1
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
2
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
3
|
Sk S, Mursed Ali S, Aash A, Kolay S, Mondal A, Mondal S, Hossain Khan A, Sepay N, Rahaman Molla M. Solvent Geometry Regulated J- and H-Type Aggregates of Photoswitchable Organogelator: Phase-Selective Thixotropic Gelation and Oil Spill Recovery. Chemistry 2024; 30:e202303369. [PMID: 38258609 DOI: 10.1002/chem.202303369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
We demonstrate supramolecular polymerization and formation of 1D nanofiber of azobenzene based organogelator (AZO-4) in cyclic hydrocarbon solvents (toluene and methylcyclohexane). The AZO-4 exhibits J- and H-type aggregates in toluene: MCH (9 : 1) and MCH: toluene (9 : 1) respectively. The type of aggregate was governed by the geometry of the solvents used in the self-assembly process. The J-type aggregates with high thermal stability in toluene is due to the enhanced interaction of AZO-4 π- surface with the toluene π-surface, whereas H-aggregate with moderate thermal stability in MCH was due to the interruption of the cyclic hydrocarbon in van der Waals interactions of peripheral chains of AZO-4 molecule. The light induced reversible photoisomerization is observed for both J- and H-aggregates. The macroscopic property revealed spontaneous and strong gelation in toluene preferably due to the strong interactions of the AZO-4 nanofibers with the toluene solvent molecules compared to the MCH. The rheological measurements revealed thixotropic nature of the gels by step-strain experiments at room temperature. The thermodynamic parameter (ΔHm) of gel-to-sol transition was determined for all the gels to get more insight into the gelation property. Furthermore, the phase selective gelation property was extended to the oil spill recovery application using diesel/water and petrol/water mixture.
Collapse
Affiliation(s)
- Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| | - Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| | - Asmita Aash
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| | - Sahabaj Mondal
- Chemical Science, IISER Kolkata, Campus Rd, Mohanpur, Haringhata Farm, India-, 741246
| | - Ali Hossain Khan
- Chemical and Biological Sciences, SNBNCBS Saltlake, JD Block, Sector 3, Bidhan Nagar, Kolkata, India-, 700106
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourse College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, India-, 700017
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata, India-, 700009
| |
Collapse
|
4
|
Zhang X, Ma K, Yu Z, Zhou J, Zhang C, Dai R. Reusable Solid-form Phase-Selective Organogelators for Rapid and Efficient Remediation of Crude Oil Spill. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2091-2101. [PMID: 38227788 DOI: 10.1021/acs.langmuir.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Phase-selective organogelators (PSOGs) are considered as a prospective tool for their application in oil spill remediation. However, the number of reports on the PSOGs that can be used in powder form for prompt phase-selective gelation of crude oils is still limited. In this study, a series of compounds with l-mandelic acid as the scaffold bearing different amino acid fragments have been prepared. Also, the gelation behaviors and properties of these derivatives toward organic liquids, product oils, and a type of Chinese crude oil were investigated via heating-and-cooling process, stirring, or resting operation. Besides, the micromorphologies of the resulting gels and the driving forces for the gel formation have been studied by scanning electron microscopy, Fourier transform infrared, UV spectroscopy, concentration-dependent 1H NMR, and X-ray diffraction. Particularly, gelator C15-Phe-Mac-Nap was shown to have the capability of congealing the Chinese crude oil selectively from water in powder form with a relatively lower gelator dosage, as compared with the other gelators we reported in the current and previous works. Moreover, gelator C15-Phe-Mac-Nap displayed some advantageous behaviors such as the reusability of gelator, excellent mechanical and chemical stability of the crude oil gels, and nontoxicity of the gelator in the aquatic environment, indicating its great potential application value for marine oil spill remediation.
Collapse
Affiliation(s)
- Xin Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ke Ma
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziqian Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinming Zhou
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Caicai Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ran Dai
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Xue Y, Shen Y, Chen X, Dong L, Li J, Guan Y, Li Y. Sodium Alginate Aerogel as a Carrier of Organogelators for Effective Oil Spill Solidification and Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1515-1523. [PMID: 38176104 DOI: 10.1021/acs.langmuir.3c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Marine oil spills pose a serious threat to the marine ecological environment. Phase-selective organogelators (PSOGs) are ideal candidates for oil spill gelation when used in combination with a mechanical recovery method. However, the toxicity of an organic solvent carrier has become a key problem when it is applied in the remediation of marine oil pollution. In this study, through an inexpensive and nontoxic ionic cross-linking and freeze-drying method, we successfully developed composite oil gelling agents that used a biomass sodium alginate aerogel as the carrier of 12-hydroxystearic acid (12-HSA). Simultaneously, carboxylated cellulose nanofibers (CNF-C) with large specific surface area and graphene oxide (GO) with excellent mechanical properties as reinforcing fillers were combined with an alginate matrix. 12-HSA, as a green and inexpensive organic gelator, was uniformly loaded on the aerogels by vacuum impregnation. The sodium alginate aerogel was capable of absorbing and storing oil due to its three-dimensional network skeleton and high porosity. Rheological studies have demonstrated that the organic gelator 12-HSA can be released from the aerogel substrate and self-assemble to form an oleogel with the absorbed oil quickly. The synergistic effect between absorption and congelation endows the composite oil gelling agent with efficient oil spill recovery capability. Based on eco-friendly, biodegradable, and simple synthesis methods, this composite oil gelling agent shows great potential for application in marine oil spill recovery.
Collapse
Affiliation(s)
- Ying Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Limei Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Junfeng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
6
|
Tian Y, Qi Y, Chen S, Qiao Z, Han H, Chen Z, Wang H, Zhang Y, Chen H, Wang L, Gong X, Chen Y. Hydrogen bond recombination regulated by strongly electronegative functional groups in demulsifiers for efficient separation of oil-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132525. [PMID: 37716267 DOI: 10.1016/j.jhazmat.2023.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Tight oil extraction and offshore oil spills generate large amounts of oil-water emulsions, causing serious soil and marine pollution. In such oil-water emulsions, the resin molecules are bound by π-π stacking and bind to interfacial water molecules via hydrogen bonds, which impede the aggregation between water droplets and thereby the separation of the emulsion. In this study, strongly electronegative oxygen atoms (in ethylene oxide, propylene oxide, esters, and hydroxyl groups) were introduced through poly(propylene glycol)-block-polyether and esterification with acrylic acid to attract negative charges in order to form electron-rich regions and enhance interfacial hydrogen bond recombination. The potential distribution in the demulsifier molecules and their space occupancy were regulated by the polymerization reaction to destroy the π-π stacking interaction between resin molecules. The results show that the binding energies (binding free energy and hydrogen bonding energy) of oxygen-containing demulsifier molecules with water molecules were higher than those of resin molecules with water molecules, resulting in the fission of the hydrogen bonds between resin and water molecules. The introduction of demulsifier molecules that occupied large interfacial space reduced the binding energy between resin molecules from -2176.06 to -110.00 kJ·mol-1. Noteworthy, the binding energy between demulsifier molecules and resin molecules was -1076.36 kJ·mol-1 lower than that between resin molecules (-110.00 kJ·mol-1), indicating the adsorption of the surrounding interfacial resin molecules by the demulsifier molecules and destruction of the π-π stacking between them, thus favoring the collapse of the interfacial structure of the oil-water emulsion and achieving its separation. This study provides important theoretical support for the treatment of oil-contaminated soil and offshore oil spill pollution.
