycals with Aryl Diazoacetates. ChemCatChem 2020. [DOI: 10.1002/cctc.202000569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yujing Guo
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
28
|
Wang S, Xie Z, Li M, Wang C. K 2CO 3‐Promoted Ring‐Opening/Cyclization Reactions of Multi‐substituted Donor‐Acceptor Cyclopropanes with Thiourea: Access to 2‐Amino‐4,6‐diarylnicotinonitrile Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shan Wang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Zengyang Xie
- College of Basic Medicine Jining Medical University Jining 272067 PR China
| | - Mingshuang Li
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
29
|
Lücht A, Kreft A, Jones PG, Werz DB. Ketenedithioacetals as Surrogates for the Formal Insertion of Ketenes into Donor–Acceptor Cyclopropanes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000233] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alexander Lücht
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Alexander Kreft
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institute of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
30
|
Zhang D, Zhong J, Yin L, Chen Y, Man J, Zhang QF. Desymmetrization of 1-Symmetrical Donor-Acceptor (D-A) Cyclopropanes via Reactions with 1,3-Cyclodiones. J Org Chem 2020; 85:5778-5786. [PMID: 32255650 DOI: 10.1021/acs.joc.9b03231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of 1-unsymmetrical D-A cyclopropanes containing a cyclic enone motif was obtained by the desymmetrization of 1-symmetrical D-A cyclopropanes via first the Lewis acid-catalyzed O-nucleophilic ring-opening reaction with 1,3-cyclodiones followed by an organobase-promoted unexpected multistep intramolecular transformation.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Junchao Zhong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Lei Yin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Yan Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Jingjing Man
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| |
Collapse
|
31
|
Guin A, Rathod T, Gaykar RN, Roy T, Biju AT. Lewis Acid Catalyzed Ring-Opening 1,3-Aminothiolation of Donor–Acceptor Cyclopropanes Using Sulfenamides. Org Lett 2020; 22:2276-2280. [DOI: 10.1021/acs.orglett.0c00483] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Thukaram Rathod
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Tony Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
32
|
Werz DB, Biju AT. Uncovering the Neglected Similarities of Arynes and Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2020; 59:3385-3398. [PMID: 31529661 PMCID: PMC7065169 DOI: 10.1002/anie.201909213] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Arynes and donor-acceptor (D-A) cyclopropanes are two classes of strained systems having the potential for numerous applications in organic synthesis. The last two decades have witnessed a renaissance of interest in the chemistry of these species primarily because of the mild and robust methods for their generation or activation. Commonly, arynes as easily polarizable systems result in 1,2-disubstitution, whereas D-A cyclopropanes as polarized systems lead to 1,3-bisfunctionalization thereby showing striking similarities. Transformations with 1,2- and 1,3-dipoles afford cyclic structures. With arynes, emerging four-membered rings as intermediates might react further, whereas the analogous five-membered rings obtained from D-A cyclopropanes are most often the final products. However, there are a few cases where these intermediates behave surprisingly differently. This Minireview highlights the parallels in reactivity between arynes and D-A cyclopropanes thereby shedding light on the neglected similarities of these two reactive species.
