1
|
Wang P, Song Y, Zhang K, Tian M, He L. Efficient donor-σ-acceptor emitters with strengthened intramolecular charge-transfer and their use for high-efficiency organic light-emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125827. [PMID: 39908972 DOI: 10.1016/j.saa.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Thermally-activated delayed fluorescence (TADF) materials have emerged as next-generation emitters for organic light-emitting diodes (OLEDs). The donor-σ-acceptor molecule is a promising paradigm for developing TADF, but its radiative decay rate (kr,s) and photoluminescent efficiency (ФPL) require large improvements, due to weak intramolecular charge-transfer (CT). Here, efficient donor-σ-acceptor emitters (1-3) with strengthened intramolecular CT are developed by directly linking the donor and acceptor with a short alkyl chain. 9,9-dimethyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine are employed as the donor and acceptor, respectively, and -CH2- (for 1), -CH2CH2- (for 2) and -CH2CH2CH2- (for 3) are employed as the σ-linkers. The chemical structures of 1-3 have been verified by X-ray crystallography. In dilute solution and lightly doped films, emitters 1-3 show considerably strong intramolecular CT, due to the σ-π hyperconjugation between the donor/acceptor and the alkyl σ-linker. In the 20 wt.% doped films, emitters 1-3 show green-blue TADF with combined intra- and inter-molecular CT, with high ФPLkr,s and reverse intersystem crossing rates up to 0.91, 8.5 × 106 s-1 and 2.6 × 106 s-1, respectively. OLEDs based on emitters 1-3 show green-blue emission with high external quantum efficiencies (EQEs) over 20 %. A hyperfluorescent OLED with emitter 3 as the sensitizer and a typical multiple resonance emitter (DtBuCzB) as the terminal emitter shows narrowband blue-green emission with a high EQE of 28.1 %.
Collapse
Affiliation(s)
- Pingping Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Yongjun Song
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Ke Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Mingxing Tian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Lei He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China.
| |
Collapse
|
2
|
Huang C, Zhou J, Samedov K, Zhang L, Peng G, Peng X, Chen M, Zhang D, Cai Y. Aggregation-enhanced TADF in deep-red emitters for high-performance OLEDs. Phys Chem Chem Phys 2025; 27:7866-7873. [PMID: 40162551 DOI: 10.1039/d5cp00499c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
When isolated molecules undergo aggregation, their intermolecular interactions increase, potentially altering their electronic structures and affecting photophysical properties such as fluorescence lifetime. The extent of this change largely depends on the molecular structure. For thermally activated delayed fluorescent (TADF) materials, their luminescence mechanism in terms of the scale of increased lifetime from single molecules to aggregates and how that influences their optoelectronic device performance remain largely unexplored. In this study, we report a series of deep-red TADF emitters that are designed from D-A and D2-A types of molecular structures, with quinoxaline-6,7-dicarbonitrile (QCN) as the electron acceptor (A) and naphthalene-substituted N,N-diphenylamine (ND) as the electron donor (D). The D2-A type emitter (αND)2-QCN exhibits a pronounced aggregation-enhanced TADF (AE-TADF) effect compared to the D-A type emitters. This enhancement results from a significant reduction in the singlet-triplet energy gap (ΔEST) upon aggregation, driven by the formation of intermolecular hydrogen bonds in their J-aggregates. The AE-TADF effect facilitates more efficient reverse intersystem crossing (RISC), enabling the high performance of an (αND)2-QCN-based deep-red OLED (λEL,max = 622 nm) with a maximum external quantum efficiency (EQEmax) of 14.3%.
