1
|
Le L, Zeng H, Zhou W, Tang N, Yin SF, Kambe N, Qiu R. Catalyst-Free, Zn-Mediated Decarboxylative Coupling of Chlorostibines to Access Alkylstibines with Stable C(sp 3)-Sb Bonds. Org Lett 2024; 26:6018-6023. [PMID: 38968445 DOI: 10.1021/acs.orglett.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Herein, decarboxylative C(sp3)-Sb coupling of aliphatic carboxylic acid derivatives with chlorostibines to access alkylstibines has been achieved. This catalyst-, ligand-, and base-free approach using zinc as a reductant affords various kinds of benzyldiarylstibines and other monoalkyldiarylstibines and tolerates various functional groups, including chlorine, bromine, hydroxyl, amide, sulfone, and cyano groups. The late-stage modification and the gram-scale experiments illustrate its potential application.
Collapse
Affiliation(s)
- Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huifan Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Geng S, Pu Y, Wang S, Ji Y, Feng Z. Advances in disilylation reactions to access cis/ trans-1,2-disilylated and gem-disilylated alkenes. Chem Commun (Camb) 2024; 60:3484-3506. [PMID: 38469709 DOI: 10.1039/d4cc00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and gem-disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis. This review provides a comprehensive summary of methods for the preparation of cis/trans-1,2-disilylated and gem-disilylated alkenes. Despite notable advancements in this field, certain limitations persist, including challenges related to regioselectivity in the incorporation and chemoselectivity in the transformation of two nearly identical silyl groups. The primary objective of this review is to outline synthetic methodologies for the generation of these alkenes through disilylation reactions, employing silicon reagents, specifically disilanes, hydrosilanes, and silylborane reagents. The review places particular emphasis on investigating the practical applications of the C-Si bond of disilylalkenes and delves into an in-depth discussion of reaction mechanisms, particularly those reactions involving the activation of Si-Si, Si-H, and Si-B bonds, as well as the C-Si bond formation.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yanru Ji
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
3
|
Serafino A, Pierre H, Le Vaillant F, Boutet J, Guillamot G, Neuville L, Masson G. Visible-Light-Driven Decarboxylative Borylation: Rapid Access to α- and β-Amino-boronamides. Org Lett 2023; 25:9249-9254. [PMID: 38113295 DOI: 10.1021/acs.orglett.3c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we described a two-step process involving an efficient visible-light-induced decarboxylative borylation of α- and β-amino redox-active esters with bis(catecholato)diboron, followed by transamination with 1,8-diaminonapthalene (DANH2). A series of boronamides were obtained in moderate to excellent yields in this one-pot procedure. The photochemical process proved to be very efficient even when conducted under flow conditions with shorter reaction durations and scalable synthesis of DAN boronates.
Collapse
Affiliation(s)
- Andrea Serafino
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Hugo Pierre
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Franck Le Vaillant
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Boutet
- SEQENS SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, 69130 Ecully, France
| | - Gérard Guillamot
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Luc Neuville
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Géraldine Masson
- Labcom HitCat, SEQENS-CNRS Joint Laboratory, SEQENS'Lab, 8 Rue de Rouen, 78440 Porcheville, France
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Nguyen AT, Kim HK. Visible-light-mediated synthesis of oxime esters via multicomponent reactions of aldehydes, aryl amines, and N-hydroxyphthalimide esters. RSC Adv 2023; 13:31346-31352. [PMID: 37901270 PMCID: PMC10600831 DOI: 10.1039/d3ra06737h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/31/2023] Open
Abstract
Oxime esters are useful scaffolds in many organic chemistry transformations. Herein, a novel visible-light-mediated three-component reaction for synthesis of oxime esters is reported. Aldehydes, aniline, and N-hydroxyphthalimide (NHPI) esters were used as substrates in this three-component reaction, and eosin Y was used as a crucial photocatalyst for the reaction. Wide ranges of aldehydes and NHPI esters were well tolerated in this reaction method, generating various oxime esters with high efficiency under mild reaction conditions. This visible-light-mediated methodology will be a promising approach to synthesize useful oxime esters in a single step.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
5
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
6
|
Tang M, Zhu W, Sun H, Wang J, Jing S, Wang M, Shi Z, Hu J. Facile preparation of organosilanes from benzylboronates and gem-diborylalkanes mediated by KO tBu. Chem Sci 2023; 14:7355-7360. [PMID: 37416710 PMCID: PMC10321478 DOI: 10.1039/d3sc02461j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Methods to efficiently synthesize organosilanes are valuable in the fields of synthetic chemistry and materials science. During the past decades, boron conversion has become a generic and powerful approach for constructing carbon-carbon and other carbon-heteroatom bonds, but its potential application in forming carbon-silicon remains unexplored. Herein, we describe an alkoxide base-promoted deborylative silylation of benzylic organoboronates, geminal bis(boronates) or alkyltriboronates, allowing for straightforward access to synthetically valuable organosilanes. This selective deborylative methodology exhibits operational simplicity, broad substrate scope, excellent functional group compatibility and convenient scalability, providing an effective and complementary platform for the generation of diversified benzyl silanes and silylboronates. Detailed experimental results and calculated studies revealed an unusual mechanistic feature of this C-Si bond formation.