Collapse
Affiliation(s)
- Yuxuan Tian
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Yaming Qi
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China; óDesign branch of PetroChina (Xinjiang) Petroleum Engineering Co., Ltd, Petro China, 834000 Kelamayi, Xinjiang, PR China
| | - Sijia Chen
- PetroChina Petrochemical Research Institute, Daqing Chemical Engineering Research Center, Daqing 163714, PR China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387 China
| | - Hongjing Han
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China.
| | - Zherui Chen
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Haiying Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Yanan Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Huiying Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Leilei Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China
| | - Xuzhong Gong
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yanguang Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, Northeast Petroleum University, Daqing 163318, PR China.
| |
Collapse
|
7
|
Cui S, Qi B, Liu H, Sun X, He R, Lian J, Li Y, Lu J, Bao M. Aluminum soap nanoparticles-lignin powder form phase-selective gelator as an efficient sorbent for oils/water separation. CHEMOSPHERE 2023; 340:139803. [PMID: 37579821 DOI: 10.1016/j.chemosphere.2023.139803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Rapid and efficient recovery of oil spill is the key link for oil spill remediation, and also a great challenge. Here, the organogelator-polymerized porous matrix composed of adsorbents and organogelators can provide a new strategy for solving this problem. The gelling mechanism of aluminum 12-hydroxystearate (Al HSA) to form spherical nano micelles in solvents was investigated via UV-vis, FT-IR, and XRD. A creative method for aluminum soap-lignin gelator (OTS-AL/Al HSA) syntheses was put forward through the saponification of 12-hydroxystearic acid (HSA) and lignin via epichlorohydrin (ECH) crosslinking. By adjusting the ECH content, the growth of Al HSA nanoparticles (15-40 nm) on lignin can be realized, and the accordingly increased roughness endowed gelator with better hydrophobicity (WCA of 134.6°) before octadecyltrichlorosilane (OTS) modification. Thanks to the porous structures, the gelator powder exhibited a high sorption capacity in the range of 3.5-5.2 g g-1 for oils and organic solvents. Rheological studies demonstrated high mechanical strength of gels (>1.6 × 105 pa) and the gelator still retained 70% sorption capacity after 6 gelation-distillation cycles. The gelation characteristics of OTS-AL/Al HSA were attributed to the rapid sorption of oils by lignin and the self-assembly of Al HSA nano micelles on lignin to form an aggregated network structure trapping oils, thus realizing the synergistic effect of oil sorption-gelation.
Collapse
Affiliation(s)
- Suwan Cui
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Bohao Qi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Rui He
- Qingdao Guangming Environmental Technology Ltd, Qingdao, 266071, China
| | - Junshuai Lian
- Qingdao Guangming Environmental Technology Ltd, Qingdao, 266071, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
8
|
Vujičić NŠ, Makarević J, Popović J, Štefanić Z, Žinić M. ( N-Alkyloxalamido)-Amino Acid Amides as the Superior Thixotropic Phase Selective Gelators of Petrol and Diesel Fuels. Gels 2023; 9:852. [PMID: 37998942 PMCID: PMC10670479 DOI: 10.3390/gels9110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
(N-Alkyloxalamido)-amino acid amides 9-12 exhibit excellent gelation capacities toward some lipophilic solvents as well as toward the commercial fuels, petrol and diesel. Gelator 10 exhibits an excellent phase-selective gelation (PSG) ability and also possesses the highest gelation capacity toward petrol and diesel known to date, with minimum gelation concentration (MGC) values (%, w/v) as low as 0.012 and 0.015, respectively. The self-assembly motif of 10 in petrol and toluene gel fibres is determined from xerogel X-ray powder diffraction (XRPD) data via the simulated annealing procedure (SA) implemented in the EXPO2014 program and refined using the Rietveld method. The elucidated motif is strongly supported by the NMR (NOE and variable temperature) study of 10 toluene-d8 gel. It is shown that the triple unidirectional hydrogen bonding between gelator molecules involving oxalamide and carboxamide groups, together with their very low solubility, results in the formation of gel fibres of a very high aspect ratio (d = 10-30 nm, l = 0.6-1.3 μm), resulting in the as-yet unprecedented capacity of gelling commercial fuels. Rheological measurements performed at low concentrations of 10 confirmed the strength of the self-assembled network with the desired thixotropic properties that are advantageous for multiple applications. Instantaneous phase-selective gelation was obtained at room temperature through the addition of the 10 solution to the biphasic mixture of diesel and water in which the carrier solvent was congealed along with the diesel phase. The superior gelling properties and PSG ability of 10 may be used for the development of more efficient marine and surface oil spill recovery and waste water treatment technologies as well as the development of safer fuel storage and transport technologies.
Collapse
Affiliation(s)
- Nataša Šijaković Vujičić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Janja Makarević
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia;
| | - Jasminka Popović
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Synthesis and Crystallography of Functional Materials, Bijenička 54, 10000 Zagreb, Croatia;
| | - Zoran Štefanić
- Ruđer Bošković Institute, Division of Physical Chemistry, Laboratory for Chemical and Biological Crystallography, Bijenička 54, 10000 Zagreb, Croatia;
| | - Mladen Žinić
- Croatian Academy of Sciences and Arts, Nikole Šubića Zrinskog 11, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Biswas A, Bera S. Limes to Remediate Marine Oil Spill via Green and Ecofriendly In Situ Salt Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2667-2675. [PMID: 36757752 DOI: 10.1021/acs.langmuir.2c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An absolute remedy to oil spill is still much solicited owing to empirical issues like (i) viability of the strategy right on the marine surface, (ii) operational ease of the entire process, and (iii) cost of the entire execution, which are difficult to resolve via solo operation. Current work demonstrates a hassle-free, green, and eco-friendly strategy to fix these issues simultaneously. Herein, spontaneous salt formation between carboxylic acids and primary amines, is employed against oil spill. Lime juice, a natural source of citric acid, is used directly with primary amines to congeal petrol/crude oil and spilled-over seawater (at room temperature) without any external stimulus/solvent. The chemistry behind such gelation is probed comprehensively using established physicochemical methods. A realistic model is fabricated by crude oil spilled over marine water and its removal via selective gelation. The recovery of precious oil from accumulated gel is achieved through simple pressure filtration. The feasibility and implications of this strategy is comprehensively analyzed, and an executable blueprint for real-field operation is developed.