Collapse
Affiliation(s)
- Chengrui Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jianping Zhou
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.
| | - Kerim Samedov
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Liang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Guoqing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xiangchao Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing, 100871, P. R. China
| | - Dongdong Zhang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yuanjing Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
3
|
Meng X, Lang X, Cao Z. Structure Evolution of Organic Luminescent Molecules Utilizing Through-Space Charge Transfer Mechanism. Chem Asian J 2025; 20:e202401488. [PMID: 39996296 DOI: 10.1002/asia.202401488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
Organic structures provide an extensive platform for luminescent materials thanks to the easy to design and synthesize, low toxicity and tunable functionalization. Through-space charge transfer (TSCT) in organic molecules, characterized by the transfer of excitons through spatial charge motion, has emerged as a significant research topic in optoelectronics, offering new avenues for the development of high-performance luminescent materials. This review systematically summarizes the fundamental principles of TSCT and highlights the recent advancements in organic small molecules that exhibit this emission mechanism. Key aspects covered include the molecular design strategies that enhance TSCT efficiencies, the role of charge transport spacers, and the correlation between molecular donor-acceptor structures and emission properties. Furthermore, the review addresses the challenges and future directions in the field, emphasizing the importance of understanding TSCT for the development of next-generation light-emitting materials. By providing a comprehensive analysis of current research, this review serves as a crucial resource for researchers and practitioners aiming to innovate in the realm of organic optoelectronic materials, ultimately contributing to a deeper understanding of TSCT processes and their practical applications.
Collapse
Affiliation(s)
- Xin Meng
- Shandong Key Laboratory of Life-Organic Analysis, and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xuteng Lang
- Shandong Key Laboratory of Life-Organic Analysis, and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Ziping Cao
- Shandong Key Laboratory of Life-Organic Analysis, and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
4
|
Liu RH, Li MT, Yang YJ, Ge SJ, Qu ZH, Feng ZQ, Wang Y, Yu ZH, Zhou DY, Zhong C, Liao LS, Jiang ZQ. Efficiency Boost in Through Space Charge Transfer Emitters: Insights from Spiro Lateral Rocking Confinement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415951. [PMID: 39668480 DOI: 10.1002/adma.202415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Intramolecular through-space charge-transfer (TSCT) excited states have emerged as promising candidates for thermally activated delayed fluorescence (TADF) emitters. This study addresses the challenges in tuning excited state dynamics through conformational engineering, which significantly impacts exciton utilization. An effective strategy is presented to enhance the performance of TSCT-TADF molecules by restricting the lateral rocking of the spiro unit via immobilizing groups, which indirectly adjusts the conformations of the donor and acceptor subunits. This approach is successfully illustrated with two TSCT-TADF emitters, 8PhDM-B and 8PyDM-B, featuring sterical aryl phenyl and pyridine substitutions at the C8 site of a rigid spiro-fluorene bridge. Organic light-emitting diodes (OLEDs) utilizing these emitters demonstrated impressive maximum external quantum efficiencies of 33.1% and 31.0%, respectively. The findings underscore the importance of the rocking confined strategy in refining excited state dynamics, thereby providing valuable insights for the design of highly efficient OLED emitters.
Collapse
Affiliation(s)
- Rui-Hong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng-Tian Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue-Jian Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shi-Jie Ge
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhi-Hao Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhe-Hong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Dong-Ying Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
5
|
Qu YK, Zhou DY, Zheng Q, Zuo P, Che ZL, Liao LS, Jiang ZQ. Linearly Arranged Multi-π-Stacked Structure for Efficient Through-Space Charge-Transfer Emitters. Angew Chem Int Ed Engl 2024; 63:e202408712. [PMID: 38962896 DOI: 10.1002/anie.202408712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6 % and 16.2 %, respectively.
Collapse
Affiliation(s)
- Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Dong-Ying Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Qi Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Peng Zuo
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Zong-Lu Che
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| |
Collapse
|
6
|
Si C, Wang T, Xu Y, Lin D, Sun D, Zysman-Colman E. A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system. Nat Commun 2024; 15:7439. [PMID: 39198389 PMCID: PMC11358277 DOI: 10.1038/s41467-024-51231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF. The demonstration reveals that 2GCzBPPZ can serve as a temperature sensor with excellent temperature sensitivity and remarkably wide emission color response in solution. By embedding 2GCzBPPZ in paraffin we demonstrate a spatial-temperature sensor that shows a noticeable emission shift from yellow to green and ultimately to blue as the temperature increases from 20 to 200 °C. We finally demonstrate the utility of these TADF dendrimers in solution-processed organic light-emitting diodes.