Collapse
Affiliation(s)
- Daniel B. Werz
- Technische Universität BraunschweigInstitut für Organische ChemieHagenring 3038106BraunschweigGermany
| | - Akkattu T. Biju
- Department of Organic ChemistryIndian Institute of ScienceBangalore560012India
| |
Collapse
|
33
|
Li BQ, Qiu ZW, Ma AJ, Peng JB, Feng N, Du JY, Pan HP, Zhang XZ, Xu XT. Diastereoselective Synthesis of Cycloheptannelated Indoles via Lewis-Acid-Catalyzed (4 + 3)-Cyclization of Donor–Acceptor Cyclopropanes. Org Lett 2020; 22:1903-1907. [DOI: 10.1021/acs.orglett.0c00248] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
34
|
Zhou Y, Xue R, Feng Y, Zhang L. How does HOTf/HFIP Cooperative System Catalyze the Ring‐Opening Reaction of Cyclopropanes? A DFT Study. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yongzhu Zhou
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rong‐Chao Xue
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
| | - Yaqing Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of ScienceTianjin Chengjian University Tianjin 300384 P. R. of China
| |
Collapse
|
35
|
Tamilarasan VJ, Srinivasan K. AlCl3
-Promoted Ritter-Type Ring-Opening Reactions of γ-Butyrolactone Fused Donor-Acceptor Cyclopropanes with Wet Aliphatic Nitriles. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- V. John Tamilarasan
- School of Chemistry; Bharathidasan University; 620024 Tiruchirappalli Tamil Nadu India
| | - Kannupal Srinivasan
- School of Chemistry; Bharathidasan University; 620024 Tiruchirappalli Tamil Nadu India
| |
Collapse
|
36
|
Luo N, Liu J, Wang S, Wang C. DBU-promoted ring-opening reactions of multi-substituted donor–acceptor cyclopropanes: access to functionalized chalcones with a quaternary carbon group. Org Biomol Chem 2020; 18:9210-9215. [DOI: 10.1039/d0ob01895c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strategy to synthesize highly stereoselective chalcones with alkylcyanoacetate subunits via DBU-promoted ring-opening reactions of multi-substituted D–A cyclopropanes has been developed without the requirement of a transition metal catalyst and extra solvent.
Collapse
Affiliation(s)
- Naili Luo
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Jiamin Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Shan Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
37
|
Facile synthesis of spirosubstituted cyclopropanes through reaction of electron-deficient olefins and 1,3-indandione. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Zhang D, Yin L, Zhong J, Cheng Q, Cai H, Chen Y, Zhang QF. Ring-opening reactions of donor–acceptor cyclopropanes with cyclic ketals and thiol ketals. Org Biomol Chem 2020; 18:6492-6496. [DOI: 10.1039/d0ob01530j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic (thiol) ketals were used as hetero-nucleophiles for the ring opening of donor–acceptor cyclopropanes to afford functionalized diethers.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Lei Yin
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Junchao Zhong
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Qihang Cheng
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Hu Cai
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Yan Chen
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- China
| |
Collapse
|
39
|
Werz DB, Biju AT. Über bislang nicht beachtete Parallelen in der Reaktivität von Arinen und Donor‐Akzeptor‐Cyclopropanen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909213] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel B. Werz
- Technische Universität BraunschweigInstitut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Akkattu T. Biju
- Department of Organic ChemistryIndian Institute of Science Bangalore 560012 Indien
| |
Collapse
|
40
|
Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. (4 + 3)-Cycloaddition of Donor–Acceptor Cyclopropanes with Thiochalcones: A Diastereoselective Access to Tetrahydrothiepines. Org Lett 2019; 21:9405-9409. [DOI: 10.1021/acs.orglett.9b03623] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- André U. Augustin
- Technische Universität Braunschweig, Institute of Organic Chemistry and Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - J. Luca Merz
- Technische Universität Braunschweig, Institute of Organic Chemistry and Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Technische Universität Braunschweig, Institute of Organic Chemistry and Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Łodź, Tamka 12, 91-403 Łodź, Poland
| | - Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry and Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
41
|
Lanke V, Zhang FG, Kaushansky A, Marek I. Diastereoselective ring opening of fully-substituted cyclopropanes via intramolecular Friedel-Crafts alkylation. Chem Sci 2019; 10:9548-9554. [PMID: 32055326 PMCID: PMC6979362 DOI: 10.1039/c9sc03832a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
We herein disclose a diastereoselective ring opening of non-donor-acceptor cyclopropanes via an intramolecular Friedel-Crafts alkylation en route to functionalized dihydronaphthalene scaffolds possessing quaternary carbon stereocentres. The transformation proceeds through a selective bond breaking at the most alkylated carbon centre with a pure retention of configuration. Mechanistic investigations and computational studies revealed that alkoxy functionality is the key for selective bond breaking leading to a complete retention of configuration.