Collapse
Affiliation(s)
- Arnab Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700 032, West Bengal, India
| | - Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
10
|
Ouyang D, Lei X, Zheng H. Recent Advances in Biomass-Based Materials for Oil Spill Cleanup. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:620. [PMID: 36770581 PMCID: PMC9920432 DOI: 10.3390/nano13030620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Oil spill on sea surfaces, which mainly produced by the oil leakage accident happened on tankers, offshore platforms, drilling rigs and wells, has bring irreversible damage to marine environments and ecosystems. Among various spill oil handling methods, using sorbents to absorb and recover spill oils is a perspective method because they are cost-effective and enable a high recovery and without secondary pollution to the ecosystem. Currently, sorbents based on biomass materials have aroused extensively attention thanks to their features of inexpensive, abundant, biodegradable, and sustainable. Herein, we comprehensively review the state-of-the-art development of biomass-based sorbents for spill oil cleanup in the recent five years. After briefly introducing the background, the basic theory and material characteristics for the separation of oil from water and the adsorption of oils is also presented. Various modification methods for biomass materials are summarized in section three. Section four discusses the recent progress of biomass as oil sorbents for oil spill cleanup, in which the emphasis is placed on the oil sorption capacity and the separation efficiency. Finally, the challenge and future development directions is outlined.
Collapse
Affiliation(s)
- Dan Ouyang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xiaotian Lei
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Honglei Zheng
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Damavandi F, Soares JBP. Facile and Efficient Phase-Selective Powder Polymer Organogelator for Oil Spill Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12666-12673. [PMID: 36194557 DOI: 10.1021/acs.langmuir.2c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase-selective organogelators that gel oils from oil/water mixtures are useful to remediate oil spills on water. We designed and synthesized polymer organogelators, poly(styrene-co-10-undecenoic acid) with five different 10-undecenoic acid contents that could be added as powders at room temperature to gel oils with different viscosities. The morphologies and mechanical strengths of the gels were investigated using field-emission electron microscopy and rheological measurements, respectively. The gels formed porous fibrillar structures and had high stiffness. Fourier transformm infrared (FTIR) spectroscopy studies of these gels showed that hydrogen bonding and van der Waals forces helped create three-dimensional networks. The straightforward synthesis procedure, room-temperature conditions, and easy powder delivery make poly(styrene-co-10-undecenoic acid) an attractive alternative to existing oil spill response methods.
Collapse
Affiliation(s)
- Fereshte Damavandi
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| | - João B P Soares
- Department of Chemical and Material Engineering, University of Alberta, 9211 116 St., Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
12
|
Li SL, He JH, Li Z, Lu JH, Liu BW, Fu T, Zhao HB, Wang YZ. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129272. [PMID: 35739787 DOI: 10.1016/j.jhazmat.2022.129272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Frequent oil spills have caused severe environmental and ecological damage. Effective cleanup has become a complex challenge owing to the poor flowability of viscous crude oils. The current method of solar heating to reduce the viscosity of heavy oil is only suitable during sunny days, while the use of Joule heating is limited by the risk of direct exposure to high-voltage electricity. Herein, we demonstrate a noncontact electromagnetic induction and solar dual-heating sponge for the quick, safe, and energy-saving cleanup of ultrahigh-viscosity heavy oil. The resulting sponge with magnetic, conductive, and hydrophobic properties can be rapidly heated to absorb heavy oil under alternating magnetic fields, solar irradiation, or both of these conditions. By constructing theoretical models and fitting the actual data, an in-depth analysis of induction and solar heating processes is carried out. The sponge has excellent resilience and stability, indicating its reusability, fast and continuous adsorption (16.17 g in 10 s), and large capacity (75-81 g/g, the highest value ever) for soft asphalt (a highly viscous crude oil). This work provides a new noncontact dual-heating strategy for heavy oil cleanup, in which absorbents use induction heating during an emergency and then switch to partial or full solar heating to save energy in sunny conditions. ENVIRONMENTAL IMPLICATION: Heavy oils stranded on the beach or floating on water can kill underwater plants by blocking sunlight, or trap water birds and other animals. Heavy oil also contains aromatic substances that are toxic to aquatic organisms. Although oil spills near shallow water cannot be cleaned up by fences or other machinery, an oil adsorbent can deal with this problem. However, common adsorbents cannot effectively absorb high-viscosity oils, such as heavy oil. In this paper, an induction and solar dual-heating sponge is developed for the effective cleanup of high-viscosity oil.
Collapse
Affiliation(s)
- Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie-Hao He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhen Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jia-Hui Lu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
Yang Y, Wang L, Li X, Liu D, Dai S, Lu H. Carboxylate Group-Based Phase-Selective Organogelators with a pH-Triggered Recyclable Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9567-9574. [PMID: 35881913 DOI: 10.1021/acs.langmuir.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.
Collapse
Affiliation(s)
- Yang Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Li Wang
- College of Material Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China
| |
Collapse
|
14
|
Mattsson I, Lahtinen M, Sitdikov R, Wank B, Saloranta-Simell T, Leino R. Phase-selective low molecular weight organogelators derived from allylated d-mannose. Carbohydr Res 2022; 518:108596. [DOI: 10.1016/j.carres.2022.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
15
|
Rai R, Sureshan KM. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022; 61:e202111623. [DOI: 10.1002/anie.202111623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Rishika Rai
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
16
|
Seida Y, Tokuyama H. Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent. Gels 2022; 8:gels8040220. [PMID: 35448121 PMCID: PMC9028382 DOI: 10.3390/gels8040220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few decades, various adsorption functions of polymer hydrogels for the removal of hazardous pollutants have been developed. The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. Research on hydrogels utilizing the characteristic functions of polymer networks has increased over the last decade. The functions of polymer networks are key to the development of advanced adsorbents for the removal of various pollutants. No review has discussed hydrogel adsorbents from the perspective of the roles and functions of polymer networks in hydrogels. This paper briefly reviews the basic requirements of adsorbents and the general characteristics of hydrogels as adsorbents. Thereafter, hydrogels are reviewed on the basis of the roles and functions of the polymer networks in them for the removal of hazardous pollutants by introducing studies published over the last decade. The application of hydrogels as adsorbents for the removal of hazardous pollutants is discussed as well.