Collapse
Affiliation(s)
- Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Dongqing Lin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
7
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
8
|
Song XF, Jiang C, Li N, Miao J, Li K, Yang C. Simultaneously enhancing the planarity and electron-donating capability of donors for through-space charge transfer TADF towards deep-red emission. Chem Sci 2023; 14:12246-12254. [PMID: 37969606 PMCID: PMC10631242 DOI: 10.1039/d3sc04264b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
Through-space charge transfer (TSCT) has been proven effective for designing thermally activated delayed fluorescence (TADF) emitters due to the separation of the frontier molecular orbitals. Although tuning of the interaction between the donor and acceptor by controlling the conformation is known to be crucial for the photophysical properties of TSCT excited states, it remains a challenge to realize efficient red and deep-red emissions. Herein, we designed two TSCT molecules, namely TPXZ-QX and TPXZ-2QX, by using oxygen-bridged triphenylamine (TPXZ) as the electron donor with enhanced planarity and electron-donating capability. With a face-to-face orientation of the donor and acceptor segments and close π-π contacts, the new emitters have strong intramolecular noncovalent donor-acceptor interactions. The emissions of TPXZ-QX and TPXZ-2QX in doped thin films lie in the red (λmax = 632 nm) to deep-red (λmax = 665 nm) region. The photoluminescence quantum yields are 41% and 32% for TPXZ-QX and TPXZ-2QX, respectively. Organic light-emitting diodes (OLEDs) based on TPXZ-QX and TPXZ-2QX show external quantum efficiencies (EQEs) of up to 13.8% and 11.4%, respectively. This work indicates that the modulation of TSCT excited states based on strong intramolecular cofacial π-stacking interactions is a viable choice for the development of high-efficiency long-wavelength TADF emitters.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Chenglin Jiang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| |
Collapse
|
9
|
Hussain A, Kanwal F, Irfan A, Hassan M, Zhang J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS OMEGA 2023; 8:15638-15649. [PMID: 37151492 PMCID: PMC10157659 DOI: 10.1021/acsomega.3c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
We have expounded the unique molecular design architecture for efficient thermally activated delayed fluorescence (TADF) materials based on a donor-linker-acceptor-linker-donor (D-L-A-L-D) framework, which can be employed as predecessors of organic light-emitting diode (OLED) devices. Different from traditional donor-acceptor-type (D-A-type) TADF scaffolds, the D-L-A-L-D structural design avoids direct coupling amid the D and A fragments allowing the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) to be spatially separated. It results in a reduced overlap between HOMOs and LUMOs, thus realizing fairly a slight singlet-triplet energy gap (ΔE ST) and higher photoluminescence quantum yield (Φ). We revealed that manipulating a linker between D and A fragments in intramolecular charge transfer compounds is an auspicious approach for realizing small ΔE ST. Herein, we report a group of organic electroluminescent D-L-A-L-D-type molecules with different electron-donating and electron-accepting moieties using density functional theory calculations and time-dependent density functional theory calculations. Two types of linkers, the π-conjugated phenylene (-C6H4-) and aliphatic alkyl chains or σ-spacer (-CH2- and -CH2-CH2-), were exploited between D and A fragments. In principle, the conjugation in D-π-A-π-D-type molecules and hyperconjugation in D-σ-A-σ-D type molecules encourage the spatial separation of the HOMO-LUMO causing a reduction in the ΔE ST. All the designed molecules show a blue-shift in the emission wavelengths (λem) over the directly linked parent molecules except DPA-DPS-C6H4 and BTPA-DPS-C6H4 which show a red-shift. Violet-blue to green-yellow (376-566 nm) λem was observed from all of the investigated molecules. Other important properties that affect the efficiency of emission quantum yields like frontier molecular orbital analysis, natural population analysis, electron excitation analysis, exciton binding energies, ionization potentials, electronic affinities, and reorganization energies of the designed molecules were also inspected. We are confident that our work will effectively give a straightforward and distinctive approach to building incredibly effective TADF-OLEDs and a new perspective on their structural design.