Collapse
Affiliation(s)
- Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenyan Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
7
|
Miura H, Doi M, Yasui Y, Masaki Y, Nishio H, Shishido T. Diverse Alkyl-Silyl Cross-Coupling via Homolysis of Unactivated C(sp 3)-O Bonds with the Cooperation of Gold Nanoparticles and Amphoteric Zirconium Oxides. J Am Chem Soc 2023; 145:4613-4625. [PMID: 36802588 DOI: 10.1021/jacs.2c12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Since C(sp3)-O bonds are a ubiquitous chemical motif in both natural and artificial organic molecules, the universal transformation of C(sp3)-O bonds will be a key technology for achieving carbon neutrality. We report herein that gold nanoparticles supported on amphoteric metal oxides, namely, ZrO2, efficiently generated alkyl radicals via homolysis of unactivated C(sp3)-O bonds, which consequently promoted C(sp3)-Si bond formation to give diverse organosilicon compounds. A wide array of esters and ethers, which are either commercially available or easily synthesized from alcohols participated in the heterogeneous gold-catalyzed silylation by disilanes to give diverse alkyl-, allyl-, benzyl-, and allenyl silanes in high yields. In addition, this novel reaction technology for C(sp3)-O bond transformation could be applied to the upcycling of polyesters, i.e., the degradation of polyesters and the synthesis of organosilanes were realized concurrently by the unique catalysis of supported gold nanoparticles. Mechanistic studies corroborated the notion that the generation of alkyl radicals is involved in C(sp3)-Si coupling and the cooperation of gold and an acid-base pair on ZrO2 is responsible for the homolysis of stable C(sp3)-O bonds. The high reusability and air tolerance of the heterogeneous gold catalysts as well as a simple, scalable, and green reaction system enabled the practical synthesis of diverse organosilicon compounds.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuki Yasui
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yosuke Masaki
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
8
|
Wang J, Duan Z, Liu X, Dong S, Chen K, Li J. Salt-Stabilized Silylzinc Pivalates for Nickel-Catalyzed Carbosilylation of Alkenes. Angew Chem Int Ed Engl 2022; 61:e202202379. [PMID: 35179292 DOI: 10.1002/anie.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/14/2022]
Abstract
We herein report the preparation of solid and salt-stabilized silylzinc pivalates from the corresponding silyllithium reagents via transmetalation with Zn(OPiv)2 . These resulting organosilylzinc pivalates show enhanced air and moisture stability and unique reactivity in the silylative difunctionalization of alkenes. Thus, a practical chelation-assisted nickel-catalyzed regioselective alkyl and benzylsilylation of alkenes has been developed, which provides an easy method to access alkyl silanes with broad substrate scope and wide functional group compatibility. Kinetic experiments highlight that the OPiv-coordination is crucial to improve the reactivity of silylzinc pivalates. Furthermore, late-stage functionalizations of druglike molecules and versatile modifications of the products illustrate the synthetical utility of this protocol.