Collapse
Affiliation(s)
- Yoshimi Seida
- Natural Science Laboratory, Toyo University, 5-28-20 Hakusan, Bunkyo-ku, Tokyo 112-8606, Japan
- Correspondence: ; Tel.: +81-3-3945-4894
| | - Hideaki Tokuyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan;
| |
Collapse
|
17
|
Zhang YP, Niu WY, Yang YS, Yuan YZ, Zhang HR. A chalcone organic gel for oil spill recovery and wastewater treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Sureshan KM, Rai R. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research Thiruvananthapuram School of Chemistry ThiruvananthapuramMaruthamalaVithura 695551 Thiruvananthapuram INDIA
| | - Rishika Rai
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram Chemistry 695551 Thiruvananthapuram INDIA
| |
Collapse
|
19
|
Das A, Naskar S, Dhar M, Manna U. Rapid and Scalable Synthesis of a Vanillin-Based Organogelator and Its Durable Composite for a Comprehensive Remediation of Crude-Oil Spillages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46803-46812. [PMID: 34570477 DOI: 10.1021/acsami.1c14640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phase-selective organogelators (PSOGs) that have immense potential in effective oil/water separation, antifouling coating, ice-repellent coating, and so on are often synthesized by following complex and multistep synthesis procedures that involve additional and tedious purification steps. On the other side, a comprehensive, selective, environmentally friendly, and energy-efficient separation of different and complex forms of oil spillages (e.g., floating oil or oil-in-water emulsions) from contaminated aqueous phase is challenging to achieve based on earlier-reported PSOGs and their composites. Here, vanillin, a naturally abundant molecule, is unprecedentedly exploited to synthesize a purified PSOG (with a yield of 97%) by adopting a catalyst-free, single-step, and rapid (<2 min) synthesis process under ambient conditions. The Schiff's base reaction between the aldehyde group of vanillin and the primary amine group of octadecylamine provided the desired and purified PSOG-without demanding any additional purification processes (e.g., column chromatography). The appropriate coexistence of the imine linkage, hydrocarbon tail, and hydroxyl group in the vanillin-derived organogelator (VDOG) played an important role in achieving a self-standing organogel that sustained ∼60 times the external load of its weight-without having any noticeable physical deformation. Further, an appropriate and facile integration of the synthesized VDOG with a commercially available biodegradable porous and spongy matrix (i.e., polyurethane sponge) allowed us to develop an oil-selective absorbent with (1) enhanced water repellency (140°) and (2) superior oil-absorption capacity (i.e., 55.2 times its own weight). Such composite material remained durable for repetitive (at least for 50 cycles) and distillation-free separation/recovery of crude oil at practically relevant severe and diverse settings. Thereafter, the synthesized VDOG was successfully and unprecedentedly extended to demonstrate rapid, facile, and efficient separation of surfactant-stabilized oil-in-water emulsions.
Collapse
Affiliation(s)
- Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Sarajit Naskar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- School of Health Science & Technology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
20
|
Ortuño RM. Carbocycle-Based Organogelators: Influence of Chirality and Structural Features on Their Supramolecular Arrangements and Properties. Gels 2021; 7:gels7020054. [PMID: 34062755 PMCID: PMC8162357 DOI: 10.3390/gels7020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The rational design and engineer of organogel-based smart materials and stimuli-responsive materials with tuned properties requires the control of the non-covalent forces driving the hierarchical self-assembly. Chirality, as well as cis/trans relative configuration, also plays a crucial role promoting the morphology and characteristics of the aggregates. Cycloalkane derivatives can provide chiral chemical platforms allowing the incorporation of functional groups and hydrophobic structural units able for a convenient molecular stacking leading to gels. Restriction of the conformational freedom imposed by the ring strain is also a contributing issue that can be modulated by the inclusion of flexible segments. In addition, donor/acceptor moieties can also be incorporated favoring the interactions with light or with charged species. This review offers a perspective on the abilities and properties of carbocycle-based organogelators starting from simple cycloalkane derivatives, which were the key to establish the basis for an effective self-assembling, to sophisticated polycyclic compounds with manifold properties and applications.
Collapse
Affiliation(s)
- Rosa M Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Fan T, Liu Z, Ouyang J, Li P. Preparation of an Intelligent Oleophobic Hydrogel and Its Application in the Replacement of Locally Damaged Oil Pipelines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52018-52027. [PMID: 33156987 DOI: 10.1021/acsami.0c15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the pipeline transportation process for crude oil, the most important and popular maintenance method for perforated and ruptured oil pipelines is the replacement of the damaged pipeline segment. However, this method has several disadvantages, including a complex process, large time consumption, and excessively high costs. The present study reported the preparation of a strong cross-linking hydrogel that served as a temporary blocking material during the long-distance oil pipeline partial replacement process. The prepared product was characterized by infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy to analyze the microscopic reactions and structures. Orthogonal experiments for shear stress were performed to determine the optimal synthesis condition. The relevant experiments indicated that the proposed product can effectively isolate oil and oil gas, and a 4.5 m long hydrogel can resist the force of a 0.57 MPa overpressure. The blocked pipeline turned to a dredged state on changing the pipeline pressure. The flame resistance experiment showed that the hydrogel exhibited excellent flame resistance and could therefore ensure the safety of the hot work. On the basis of this hydrogel material, a new method for replacing the partially damaged oil pipeline was proposed.