Collapse
Affiliation(s)
- Aftab Hussain
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- . Tel.: +923426224761
| | - Farah Kanwal
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mehboob Hassan
- Department
of Chemistry, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jingping Zhang
- Faculty
of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Naveen KR, Palanisamy P, Chae MY, Kwon JH. Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs. Chem Commun (Camb) 2023; 59:3685-3702. [PMID: 36857643 DOI: 10.1039/d2cc06802h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The hunt for narrow-band emissive pure organic molecules capable of harvesting both singlet and triplet excitons for light emission has garnered enormous attention to promote the advancement of organic light-emitting diodes (OLEDs). Over the past decade, organic thermally activated delayed fluorescence (TADF) materials based on donor (D)/acceptor (A) combinations have been researched for OLEDs in wide color gamut (RGB) regions. However, due to the strong intramolecular charge-transfer (CT) state, they exhibit broad emission with full-width-at-half maximum (FWHM) > 70 nm, which deviates from being detrimental to achieving high color purity for future high-end display electronics such as high-definition TVs and ultra-high-definition TVs (UHDTVs). Recently, the new development in the sub-class of TADF emitters called multi-resonant TADF (MR-TADF) emitters based on boron/nitrogen atoms has attracted much interest in ultra-high definition OLEDs. Consequently, MR-TADF emitters are appeal to their potentiality as promising candidates in fabricating the high-efficient OLEDs due to their numerous advantages such as high photoluminescence quantum yield (PLQY), unprecedented color purity, and narrow bandwidth (FWHM ≤ 40 nm). Until now many MR-TADF materials have been developed for ultra-gamut regions with different design concepts. However, most MR-TADF-OLEDs showed ruthless external quantum efficiency (EQE) roll-off characteristics at high brightness. Such EQE roll-off characteristics were derived mainly from the low reverse intersystem crossing (kRISC) rate values. This feature article primarily focuses on the design strategies to improve kRISC for MR-TADF materials with some supportive strategies including extending charge delocalization, heavy atom introduction, multi-donor/acceptor utilization, and a hyperfluorescence system approach. Furthermore, the outlook and prospects for future developments in MR-TADF skeletons are described.
Collapse
Affiliation(s)
- Kenkera Rayappa Naveen
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Paramasivam Palanisamy
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mi Young Chae
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Zhang B, Xu H, Xia Y, Wen J, Zhu M. Effect of void-carbon on blue-shifted luminescence in TADF molecules by theoretical simulations. Front Chem 2023; 11:1094574. [PMID: 36778032 PMCID: PMC9908751 DOI: 10.3389/fchem.2023.1094574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Thermally activated delayed fluorescence (TADF) molecules have a theoretical 100% photoluminescence quantum yield in comparison with traditional fluorescent materials, leading to broad application in organic light-emitting diode (OLED). However, the application of TADF molecules with conjugated donor-acceptor structures in blue OLED remains a challenge due to their generally narrow energy gap between frontier molecular orbitals. Recently, a strategy has been approved in the improvement of the performance in TADF, in which void-carbon atoms between donor and acceptor fragments (donor-void-acceptor (D-v-A)) could regulate blue light emission. In this study, we first select three reported isomers followed by two proposed D-v-A TADF isomers to verify the feasibility of the void-carbon strategy through evaluation of the electronic structures in the excited state and photophysical properties. We further proposed a series of TADF molecules by replacing different donor and acceptor fragments to assess the applicability of the void-carbon strategy from the aspect of simulations in electronic structures, different properties of donor and acceptor fragments, photophysical properties, and analysis in the molecular conjugation. The results indicate that void-carbon strategy has conditional feasibility and applicability. Donor-acceptor molecular properties could be tuned through void-carbon strategy on aromatic acceptor fragments during the selection of promising candidates of TADF molecules. However, the void-carbon strategy does not work for the molecules with antiaromatic acceptor fragments, where the steric hindrance of the molecules plays a dominant role. Our work provides insightful guidance for the design of the blue-emission TADF molecules.