Collapse
Affiliation(s)
- Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Zhili Duan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Xingchen Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Shoucheng Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| |
Collapse
|
9
|
Qi L, Pang X, Yin K, Pan QQ, Wei XX, Shu XZ. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wang J, Duan Z, Liu X, Dong S, Chen K, Li J. Salt‐Stabilized Silylzinc Pivalates for Nickel‐Catalyzed Carbosilylation of Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jixin Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Zhili Duan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Xingchen Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Shoucheng Dong
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Kaixin Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jie Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Ren-Ai Road 199 215123 Suzhou CHINA
| |
Collapse
|
11
|
Dai PF, Wang YP, Qu JP, Kang YB. tert-Butyl Nitrite as a Twofold Hydrogen Abstractor for Dehydrogenative Coupling of Aldehydes with N-Hydroxyimides. Org Lett 2021; 23:9360-9364. [PMID: 34816715 DOI: 10.1021/acs.orglett.1c03434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetically practical transition metal/catalyst/halogen-free dehydrogenative coupling of aldehydes with N-hydroxyimides promoted solely by tert-butyl nitrite under mild conditions was developed. tert-Butyl nitrite generates two radicals (tBuO and NO) and thus works as a twofold hydrogen abstractor. A diverse array of N-hydroxyimide esters were prepared from either aliphatic or aromatic aldehydes. Benzoyl-substituted aldehydes such as 2-oxo-2-phenylacetaldehyde are also suitable.
Collapse
Affiliation(s)
- Peng-Fei Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Ping Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Xu MY, Xiao B. Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions. Chem Commun (Camb) 2021; 57:11764-11775. [PMID: 34661207 DOI: 10.1039/d1cc04373k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe3.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Yu H, Ji Y, Sajjadi A. Copper catalyzed coupling reactions via unactivated alkyl reagents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Yu
- Zhejiang College of Construction, Hangzhou, Zhejiang, China
| | - Yanchen Ji
- Zhejiang College of Construction, Hangzhou, Zhejiang, China
| | - Ahmad Sajjadi
- Department of Chemistry, Frankfurt University of Applied Sciences, Frankfurt, Germany
| |
Collapse
|
14
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Zhang L, Oestreich M. Nickelkatalysierte, reduktive C(sp
3
)‐Si‐Kreuzkupplung von α‐cyanosubstituierten Alkylelektrophilen und Chlorsilanen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Liangliang Zhang
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|
16
|
Zhang L, Oestreich M. Nickel-Catalyzed, Reductive C(sp 3 )-Si Cross-Coupling of α-Cyano Alkyl Electrophiles and Chlorosilanes. Angew Chem Int Ed Engl 2021; 60:18587-18590. [PMID: 34213049 PMCID: PMC8456968 DOI: 10.1002/anie.202107492] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 12/17/2022]
Abstract
A nickel/zinc-catalyzed cross-electrophile coupling of alkyl electrophiles activated by an α-cyano group and chlorosilanes is reported. Elemental zinc is the stoichiometric reductant in this reductive coupling process. By this, a C(sp3 )-Si bond can be formed starting from two electrophilic reactants whereas previous methods rely on the combination of carbon nucleophiles and silicon electrophiles or vice versa.
Collapse
Affiliation(s)
- Liangliang Zhang
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| |
Collapse
|
17
|
Zhuang Z, Herron AN, Yu J. Synthesis of Cyclic Anhydrides via Ligand‐Enabled C–H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
18
|
Zhang X, Geng P, Liu G, Huang Z. Ru-Catalyzed Site-Selective Aliphatic C–H Bond Silylation of Amides and Carbamides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peiyu Geng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
19
|
Li Y, Wang M, Jiang X. Dithionite-Involved Multicomponent Coupling for Alkenyl and Alkyl Tertiary Sulfones. Org Lett 2021; 23:4657-4661. [PMID: 34080861 DOI: 10.1021/acs.orglett.1c01393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dithionite-involved multicomponent reaction of redox-active esters and alkenes/alkynes is comprehensively achieved for the construction of alkyl and alkenyl tertiary sulfones. The industrial feedstock sodium dithionite is employed as a sulfur dioxide surrogate and a single-electron reductant to initiate the decarboxylation of redox-active esters. Mechanistic studies further indicated that the transformation underwent a proton trapping process, which was different from the traditional radical trapping pathway.