Collapse
Affiliation(s)
- Tao Fan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenyi Liu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiting Ouyang
- School of physics, Beijing Institute of Technology, Beijing 100081, China
| | - Pengliang Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Mondal B, Bairagi D, Nandi N, Hansda B, Das KS, Edwards-Gayle CJC, Castelletto V, Hamley IW, Banerjee A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb 2+ and Cd 2+ Ions from Wastewater and Oil Spill Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12942-12953. [PMID: 33078952 DOI: 10.1021/acs.langmuir.0c02205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to form hydrogels in the pH range 6.9-8.5 and organogels in various organic solvents including petroleum ether, diesel, kerosene, and petrol. These organogels and hydrogels have been thoroughly studied and characterized by different techniques including high-resolution transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and rheology. It has been found that the xerogel obtained from the peptide gelator can trap various toxic organic dyes from wastewater efficiently. Moreover, the hydrogel has been used to remove toxic heavy metal ions Pb2+ and Cd2+ from wastewater. Dye adsorption kinetics has been studied, and it has been fitted by using the Freundlich isotherm equation. Interestingly, the gelator amphiphilic peptide gels fuel oil, kerosene, diesel, and petrol in a biphasic mixture of salt water and oil within a few seconds. This indicates that these gels not only may find application in oil spill recovery but also can be used to remove toxic organic dyes and hazardous toxic metal ions from wastewater. Moreover, the gelator can be recycled several times without significant loss of activity, suggesting the sustainability of this new gelator. This holds future promise for environmental remediation by using peptide-based gelators.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nibedita Nandi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Valeria Castelletto
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
23
|
Vibhute AM, Sureshan KM. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators? CHEMSUSCHEM 2020; 13:5343-5360. [PMID: 32808717 DOI: 10.1002/cssc.202001285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Marine oil spills is one of the frequent natural disasters that adversely affect the economy and ecosystem. A variety of methods have been developed to combat marine oil spills. However, none of these methods is ideal and universal for tackling different kinds of oil spills. In addition, most of these methods do not offer the possibility for recovering the spilt oil. There is great interest in developing novel and better methods for combating marine oil spills that allow recovery of the spilt oil. The use of low molecular weight organogelators that can selectively congeal oil from oil-water mixtures have been proposed to be useful for oil spill recovery. From this initial proposal, the area has progressed gradually towards their practical implementation. The advancements and novel concepts in this area are reviewed.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
24
|
Chen J, Boott CE, Lewis L, Siu A, Al-Debasi R, Carta V, Fogh AA, Kurek DZ, Wang L, MacLachlan MJ, Hum G. Amino Acid-Containing Phase-Selective Organogelators: A Water-Based Delivery System for Oil Spill Treatment. ACS OMEGA 2020; 5:18758-18765. [PMID: 32775877 PMCID: PMC7408258 DOI: 10.1021/acsomega.0c01821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/09/2020] [Indexed: 05/05/2023]
Abstract
The simple structural modification of replacing a terminal carboxylic acid with a primary amide group was found to lower the minimum gelation concentration (MGC), by at least an order of magnitude, for a series of N-lauroyl-l-amino acid phase-selective organogelators in decane. The amide-functionalized analogue N-lauroyl-l-alanine-CONH2 was demonstrated to gel a broad range of solvents from diesel to THF at MGCs of 2.5% w/v or less, as well as to produce gels with a higher thermal stability (ca. 30 °C) and enhanced mechanical properties (5 times increase in complex modulus), compared to the carboxylic acid analogue, N-lauroyl-l-alanine-COOH. These improved properties may be due to the additional hydrogen bonding in the primary amide analogue as revealed by SCXRD. Most significantly for this study, the introduction of the primary amide functionality enabled N-lauroyl-l-alanine-CONH2 to form a self-assembled fibrillar network in water. The aqueous network could then actively uptake and rapidly gel decane, diesel, and diluted bitumen ("dilbit") with MGCs of 2.5% w/v or less. This aqueous delivery method is advantageous for oil-remediation applications as no harmful carrier solvents are required and the gel can be easily separated from the water, allowing the oil to be recovered and the gelator recycled.
Collapse
Affiliation(s)
- Jun Chen
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Charlotte E. Boott
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lev Lewis
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Andrew Siu
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Renad Al-Debasi
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Veronica Carta
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Amanda A. Fogh
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Daniel Z. Kurek
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Lilo Wang
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| | - Mark J. MacLachlan
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gabriel Hum
- BC
Research Inc., 12920
Mitchell Rd, Richmond BC
V6V 1M8, Canada
| |
Collapse
|
25
|
Kiliona KPS, Zhou M, Zhu Y, Lan P, Lin N. Preparation and surface modification of crab nanochitin for organogels based on thiol-ene click cross-linking. Int J Biol Macromol 2020; 150:756-764. [PMID: 32061849 DOI: 10.1016/j.ijbiomac.2020.02.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022]
Abstract
Incompatibility of chitin nanomaterials with organic solvents is challenging in the design of the desirable organogels. The long hydrocarbon chains were covalently grafted on the surface of nanochitins, with the attachment of reactive allyl groups and improved dispersion in organic solvents. The reactive thiol groups of poly (ethylene glycol) were introduced into the allyl-nanochitin suspensions to produce the organogels by the thiol-ene click reaction. Attributed to the UV-induced cross-linking between the soft segments of thiolated-PEG and the allyl-nanochitin, the stable organogels with the storage modulus higher than the loss modulus by one order of magnitude were obtained, exhibiting the significant phase transition and mechanical enhancement on the rheological behavior. The combination of crystalline allyl-nanochitin and polymeric chains played a crucial role in the construction of the micro-network, attributing to the stability and mechanical strength of the organogels.
Collapse
Affiliation(s)
- Kulang Primo Sokiri Kiliona
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yan Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, PR China.
| |
Collapse
|
26
|
Synthesis of TiO2@lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02068-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Peron JMR, Packman H, Peveler WJ, Bear JC. In situ formation of low molecular weight organogelators for slick solidification. RSC Adv 2020; 10:13369-13373. [PMID: 35493007 PMCID: PMC9051380 DOI: 10.1039/c9ra10122e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/22/2020] [Indexed: 12/18/2022] Open
Abstract
We have investigated the in situ formation of Low Molecular Weight Organogelator (LMWO) molecules in oil-on-water slicks through dual reactive precursor injection. This method alleviates the need for any carrier solvent or prior heating, therefore reducing the environmental impact of LMWOs, giving instantaneous gelation, even at low temperatures (−5 °C). We show minimal leaching from our gels into the water layer. Instantaneous gelation: a reactive precursors approach for the near-instant gelation of oil-on-water slicks down to −5 °C.![]()
Collapse
Affiliation(s)
- Jean-Marie R Peron
- Department of Chemical and Pharmaceutical Sciences, Kingston University Kingston upon Thames Surrey KT1 2EE UK
| | - Hollie Packman
- Department of Earth Science and Engineering, South Kensington Campus, Imperial College London SW7 2AZ UK
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow Glasgow G12 8QQ UK
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University Kingston upon Thames Surrey KT1 2EE UK
| |
Collapse
|
28
|
Zhang Y, Zhang Y, Cao Q, Wang C, Yang C, Li Y, Zhou J. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135807. [PMID: 31862593 DOI: 10.1016/j.scitotenv.2019.135807] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The traditional fluorinated porous material with super-hydrophobicity and super-oleophilicity is an effective strategy for oil-water separation. However, in recent years, fluorinated materials have been classified as "Emerging Environmental Pollutants" by U. S. Environmental Protection Agency because of difficult degradation and bio-accumulation. It is unacceptable to introduce new pollutants while solving environmental disasters. Therefore, it is great requirement to explore a low-cost, environmentally friendly, and renewable technique for the fabrication of novel porous materials with super-hydrophobicity and super-oleophilicity to separate oil-water mixtures. In this work, renewable beeswax, lignin, and cotton have been chosen to prepare the biomass-based porous materials with super-hydrophobicity and super-oleophilicity for oil-water separation. The mixture of beeswax and lignin is modified on the surface of cotton to obtain the biomass-based porous materials with super-hydrophobicity and super-oleophilicity. The beeswax and lignin provide low surface energy and micro/nanoscale structures, respectively. The introduction of lignin effectively improves the thermal stability of the porous materials. The apparent contact angle still remains to be above 150° after a long-time heating. The porous materials effectively separate oil-water mixtures and have good absorption effect for heavy oil (density greater than water). Moreover, the porous materials are easily recyclable after reactivation. This strategy of preparing oil-water separation materials from renewable natural polymers not only helps to clean the environment, but also helps to recover valuable oil.