Collapse
Affiliation(s)
| | | | - Yumin Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | |
Collapse
|
12
|
Jiang W, Zhao G, Tian W, Sun Y. Aggregation-Induced Intermolecular Charge Transfer Emission for Solution-Processable Bipolar Host Material via Adjusting the Length of Alkyl Chain. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228099. [PMID: 36432201 PMCID: PMC9698787 DOI: 10.3390/molecules27228099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Molecules with donor-spacer-acceptor configuration have been developed rapidly given their peculiar properties. How to utilize intermolecular interactions and charge transfers for solution-processed organic light-emitting diodes (OLEDs) greatly relies on molecular design strategy. Herein, soluble luminophores with D-spacer-A motif were constructed via shortening the alkyl chain from nonane to propane, where the alkyl chain was utilized as a spatial linker between the donor and acceptor. The alkyl chain blocks the molecular conjugation and induces the existence of aggregation-induced intermolecular CT emission, as well as the improved solubility and morphology in a solid-state film. In addition, the length of the alkyl chain affects the glass transition temperature, carrier transport and balance properties. The mCP-3C-TRZ with nonane as the spacer shows better thermal stability and bipolar carrier transport ability, so the corresponding solution-processable phosphorescent organic light-emitting diodes exhibit superior external quantum efficiency of 9.8% when using mCP-3C-TRZ as a host material. This work offers a promising strategy to establish a bipolar host via utilizing intermolecular charge transfer process in an aggregated state.
Collapse
|
13
|
Zhang D, Wada Y, Wang Q, Dai H, Fan T, Meng G, Wei J, Zhang Y, Suzuki K, Li G, Duan L, Kaji H. Highly Efficient and Stable Blue Organic Light-Emitting Diodes based on Thermally Activated Delayed Fluorophor with Donor-Void-Acceptor Motif. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106018. [PMID: 35224891 PMCID: PMC9036013 DOI: 10.1002/advs.202106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Indexed: 05/23/2023]
Abstract
Thermally activated delayed fluorophores (TADF) with donor-acceptor (D-A) structures always face strong conjugation between donor and acceptor segments, rendering delocalized new molecular orbitals that go against blue emission. Developing TADF emitters with blue colors, high efficiencies, and long lifetimes simultaneously is therefore challenging. Here, a D-void-A structure with D and A moieties connected at the void-position where the frontier orbital from donor and acceptor cannot be distributed, resulting in nonoverlap of the orbitals is proposed. A proof-of-the-concept TADF emitter with 3,6-diphenyl-9H-carbazole (D) connected at the 3'3-positions of 9H-xanthen-9-one (A), the void carbon-atom with no distribution of the highest occupied molecular orbital (HOMO) of A-segment, realizes more efficient and blue-shifted emission compared with the contrast D-A isomers. The deeper HOMO-2 of A is found to participate into conjugation rather than HOMO, providing a wider-energy-gap. The corresponding blue device exhibits a y color coordinate (CIEy ) of 0.252 and a maximum external quantum efficiency of 27.5%. The stability of this compound is further evaluated as a sensitizer for a multiple resonance fluorophore, realizing a long lifetime of ≈650 h at an initial luminance of 100 cd m-2 with a CIEy of 0.195 and a narrowband emission with a full-width-at-half-maxima of 21 nm.
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Yoshimasa Wada
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| | - Qi Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Tianjiao Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Katsuaki Suzuki
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Hironori Kaji
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
14
|
Chen J, Xiao X, Li S, Duan Y, Wang G, Liao Y, Peng Q, Fu H, Geng H, Shuai Z. A Novel Strategy toward Thermally Activated Delayed Fluorescence from a Locally Excited State. J Phys Chem Lett 2022; 13:2653-2660. [PMID: 35297633 DOI: 10.1021/acs.jpclett.2c00224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well-known that thermally activated delayed fluorescence (TADF) is always generated from charge-transfer (CT) excited states in donor-acceptor (D-A) systems, which limits its application owing to a slow radiative process and a small stimulated emission cross section. Herein, a design strategy is proposed for realizing TADF from a locally excited (LE) state without a typical donor-acceptor type structure through controlling the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes between the lowest excited singlet with LE character and higher triplet states. Using this strategy, a boron difluoride derivative is theoretically predicted and experimentally synthesized to exhibit locally excited TADF (LE-TADF) with a fairly large radiative rate of 1.12 × 108 s-1, extremely fast RISC rate of 5.09 × 1010 s-1, and a large stimulated emission cross section of 4.35 × 10-17 cm2, making this a promising organic amplified spontaneous emission (ASE) material. This work might open a new avenue to extend TADF materials, especially TADF laser emitters.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Xiaoxiao Xiao
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Shuai Li
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Yuai Duan
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Yi Liao