Collapse
Affiliation(s)
- Yaping Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
20
|
Zhuang Z, Herron AN, Yu JQ. Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021; 60:16382-16387. [PMID: 33977635 DOI: 10.1002/anie.202104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
The development of C(sp3 )-H functionalizations of free carboxylic acids has provided a wide range of versatile C-C and C-Y (Y=heteroatom) bond-forming reactions. Additionally, C-H functionalizations have lent themselves to the one-step preparation of a number of valuable synthetic motifs that are often difficult to prepare through conventional methods. Herein, we report a β- or γ-C(sp3 )-H carbonylation of free carboxylic acids using Mo(CO)6 as a convenient solid CO source and enabled by a bidentate ligand, leading to convenient syntheses of cyclic anhydrides. Among these, the succinic anhydride products are versatile stepping stones for the mono-selective introduction of various functional groups at the β position of the parent acids by decarboxylative functionalizations, thus providing a divergent strategy to synthesize a myriad of carboxylic acids inaccessible by previous β-C-H activation reactions. The enantioselective carbonylation of free cyclopropanecarboxylic acids has also been achieved using a chiral bidentate thioether ligand.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
21
|
Li T, Wu Y, Duan W, Ma Y. Silylative aromatization of p-quinone methides under metal and solvent free conditions. RSC Adv 2021; 11:17860-17864. [PMID: 35480172 PMCID: PMC9033227 DOI: 10.1039/d1ra03193g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
A base-mediated silylation reaction leading to benzyl silanes has been developed. Under transition-metal and solvent free conditions, the silylation of a wide array of p-quinone methides is achieved using a Cs2CO3 catalyst in yields up to 96%. Carboxylation of the as-obtained organosilane with gaseous CO2 provides a new synthetic protocol for the preparation of carboxylic acid. A novel and efficient synthetic protocol is reported for the synthesis of benzyl silanes from readily available silylborane and p-quinone methides using 5% cesium carbonate under solvent-free conditions.![]()
Collapse
Affiliation(s)
- Tingting Li
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Yuzhu Wu
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yudao Ma
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| |
Collapse
|
22
|
Zhao M, Wang Y, Wang ZL, Xu JL, Dai KY, Xu YH. Copper-Catalyzed Chemoselective Silylative Cyclization of 2,2'-Diethynylbiaryl Derivatives. Org Lett 2021; 23:3859-3863. [PMID: 33970651 DOI: 10.1021/acs.orglett.1c00968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this protocol, copper-catalyzed diverse silylative carbocyclization reactions of 2,2'-diethynylbiaryl derivatives with silaboronate were reported. Three new and novel types of domino reactions for the copper-catalyzed transformation of silaboronate were discovered. The corresponding cyclobuta[l]phenanthrene, bis((silyl)methyl)phenanthrene, and silyl-substituted exocyclic diene products were chemoselectively formed with high efficiency.
Collapse
Affiliation(s)
- Meng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ying Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Lu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jian-Lin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kai-Yang Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun-He Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
23
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
24
|
|
25
|
Hu X, Chen X, Li B, He G, Chen G. Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C-H Alkylations. Org Lett 2021; 23:716-721. [PMID: 33416330 DOI: 10.1021/acs.orglett.0c03940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzyme-catalyzed radical-mediated C-H functionalization reactions allow nature to create natural products of unusual three-dimensional structures from simple linear peptide precursors. In comparison, chemist's ability to harness radical C-H functionalization reactions for synthesis of complex peptides remains limited. In this work, new methods have been developed to construct peptide macrocycles via radical-mediated intramolecular C-H alkylation reactions under photoredox catalysis. Linear peptide precursors equipped with a C-terminal N-(acyloxy)phthalimide ester can cyclize with the α C-H bond of N-terminal glycine or aryl C-H bond of N-heteroarene capping units in high yield and selectivity under mild conditions. The strategy uses the C-H cyclization step to incorporate lysine, homolysine, and various heteroarene-derived amino acid linchpins into peptide macrocycles, enabling convergent and flexible synthesis of complex peptide macrocycles from simple building blocks.