Collapse
Affiliation(s)
- Yuqing Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| | - Yiwen Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| | - Qiping Cao
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| | - Chunyu Wang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| | - Chao Yang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China.
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Qinggongyuan NO.1, Ganjingzi District, Dalian, Liaoning Province l16034, China
| |
Collapse
|
29
|
Chowdhury S, Nandi SK, Podder D, Haldar D. Conformational Heterogeneity and Self-Assembly of α,β,γ-Hybrid Peptides Containing Fenamic Acid: Multistimuli-Responsive Phase-Selective Gelation. ACS OMEGA 2020; 5:2287-2294. [PMID: 32064390 PMCID: PMC7017408 DOI: 10.1021/acsomega.9b03532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The effect of fenamic acid-α-aminoisobutyric acid corner motif in α,β,γ-hybrid peptides has been reported. From X-ray single-crystal diffraction studies, it is observed that Phe-containing peptide 1 has an "S"-shaped conformation that is stabilized by two consecutive intramolecular N-H···N hydrogen bonds. However, the tyrosine analogue peptide 2 has an "S"-shaped conformation, which is stabilized by consecutive intramolecular six-member N-H···N and seven-member N-H···O hydrogen bonds. The asymmetric unit of peptide 3 containing m-aminobenzoic acid has two molecules which are stabilized by multiple intermolecular hydrogen-bonding interactions. There are also π-π stacking interactions between the aromatic rings of fenamic acid. The peptides 1 and 2 have a polydisperse microsphere morphology, but peptide 3 has an entangled fiber-like morphology. Peptides 1-3 do not form organogels. However, in the presence of water, the peptide 3 forms a phase-selective instant gel in xylene. The gel exhibits high stability and thermal reversibility. The phase-selective gel of peptide 3 is highly responsive to H2SO4.
Collapse
|
30
|
Yang X, Yu J, Zhang Y, Peng Y, Li Z, Feng C, Sun Z, Yu XF, Cheng J, Wang Y. Visible-near-infrared-responsive g-C 3N 4H x+ reduced decatungstate with excellent performance for photocatalytic removal of petroleum hydrocarbon. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120994. [PMID: 31425912 DOI: 10.1016/j.jhazmat.2019.120994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The development of photocatalysts making full use of natural light sources is highly desired for the remediation of marine oil spill pollution, which is full of challenges. Herein, we demonstrate a well-defined visible-near-infrared-responsive g-C3N4Hx+ reduced decatungstate charge-transfer salt (RCD-CTS), which possess efficient light-absorption ability ranging from visible light to the near infrared region. The RCD-CTS photocatalyst exhibits excellent performance for photocatalytic removal of petroleum hydrocarbon. The structural characterization and theoretical calculation confirmed strong chemical interaction between components and partly reduction of decatungstate results in the plasmonic properties and the absorption of near infrared light. As a results, it is proposed that"hot electrons"transfer process generated by plasmon effect promotes the efficient separation of charge-carriers. Ultimately, this work sheds light on the discovery and application of visible-near-infrared-responsive optical materials that may be exploited further in artificial photosynthesis, solar energy conversion, and phototherapy.
Collapse
Affiliation(s)
- Xiaolong Yang
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China.
| | - Jianqiang Yu
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Yanhua Peng
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Chenjie Feng
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Zhaoli Sun
- School of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ning-Xia Road, Qingdao, 266071, PR China
| | - Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, No. 32 Qingquan Road, Yantai, 264005, PR China.
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, No. 32 Qingquan Road, Yantai, 264005, PR China
| | - Yan Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou, 730000, PR China
| |
Collapse
|
31
|
Pathak NP, Rajkamal, Yadav S. A gelator–starch blend for dry powder based instant solidification of crude oil at room temperature. Chem Commun (Camb) 2020; 56:2999-3002. [DOI: 10.1039/c9cc09943c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A sugar based organogelator and natural polymer blend has been found to be useful for the ultrafast, room temperature solidification of crude oil in a dry powder form.
Collapse
Affiliation(s)
- Navendu P. Pathak
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Rajkamal
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Somnath Yadav
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| |
Collapse
|
32
|
Minju N, Ananthakumar S, Savithri S. Superswelling Hybrid Sponge from Water Glass for Selective Absorption of Crude Oil and Organic Solvents. ACS OMEGA 2019; 4:17990-18001. [PMID: 31720503 PMCID: PMC6843722 DOI: 10.1021/acsomega.9b01655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
A lightweight super hydrophilic hybrid sponge is designed and demonstrated out of water glass and an organic polymer, which has a macroporous flaky nature and is superflexible with an apparent density of 0.069 g cc-1, ∼97% porosity, and 3000% water uptake. The octadecyltrimethoxy silane-modified hybrid sponge exhibits selective absorption of oil and organic solvents in open water. An absorption capacity in the range 12-23 g g-1 for the test liquids light crude oil, engine oil, paraffin oil, chloroform, kerosene, and hexane is revealed. Absorption capacity by a weight basis was directly proportional to the density and inversely proportional to the viscosity of test liquids. Trials under both stagnant and turbulent conditions verify selective uptake of oil from sea water. Complete regeneration of the absorbent was possible for ten cycles for the test liquids. The work provides design of an affordable water clean-up material alternative to commonly used polyurethane sponges.
Collapse
Affiliation(s)
- Nadukkandy Minju
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Solaiappan Ananthakumar
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sivaraman Savithri
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Sperandio C, Quintard G, Naubron J, Giorgi M, Yemloul M, Parrain J, Rodriguez J, Quintard A. Strategic Stereoselective Halogen (F, Cl) Insertion: A Tool to Enhance Supramolecular Properties in Polyols. Chemistry 2019; 25:15098-15105. [PMID: 31453654 DOI: 10.1002/chem.201902983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Céline Sperandio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères, IMP-UMR CNRS 5223 69621 Villeurbanne France
| | - Jean‐Valere Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole Marseille France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole Marseille France
| | - Mehdi Yemloul
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean‐Luc Parrain
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Adrien Quintard
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
34
|
Shen X, Li B, Pan T, Wu J, Wang Y, Shang J, Ge Y, Jin L, Qi Z. Self-assembly behaviors of perylene- and naphthalene-crown macrocycle conjugates in aqueous medium. Beilstein J Org Chem 2019; 15:1203-1209. [PMID: 31293667 PMCID: PMC6604709 DOI: 10.3762/bjoc.15.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
The synthesis of conjugates of perylene diimide (PDI) and naphthalene diimide (NDI) modified with two benzo-21-crown-7 ethers (B21C7) are herein described. Their self-assembly behavior in various solvents was investigated particularly in aqueous medium, due to the recently discovered hydrophilic properties of B21C7 crown macrocycle. An unexpected fluorescence quenching phenomenon was observed in the PDI-B21C7 macrocycle conjugate in chloroform. The detailed UV-vis absorption and fluorescence spectra of these PDI/NDI derivatives in different solvents as well as their morphologies were investigated.