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbing Fu
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Hua Geng
- Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
| | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing 100083, China
| |
Collapse
|
15
|
Xing Y, Li Z, Baryshnikov GV, Shen S, Ye D, Ågren H, Zhu L. Water Molecular Bridge-Induced Selective Dual Polarization in Crystals for Stable Multi-Emitter. Chem Sci 2022; 13:6067-6073. [PMID: 35685795 PMCID: PMC9132028 DOI: 10.1039/d2sc00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
In the solid state, the molecular polarization of donor–acceptor (D–A) molecules can be implemented in a simple way via the use of an external polarizing source (e.g., an electric field). However, internal chemical polarization approaches are less studied due to difficulties related to controlling the charge-separation orientation in the solid state. Herein, a series of D–A molecules with both a proton donor and an acceptor were designed. Water-based molecular bridges were then established in their crystal structures, which firmly and alternately connected the proton donor of one molecule and the acceptor of another via an intermolecular H-bond network. In this way, the selective dual polarization of a phenolic hydroxyl group and a pyridinyl group could be achieved, owing to the strengthening of the charge-separation orientation upon the simultaneous deprotonation and protonation of the D–A molecules. This effect led to a 3–5-fold amplification of the molecular dipole moment in the crystal form relative to the monomeric state. On this basis, multi-excitation and multi-emission characteristics were achieved in these charge-separated crystals, endowing them with the ability to visually detect the energy of a light source, covering a wide range of the UV-Vis spectral region. This work provides a practical chemical approach for developing intrinsically polarized systems that can exhibit stable but distinct molecular photophysical properties. In the solid state, the molecular polarization of donor–acceptor (D–A) molecules can be implemented by internal chemical polarization approaches.![]()
Collapse
Affiliation(s)
- Yi Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Danfeng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 SE-751 20 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
16
|
Song Y, Tian M, Yu R, He L. Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60269-60278. [PMID: 34881866 DOI: 10.1021/acsami.1c17707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Through-space charge-transfer (TSCT) emitters have been extensively explored for thermally activated delayed fluorescence (TADF), but arranging various donors and acceptors into rigid cofacial conformations for various efficient TSCT TADF emitters has remained challenging. Here, we report a "fixing acceptor" design to reach various efficient TSCT TADF emitters. By chemically fixing the acceptor (benzophenone) with a rigid spiro-structure and cofacially aligning various donors with the fixed acceptor, a series of efficient TSCT TADF emitters have been developed. Single-crystal structures and theoretical calculations have verified closely packed cofacial donor/acceptor conformations and favorable TSCT in the emitters. In doped films, the emitters afford sky blue to yellow TADF emission, with high photoluminescence efficiencies up to 0.92 and reverse intersystem crossing rates up to 1.0 × 106 s-1. Organic light-emitting diodes using the emitters afford sky blue to yellow electroluminescence with high external quantum efficiencies up to 20.9%. The work opens a new avenue toward a wide variety of efficient TSCT TADF emitters.
Collapse
Affiliation(s)
- Yongjun Song
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Mingxing Tian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Renyou Yu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lei He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
17
|
Liu XT, Hua W, Nie HX, Chen M, Chang Z, Bu XH. Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl Sci Rev 2021; 9:nwab222. [PMID: 36105943 PMCID: PMC9466880 DOI: 10.1093/nsr/nwab222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.
Collapse
Affiliation(s)
- Xiao-Ting Liu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing100871, China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
18
|
Su R, Huang Z. "H-Type" Like Constructed Dimer: Another Way to Enhance the Thermally Activated Delayed Fluorescence Effect. J Phys Chem Lett 2021; 12:11497-11502. [PMID: 34797082 DOI: 10.1021/acs.jpclett.1c03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials are an essential part of TADF-based organic light-emitting diodes (OLEDs). All the reported methods to improve the performance of TADF materials were focused on achieving a high reverse intersystem crossing rate (kRISC) and oscillator strength (f), but most of them were studies on single molecular states. In this paper, we have discovered a new dimer architecture called the "H-type" like dimer and proved that the "H-type" like dimer is another way to improve the performance of TADF materials by calculation and experiment. The calculated energy levels of excited states only provided 1.72-5.46% relative errors (RE) compare with the measured values, which indicated that the methods we chose were suitable for predicting the properties. The intermolecular interactions of the "H-type" like dimer endow it with much larger f and kRISC properties than monomer states, proving that the "H-type" like dimer could improve the performance of TADF emitters.