Collapse
Affiliation(s)
- Xiafei Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangxiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Tang ZL, Ouyang XH, Song RJ, Li JH. Decarboxylative C(sp3)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Org Lett 2021; 23:1000-1004. [DOI: 10.1021/acs.orglett.0c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
28
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
29
|
Zhang W, Wang C, Wang Q. Copper-Catalyzed Decarboxylative Functionalization of Conjugated β,γ-Unsaturated Carboxylic Acids. ACS Catal 2020; 10:13179-13185. [PMID: 34367721 PMCID: PMC8346209 DOI: 10.1021/acscatal.0c03621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copper-catalyzed decarboxylative coupling reactions of conjugated β,γ-unsaturated carboxylic acids have been achieved for allylic amination, alkylation, sulfonylation, and phosphinoylation. This approach was effective for a broad scope of amino, alkyl, sulfonyl, and phosphinoyl radical precursors as well as various conjugated β,γ-unsaturated carboxylic acids. These reactions also feature high regioselectivity, good functional group tolerance, and simple operation procedure. Mechanistic studies show that the reaction proceeds via copper-catalyzed electrophilic addition onto an olefin followed by decarboxylation, with radical intermediates involved. These insights present a modular and powerful strategy to access versatilely functionalized allyl-containing skeletons from readily available and stable carboxylic acids.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chengming Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
30
|
Decarboxylative thiolation of redox-active esters to free thiols and further diversification. Nat Commun 2020; 11:5340. [PMID: 33087708 PMCID: PMC7578659 DOI: 10.1038/s41467-020-19195-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
Thiols are important precursors for the synthesis of a variety of pharmaceutically important sulfur-containing compounds. In view of the versatile reactivity of free thiols, here we report the development of a visible light-mediated direct decarboxylative thiolation reaction of alkyl redox-active esters to free thiols based on the abundant carboxylic acid feedstock. This transformation is applicable to various carboxylic acids, including primary, secondary, and tertiary acids as well as natural products and drugs, forging a general and facile access to free thiols with diverse structures. Moreover, the direct access to free thiols affords an advantage of rapid in situ diversification with high efficiency to other important thiol derivatives such as sulfide, disulfide, thiocyanide, thioselenide, etc. Thiols are important precursors for the synthesis of a variety of pharmaceutically important sulfur-containing compounds. Here, the authors report a visible light-mediated decarboxylative thiolation of alkyl redox-active esters to free thiols and the in situ product diversification of a number of thiol derivatives.
Collapse
|
31
|
Li Z, Wang KF, Zhao X, Ti H, Liu XG, Wang H. Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines. Nat Commun 2020; 11:5036. [PMID: 33028818 PMCID: PMC7542462 DOI: 10.1038/s41467-020-18834-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Alkyl carboxylic acids as well as primary amines are ubiquitous in all facets of biological science, pharmaceutical science, chemical science and materials science. By chemical conversion to redox-active esters (RAE) and Katritzky's N-alkylpyridinium salts, respectively, alkyl carboxylic acids and primary amines serve as ideal starting materials to forge new connections. In this work, a Mn-mediated reductive decarboxylative/deaminative functionalization of activated aliphatic acids and primary amines is disclosed. A series of C-X (X = S, Se, Te, H, P) and C-C bonds are efficiently constructed under simple and mild reaction conditions. The protocol is applicable to the late-stage modification of some structurally complex natural products or drugs. Preliminary mechanistic studies suggest the involvement of radicals in the reaction pathway.
Collapse
Affiliation(s)
- Zhan Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke-Feng Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Chen KQ, Wang ZX, Chen XY. Photochemical Decarboxylative C(sp3)–X Coupling Facilitated by Weak Interaction of N-Heterocyclic Carbene. Org Lett 2020; 22:8059-8064. [DOI: 10.1021/acs.orglett.0c03006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kun-Quan Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Liu YA, Liao X, Chen H. Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAliphatic carboxylic acids are abundant in natural and synthetic sources and are widely used as connection points in many chemical transformations. Radical decarboxylative functionalization promoted by transition-metal catalysis has achieved great success, enabling carboxylic acids to be easily transformed into a wide variety of products. Herein, we highlight the recent advances made on transition-metal (Ni, Cu, Fe, Co or Cr) catalyzed C–X (X = C, N, H, O, B, or Si) bond formation as well as syntheses of ketones, amino acids, alcohols, ethers and difluoromethyl derivatives via radical decarboxylation of carboxylic acids or their derivatives, including, among others, redox-active esters (RAEs), anhydrides, and diacyl peroxides.1 Introduction2 Ni-Catalyzed Decarboxylative Functionalizations3 Cu-Catalyzed Decarboxylative Functionalizations4 Fe-Catalyzed Decarboxylative Functionalizations5 Co- and Cr-Catalyzed Decarboxylative Functionalizations6 Conclusions