Collapse
Affiliation(s)
- Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Bo Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Jianfeng Wu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
35
|
Zhang X, Li Z, Che X, Yu L, Jia W, Shen R, Chen J, Ma Y, Chen GQ. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019; 20:3303-3312. [PMID: 31094501 DOI: 10.1021/acs.biomac.9b00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.
Collapse
Affiliation(s)
- Xu Zhang
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Zihua Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Xuemei Che
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China
| | - Linping Yu
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Wangyue Jia
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Rui Shen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jinchun Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Yiming Ma
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
36
|
Prathap A, Sureshan KM. Sugar-Based Organogelators for Various Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6005-6014. [PMID: 30983352 DOI: 10.1021/acs.langmuir.9b00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this Feature Article, we discuss the design strategy, syntheses, and the self-assembly of various sugar-based gelators to form organogels. We illustrate the use of organogels formed by these sugar-based gelators for various applications such as (a) development of scratch-free, shatter-free, soft-optical devices using oil gels formed by mannitol-based gelators, (b) marine oil-spill recovery using sugar-based phase selective organogelators, (c) preparation of semiconducting cotton cloths using a diyne functionalized sugar gelator, (d) development of sugar arrays on glass slides using a polymerizable diyne functionalized sugar gelator for efficient lectin binding, (e) development of sintering resistant hybrid CaO-silica material for the absorption of CO2, (f) preparation of porous polystyrene-crown ether matrix for the selective alkali metal ions sequestration, and (g) preparation of porous polystyrene, structured silica, and fluorescent gels using a library of sugar-based gelators, and also the mechanism of gelation of some of these gelators have been discussed. We have also given our perspective toward exploring sugar-based gelators for advanced applications.
Collapse
Affiliation(s)
- Annamalai Prathap
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Maruthamala (P.O.), Vithura , Kerala 695551 , India
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Maruthamala (P.O.), Vithura , Kerala 695551 , India
| |
Collapse
|
37
|
Kana M. Sureshan. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Kana M. Sureshan. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/anie.201813029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Sun HL, Chuai J, Wei H, Zhang X, Yu H. Multi-functional organic gelator derived from phenyllactic acid for phenol removal and oil recovery. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:46-53. [PMID: 30502572 DOI: 10.1016/j.jhazmat.2018.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Supramolecular gels, a fascinating class of soft materials, are of great interest for their wide applications. In this work, a series of organic gelators derived from phenyllactic acid were prepared, and their gelation properties were further investigated. It was found that the gelator 1e bearing a hydrazine moiety could congeal 17 kinds of common organic liquids (polar and non-polar) efficiently. Meanwhile, the morphological structures and dominant factors of the gel were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), concentration and temperature-dependent 1H NMR. Crucially, the gelator displayed outstanding performances in toxic phenol removal and spilled oil and petroleum products recovery. Moreover, it also displayed a satisfactory recyclability, which will greatly promote its application in practice. These impressive results will provide a novel avenue for the water treatment and the development of functional supramolecular gel materials.
Collapse
Affiliation(s)
- He-Lue Sun
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jing Chuai
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Haoqi Wei
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xin Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Haitao Yu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
40
|
Thamizhanban A, Lalitha K, Nagarajan S. Self-Assembled Soft Materials for Energy and Environmental Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
41
|
Pi-Boleda B, Campos M, Sans M, Basavilbaso A, Illa O, Branchadell V, Estévez JC, Ortuño RM. Synthesis and Gelling Abilities of Polyfunctional Cyclohexane-1,2-dicarboxylic Acid Bisamides: Influence of the Hydroxyl Groups. Molecules 2019; 24:molecules24020352. [PMID: 30669453 PMCID: PMC6358840 DOI: 10.3390/molecules24020352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
New enantiomerically pure C16-alkyl diamides derived from trihydroxy cyclohexane-1,2-dicarboxylic acid have been synthesized from (−)-shikimic acid. The hydroxyl groups in these compounds are free or, alternatively, they present full or partial protection. Their gelling abilities towards several solvents have been tested and rationalized by means of the combined use of Hansen solubility parameters, scanning electron microscopy (SEM), and circular dichroism (CD), as well as computational calculations. All the results allowed us to account for the capability of each type of organogelator to interact with different solvents and for the main mode of aggregation. Thus, compounds with fully protected hydroxyl groups are good organogelators for methanol and ethanol. In contrast, a related compound bearing three free hydroxyl groups is insoluble in water and polar solvents including alcohols but it is able to gelate some low-polarity solvents. This last behavior can be justified by strong hydrogen bonding between molecules of organogelator, which competes advantageously with polar solvent interactions. As an intermediate case, an organogelator with two free hydroxyl groups presents an ambivalent ability to gelate both apolar and polar solvents by means of two aggregation patterns. These involve hydrogen bonding interactions of the unprotected hydroxyl groups in apolar solvents and intermolecular interactions between amide groups in polar ones.
Collapse
Affiliation(s)
- Bernat Pi-Boleda
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - María Campos
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marta Sans
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
- The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Antonio Basavilbaso
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ona Illa
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Vicenç Branchadell
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Juan Carlos Estévez
- CIQUS (Centro Singular de Investigación en Química Biológica y Materiales Moleculares), Departamento de Química Orgánica Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Rosa M Ortuño
- Department de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
42
|
Ju H, Zhou X, Shi B, Kong X, Xing H, Huang F. A pillar[5]arene-based hydrogel adsorbent in aqueous environments for organic micropollutants. Polym Chem 2019. [DOI: 10.1039/c9py01373c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pillar[5]arene-based hydrogel adsorbent was prepared for the removal of multiple types of organic micropollutants based on host–guest interactions.
Collapse
Affiliation(s)
- Huaqiang Ju
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xiaoqi Zhou
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xueqian Kong
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Hao Xing
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
43
|
Chen A, Samankumara LP, Garcia C, Bashaw K, Wang G. Synthesis and characterization of 3-O-esters of N-acetyl-d-glucosamine derivatives as organogelators. NEW J CHEM 2019. [DOI: 10.1039/c9nj00630c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fourteen glycolipids were synthesized; all alkyl esters were organogelators. The hexanoate was a phase-selective gelator for oil in water.