Collapse
Affiliation(s)
- Veeranjaneyulu Lanke
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City 3200009 , Haifa , Israel .
| | - Fa-Guang Zhang
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City 3200009 , Haifa , Israel .
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City 3200009 , Haifa , Israel .
| | - Ilan Marek
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City 3200009 , Haifa , Israel .
| |
Collapse
|
42
|
Wang D, Zhao J, Chen J, Xu Q, Li H. Intramolecular Arylative Ring Opening of Donor‐Acceptor Cyclopropanes in the Presence of Triflic Acid: Synthesis of 9
H
‐Fluorenes and 9,10‐Dihydrophenanthrenes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dongyang Wang
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Jing Zhao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Jun Chen
- Beijing Institute of Microchemistry No.15 Xinjiangongmen Road, Haidian District Beijing 100091 China
| | - Qing Xu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| | - Huan Li
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou, Zhejiang 325035 China
| |
Collapse
|
43
|
Mishra M, De PB, Pradhan S, Punniyamurthy T. Stereospecific Copper(II)-Catalyzed Tandem Ring Opening/Oxidative Alkylation of Donor-Acceptor Cyclopropanes with Hydrazones: Synthesis of Tetrahydropyridazines. J Org Chem 2019; 84:10901-10910. [PMID: 31385502 DOI: 10.1021/acs.joc.9b01506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aerobic copper(II)-catalyzed tandem ring opening and oxidative C-H alkylation of donor-acceptor cyclopropanes with bisaryl hydrazones is accomplished to produce tetrahydropyridazines, in which copper(II) plays dual role as a Lewis acid as well as redox catalyst. The reaction is stereospecific, and optically active cyclopropanes can be reacted with high optical purities (89-98% enantiomeric excess). The substrate scope, functional group tolerance, dual role of the copper(II) catalyst, and the use of air as an oxidant are the important practical features. A product bearing a 3-bromoaryl group can be subjected to Pd-catalyzed Suzuki coupling with boronic acid in high yield.
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Pinaki Bhusan De
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Sourav Pradhan
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | | |
Collapse
|
44
|
Kreft A, Ehlers S, Jones PG, Werz DB. Ring-Opening Reactions of Donor-Acceptor Cyclobutanes with Electron-Rich Arenes, Thiols, and Selenols. Org Lett 2019; 21:6315-6319. [PMID: 31380647 DOI: 10.1021/acs.orglett.9b02197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Donor-acceptor (D-A) cyclobutanes with two geminal ester groups as acceptors are reacted with electron-rich arenes as nucleophiles to afford ring-opened products. AlCl3 mediates this Friedel-Crafts-type reaction. A variety of donors and electron-rich arenes are used. Nucleophilic thiols and selenols also trigger this ring-opening reaction. Furthermore, a comparison of various physical parameters has been carried out for several D-A cyclobutanes.
Collapse
|
45
|
Sun W, Peng C, Yao Z, Xu F. Diastereoselective synthesis of α-dicarbonyl cyclopropanes via a lanthanide amide-catalysed reaction. Org Biomol Chem 2019; 17:6620-6628. [PMID: 31232412 DOI: 10.1039/c9ob00732f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide bis(trimethylsilyl)amides, [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3, were used as efficient catalysts for a one-pot reaction of α-ketoesters, dialkyl phosphite, and activated alkenes to produce α-dicarbonyl cyclopropanes in moderate to high yields. The reaction was stereoselective and the two adjacent carbonyls linked to the cyclopropane were in the cis-configuration. The high efficiency of the lanthanide amide in catalysing the reaction is the result of the cooperation between the lanthanide metal centre and the N(SiMe3)2 anion.