Collapse
Affiliation(s)
- Yahu A Liu
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| | - Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| |
Collapse
|
34
|
Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020; 59:16926-16932. [DOI: 10.1002/anie.202006317] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022]
|
35
|
Xia H, Li Z, Gu Q, Dong X, Fang J, Du X, Wang L, Liu X. Photoinduced Copper‐Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hai‐Dong Xia
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jia‐Heng Fang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xuan‐Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Li‐Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
36
|
Niu P, Li J, Zhang Y, Huo C. One‐Electron Reduction of Redox‐Active Esters to Generate Carbon‐Centered Radicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000525] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengfei Niu
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Jun Li
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Yongxin Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Congde Huo
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| |
Collapse
|
37
|
Takale BS, Thakore RR, Etemadi-Davan E, Lipshutz BH. Recent advances in Cu-catalyzed C(sp 3)-Si and C(sp 3)-B bond formation. Beilstein J Org Chem 2020; 16:691-737. [PMID: 32362947 PMCID: PMC7176932 DOI: 10.3762/bjoc.16.67] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Numerous reactions generating C-Si and C-B bonds are in focus owing to the importance of incorporating silicon or boron into new or existing drugs, in addition to their use as building blocks in cross-coupling reactions en route to various targets of both natural and unnatural origins. In this review, recent protocols relying on copper-catalyzed sp3 carbon-silicon and carbon-boron bond-forming reactions are discussed.
Collapse
Affiliation(s)
- Balaram S Takale
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Ruchita R Thakore
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Elham Etemadi-Davan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
38
|
Xu T, Cao T, Yang M, Xu R, Nie X, Liao S. Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. Org Lett 2020; 22:3692-3696. [DOI: 10.1021/acs.orglett.0c01180] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
| | - Tianpeng Cao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
| | - Mingcheng Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
| | - Ruting Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
| |
Collapse
|
39
|
Li Y, Chen S, Wang M, Jiang X. Sodium Dithionite-Mediated Decarboxylative Sulfonylation: Facile Access to Tertiary Sulfones. Angew Chem Int Ed Engl 2020; 59:8907-8911. [PMID: 32149440 DOI: 10.1002/anie.202001589] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/23/2020] [Indexed: 12/30/2022]
Abstract
A straightforward multicomponent decarboxylative cross coupling of redox-active esters (N-hydroxyphthalimide ester), sodium dithionite, and electrophiles was established to construct sterically bulky sulfones. The inorganic salt sodium dithionite not only served as the sulfur dioxide source, but also acted as an efficient radical initiator for the decarboxylation. Notably, diverse naturally abundant carboxylic acids and artificially prepared carboxyl-containing drugs with multiple heteroatoms and sensitive functional groups successfully underwent this decarboxylative sulfonylation to provide sterically bulky tertiary sulfones. Mechanistic studies further demonstrated that decarboxylation was the rate-determining step and occurred via a single-electron transfer (SET) process with the assistance of sodium dithionite.
Collapse
Affiliation(s)
- Yaping Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shihao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
40
|
Li Y, Chen S, Wang M, Jiang X. Sodium Dithionite‐Mediated Decarboxylative Sulfonylation: Facile Access to Tertiary Sulfones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yaping Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Shihao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
41
|
Scharfbier J, Gross BM, Oestreich M. Stereospecific and Chemoselective Copper-Catalyzed Deaminative Silylation of Benzylic Ammonium Triflates. Angew Chem Int Ed Engl 2020; 59:1577-1580. [PMID: 31730248 PMCID: PMC7003868 DOI: 10.1002/anie.201912490] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/16/2022]
Abstract
A method for the synthesis of benzylsilanes starting from the corresponding ammonium triflates is reported. Silyl boronic esters are employed as silicon pronucleophiles, and the reaction is catalyzed by copper(I) salts. Enantioenriched benzylic ammonium salts react stereospecifically through an SN 2-type displacement of the ammonium group to afford α-chiral silanes with inversion of the configuration. A cyclopropyl-substituted substrate does not undergo ring opening, thus suggesting an ionic reaction mechanism with no benzyl radical intermediate.