Collapse
Affiliation(s)
- Anji Chen
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | | | - Consuelo Garcia
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Kristen Bashaw
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| |
Collapse
|
44
|
Prathap A, Ravi A, Pathan JR, Sureshan KM. Halobenzyl alcohols as structurally simple organogelators. CrystEngComm 2019. [DOI: 10.1039/c9ce01008d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report 11 simple halobenzyl alcohols, each comprising of only 16 atoms, as organogelators for aliphatic hydrocarbon solvents. Their self-assembly is similar in both gel and crystal states and involve OH⋯O, CH⋯O, CH⋯π, O⋯X, CH⋯X and X⋯X interactions.
Collapse
Affiliation(s)
- Annamalai Prathap
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Arthi Ravi
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Javed R. Pathan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| |
Collapse
|
45
|
Kumar BA, Nayak RR. Phenoxy‐Alkyl Maleates as Phase‐Selective Organogelators for Gelation of Edible Oils. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bijari A. Kumar
- Centre for Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyUppal RoadHyderabad500 007India
- Academy of Scientific and Innovative ResearchNew Delhi110 025India
| | - Rati R. Nayak
- Centre for Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyUppal RoadHyderabad500 007India
- Academy of Scientific and Innovative ResearchNew Delhi110 025India
| |
Collapse
|
46
|
Cyclobutane-based peptides/terpyridine conjugates: Their use in metal catalysis and as functional organogelators. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Xiong Q, Bai Q, Li C, Lei H, Liu C, Shen Y, Uyama H. Cost-Effective, Highly Selective and Environmentally Friendly Superhydrophobic Absorbent from Cigarette Filters for Oil Spillage Clean up. Polymers (Basel) 2018; 10:E1101. [PMID: 30961026 PMCID: PMC6403843 DOI: 10.3390/polym10101101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Ecological and environmental damage caused by oil spillage has attracted great attention. Used cigarette filters (CF) have also caused negative environmental consequences. Converting CF to economical materials is a feasible way to address these problems. In this study, we demonstrate a simple method for production of a highly hydrophobic absorbent from CF. CF was modified by using different volume ratios of octadecyltrichlorosilane and methyltrimethoxysilane. When the volume ratio was 3:2, the modified CF had the high water contact angle of 155°. It could selectively and completely absorb silicone oil from an oil-water mixture and showed a good absorption capacity of 38.3 g/g. The absorbed oil was readily and rapidly recovered by simple mechanical squeezing, and it could be reused immediately without any additional treatments. The as-obtained superhydrophobic modified CF retained an absorption capacity of 80% for pump oil and 82% for silicone oil after 10 cycles. The modified CF showed good elasticity in the test of repeated use. The present study provides novel design of a functional material for development of hydrophobic absorbents from used CF via a facile method toward oil spillage cleanup, as well as a new recycling method of CF to alleviate environmental impacts.
Collapse
Affiliation(s)
- Qiancheng Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
- College of Pharmaceutical Engineering, Shaanxi Fashion Engineering University, Xi'an 712046, China.
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Huan Lei
- College of Pharmaceutical Engineering, Shaanxi Fashion Engineering University, Xi'an 712046, China.
| | - Chaoyun Liu
- College of Pharmaceutical Engineering, Shaanxi Fashion Engineering University, Xi'an 712046, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
48
|
Li J, Huo Y, Zeng H. Polar Solvent-Induced Unprecedented Supergelation of (Un)Weathered Crude Oils at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8058-8064. [PMID: 29905482 DOI: 10.1021/acs.langmuir.8b01643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of carrier solvents to assist dissolution of phase-selective organogelators (PSOGs) before application in oil gelation is a common approach for solution-based gelators. Because of the competition in H-bonds by the polar carrier solvent, decreased gelling ability of PSOGs was often observed. That is, while data are available, the previously documented biphasic minimum gelling concentrations (BMGCs) are much larger than the MGCs determined using heating-cooling cycle for the same PSOG against the same oil. In this study, we show that, by minimizing amount of polar carrier solvent used, the gelling ability of PSOGs actually can be enhanced very substantially, rather than being weakened. More specifically, we demonstrate that use of a minute amount of polar carrier solvents of different types (e.g., ethyl acetate, acetone, acetonitrile, and tetrahydrofuran) significantly enhances the gelling ability of seven structurally different organogelators in hydrophobic oil. In particular, with the use of 5 vol % essentially nontoxic ethyl acetate, application of this previously unexplored strategy onto four monopeptide-based PSOGs produces up to 11-fold improvement in biphasic gelling ability toward seven (un)weathered crude oils of widely ranging viscosities. While collectively overcoming many problematic issues (slow gelling action, low gelling ability, or a need to use hot or toxic solvent for dissolution of gelator) associated with PSOGs, this surprisingly simple yet powerful and reliable method produces unprecedented rapid supergelation of crude oil at room temperature, with BMGCs of as low as 0.38 w/v % (e.g., 3.8 g per liter of crude oil) and an averaged reduction in material cost of gelators by 85-97%.
Collapse
Affiliation(s)
- Juntong Li
- Faculty of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou , Guangdong 510006 , China
| | - Yanping Huo
- Faculty of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou , Guangdong 510006 , China
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| |
Collapse
|
49
|
Mukherjee S, Desai AV, Ghosh SK. Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Basu N, Chakraborty A, Ghosh R. Carbohydrate Derived Organogelators and the Corresponding Functional Gels Developed in Recent Time. Gels 2018; 4:E52. [PMID: 30674828 PMCID: PMC6209255 DOI: 10.3390/gels4020052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to their multifarious applicability, studies of molecular and supramolecular gelators and their corresponding gels have gained momentum, particularly in the last two decades. Hydrophobic⁻hydrophilic balance, different solvent parameters, gelator⁻gelator and gelator⁻solvent interactions, including different noncovalent intermolecular interactive forces like H-bonding, ionic interactions, π⁻π interactions, van der Waals interactions, etc., cause the supramolecular gel assembly of micro and nano scales with different types of morphologies, depending on the gelator, solvent, and condition of gelation. These gel structures can be utilized for making template inorganic superstructures for potential application in separation, generation of nanocomposite materials, and other applications like self-healing, controlled drug encapsulation, release and delivery, as structuring agents, oil-spill recovery, for preparation of semi-conducting fabrics, and in many other fields. Sugars, being easily available, inexpensive, and nontoxic natural resources with multi functionality and well-defined chirality are attractive starting materials for the preparation of sugar-based gelators. This review will focus on compilation of sugar derived organogelators and the corresponding gels, along with the potential applications that have been developed and published recently between January 2015 and March 2018.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, West Bengal 712246, India.
| | - Arijit Chakraborty
- Department of Chemistry, Acharya B. N. Seal College, Cooch Behar, West Bengal 736101, India.
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|