Collapse
Affiliation(s)
- Wenxi Sun
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Cheng Peng
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhigang Yao
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Fan Xu
- Key Laboratory of Organic Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
46
|
Lücht A, Sobottka S, Patalag LJ, Jones PG, Reissig HU, Sarkar B, Werz DB. New Dyes Based on Extended Fulvene Motifs: Synthesis through Redox Reactions of Naphthoquinones with Donor-Acceptor Cyclopropanes and Their Spectroelectrochemical Behavior. Chemistry 2019; 25:10359-10365. [PMID: 31106926 DOI: 10.1002/chem.201900764] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023]
Abstract
Novel dyes based on extended fulvene motifs are reported. The carbon skeleton was generated by a catalyzed addition of donor-acceptor cyclopropanes to naphthoquinone. The hydroxy group at the central ring of the tricyclic fulvene motif was converted into the triflate, which reacted efficiently with a wide range of nucleophiles, resulting in substitution and thereby providing new derivatives. The synthetic versatility allowed us to investigate the absorption, electrochemical, and UV/Vis-NIR spectroelectrochemical properties of these dyes as a function of the substituents. The dyes were shown to participate in reductive electrochemistry, the reversibility of which can be improved by appropriate selection of the substituents. Additionally, first signs of NIR electrochromism are presented, opening new avenues for the future investigations of such dyes.
Collapse
Affiliation(s)
- Alexander Lücht
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Lukas J Patalag
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
47
|
Ketan Das B, Pradhan S, Punniyamurthy T. Stereospecific assembly of tetrahydroquinolines via tandem ring-opening/oxidative cyclization of donor-acceptor cyclopropanes with N-alkyl anilines. Chem Commun (Camb) 2019; 55:8083-8086. [PMID: 31231737 DOI: 10.1039/c9cc04042k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An aerobic copper-catalyzed tandem reaction of N-alkyl anilines with donor-acceptor cyclopropanes is presented for the construction of tetrahydroquinolines via a sequential stereospecific ring opening and oxidative cyclization. The catalyst plays a dual role as a Lewis acid as well as being a redox catalyst. The use of air as an oxidant and the broad substrate scope are the important practical features.
Collapse
Affiliation(s)
- Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Sourav Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
48
|
Xu XL, Li Z. Catalytic Redox Chain Ring Opening of Lactones with Quinones To Synthesize Quinone-Containing Carboxylic Acids. Org Lett 2019; 21:5078-5081. [PMID: 31199158 DOI: 10.1021/acs.orglett.9b01672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic ring opening of five- to eight-membered lactones with quinones is achieved through a redox chain mechanism. With low loading of a simple metal triflate Lewis acid catalyst and a chain initiator, C-H bonds of many quinones were efficiently functionalized with carboxylic acid-containing side chains. This method also features 100% atom economy and wide substrate scope. A novel route to the anti-asthma drug Seratrodast was developed. Mechanism study suggests that the redox chain reaction likely undergoes a carbocation intermediate.
Collapse
Affiliation(s)
- Xiao-Long Xu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhi Li
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China 201210
| |
Collapse
|
49
|
Nambu H, Onuki Y, Ono N, Tsuge K, Yakura T. Ring-opening cyclization of spirocyclopropanes with stabilized sulfonium ylides for the construction of a chromane skeleton. Chem Commun (Camb) 2019; 55:6539-6542. [PMID: 31106310 DOI: 10.1039/c9cc03023a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regioselective ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with stabilized sulfonium ylides provided 2,3-trans-disubstituted 2,3,4,6,7,8-hexahydro-5H-1-benzopyran-5-ones in high yields without the formation of any isomers. The obtained product was readily converted into highly substituted chromane.
Collapse
Affiliation(s)
- Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Yuta Onuki
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Naoki Ono
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
50
|
Petzold M, Jones PG, Werz DB. (3+3)‐Annulation of Carbonyl Ylides with Donor–Acceptor Cyclopropanes: Synergistic Dirhodium(II) and Lewis Acid Catalysis. Angew Chem Int Ed Engl 2019; 58:6225-6229. [DOI: 10.1002/anie.201814409] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Petzold
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|