Collapse
Affiliation(s)
- Jonas Scharfbier
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Benjamin M. Gross
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| |
Collapse
|
42
|
Jiang WT, Yang S, Xu MY, Xie XY, Xiao B. Zn-mediated decarboxylative carbagermatranation of aliphatic N-hydroxyphthalimide esters: evidence for an alkylzinc intermediate. Chem Sci 2020; 11:488-493. [PMID: 32874490 PMCID: PMC7439774 DOI: 10.1039/c9sc04288a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Alkyl nucleophiles synthesized by decarboxylation of the corresponding N-hydroxyphthalimide esters (NHP esters) would inherit the complex structure of natural carboxylic acids and result in useful cross-coupling fragments. Herein, we report the synthesis of alkyl carbagermatranes via Zn-mediated decarboxylation of NHP esters without Ni catalysis or photocatalysis. Mechanistic studies indicate that an alkyl zinc intermediate was involved; however, the generation of alkyl zinc will be inhibited in the presence of Ni. Hence, this study provides valuable resolution to the perplexing problem about whether organozinc was involved in recently emerging catalytic systems of NHP ester-Zn. Meanwhile, alkyl zinc reagents from NHP esters are compatible with aryl/alkyl bromides and iodides; therefore the scope of carbagermatranation in this work precedes that of in situ-generated organozinc from alkyl halides.
Collapse
Affiliation(s)
- Wei-Tao Jiang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Shuo Yang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Meng-Yu Xu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Xiu-Ying Xie
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Bin Xiao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| |
Collapse
|
43
|
Cheng LJ, Mankad NP. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem Soc Rev 2020; 49:8036-8064. [DOI: 10.1039/d0cs00316f] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper catalysts enable cross-coupling reactions of unactivated alkyl electrophiles to generate C–C and C–X bonds.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Neal P. Mankad
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
44
|
Scharfbier J, Gross BM, Oestreich M. Stereospezifische und chemoselektive kupferkatalysierte, deaminierende Silylierung von Benzylammoniumtriflaten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonas Scharfbier
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Benjamin M. Gross
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|
45
|
Wang X, Han YF, Ouyang XH, Song RJ, Li JH. The photoredox alkylarylation of styrenes with alkyl N-hydroxyphthalimide esters and arenes involving C-H functionalization. Chem Commun (Camb) 2019; 55:14637-14640. [PMID: 31746852 DOI: 10.1039/c9cc07494e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The In(OTf)3-promoted three-component photoredox alkylarylation of styrenes with alkyl NHP esters and arenes to access alkylated arene derivatives through C-C bond cleavage and C-H functionalization is reported. By utilizing visible-light photoredox catalysis, alkyl N-hydroxyphthalimide esters serving as alkyl carbon-centered radicals and a wide range of arenes (e.g., indoles, pyrrole, and electron-rich arenes) as nucleophiles were used to enable the introduction of various alkyl groups and aryl groups across the C[double bond, length as m-dash]C bonds with excellent selectivity and functional group tolerance.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
46
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
47
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
48
|
Shen J, Gao Q, Wang G, Tong M, Chen L, Xu S. Cu‐NHC‐Catalyzed Enantioselective Conjugate Silyl addition to Indol‐1‐ylacrylate Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201903570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun‐Jian Shen
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Guangzhu Wang
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Min Tong
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective OxidationCentre for Excellence in Molecular SynthesisSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
49
|
Guo JY, Zhang ZY, Guan T, Mao LW, Ban Q, Zhao K, Loh TP. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions. Chem Sci 2019; 10:8792-8798. [PMID: 31803451 PMCID: PMC6849636 DOI: 10.1039/c9sc03070k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stereoselective β-C(sp2)-H alkylation of enamides with redox-active N-hydroxyphthalimide esters via a photoredox-catalyzed decarboxylative cross-coupling reaction is demonstrated. This methodology features operational simplicity, broad substrate scopes, and excellent stereoselectivities and functional group tolerance, affording a diverse array of geometrically defined and synthetically valuable enamides bearing primary, secondary or tertiary alkyl groups in satisfactory yields.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ting Guan
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Lei-Wen Mao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Qian Ban
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Kai Zhao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Teck-Peng Loh
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
50
|
Jin S, Haug GC, Nguyen VT, Flores-Hansen C, Arman HD, Larionov OV. Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Vu T. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Carsten Flores-Hansen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|