Collapse
Affiliation(s)
- Rongchuan Su
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, China
| | - Zhenmei Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
19
|
Wang R, Li Z, Hu T, Tian L, Hu X, Liu S, Cao C, Zhu ZL, Tan JH, Yi Y, Wang P, Lee CS, Wang Y. Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49066-49075. [PMID: 34613700 DOI: 10.1021/acsami.1c12627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancing the reverse intersystem crossing (RISC) process of thermally activated delayed fluorescent (TADF) emitters is an effective approach to realize efficient organic light-emitting diodes (OLEDs) with low efficiency roll-off. In this work, we designed two novel TADF emitters, SAT-DAC and SATX-DAC, via a spiro architecture. Efficient maximum external quantum efficiencies (EQEs) of 22.6 and 20.9% with reduced efficiency roll-off (EQEs of 17.9 and 17.0% at 1000 cd m-2) were achieved via a "two-RISC-channel" strategy. X-ray diffraction shows close donor (D)/acceptor (A) spacing and suitable D/A orientation in crystals of the two emitters favoring both intra- and intermolecular through-space charge transfer (TSCT) processes. Transient photoluminescence decay measurements show that both emitters have two RISC channels leading to kISCT exceeding 106 s-1. These results suggest that the "two-RISC-channel" design can be a novel approach for enhancing performance of TADF emitters, in particular at high excitation densities.
Collapse
Affiliation(s)
- Ruifang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Taiping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxiao Hu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shihao Liu
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane‐Bridged D–A–D Triad Composed of Phenothiazine and Thienopyrazine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toyotaka Nakae
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masaki Nishio
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tsukasa Usuki
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Minako Ikeya
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Chika Nishimoto
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Suguru Ito
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Mineyuki Hattori
- National Institute of Advanced Industrial Science and Technology AIST Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Shigenobu Hayashi
- National Institute of Advanced Industrial Science and Technology AIST Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Teppei Yamada
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshinori Yamanoi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
21
|
Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane-Bridged D-A-D Triad Composed of Phenothiazine and Thienopyrazine. Angew Chem Int Ed Engl 2021; 60:22871-22878. [PMID: 34427025 DOI: 10.1002/anie.202108089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/28/2022]
Abstract
A σ-π extended aryldisilane, comprising a thienopyrazine group as an acceptor fragment and phenothiazine groups as the donor moiety, has been prepared through the introduction of two Si-Si bridges (compound 1). X-ray diffraction analysis determined the crystal structure of 1, and experimental and theoretical approaches investigated its optical properties. Solvatochromic studies revealed the dual emission of 1 in all solvents tested. Compound 1 also exhibited fluorescence in the solid state upon excitation with a hand-held UV lamp, as well as mechanochromic luminescent properties. The packing mode in the crystal structure, variation of phenothiazine conformation, morphological changes between crystalline and amorphous phases are the major factors showing reversible fluorescence under external stimuli. A theoretical conformer study found that 1 exists in distinct conformational groups differing in Gibbs free energy by less than 3 kcal mol-1 . The conformer in the crystalline state of 1 can promote the complete separation of the HOMO and LUMO between the phenothiazine donor and the thienopyrazine acceptor, linked by the disilane linker. HOMO-LUMO energy transition in the crystalline state is forbidden due to the lack of frontier orbital overlap. Crystalline state emission showed LUMO → HOMO-1 transition (locally excited (LE) state). In the amorphous state, the partial presence of quasi-axial conformers allows intramolecular charge-transfer type emission via energy transfer from dominant quasi-equatorial conformers. The strategy proposed in this work provides important guidance for developing stimuli-responsive materials with controlled excited states.
Collapse
Affiliation(s)
- Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaki Nishio
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukasa Usuki
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Minako Ikeya
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Chika Nishimoto
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Mineyuki Hattori
- National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shigenobu Hayashi
- National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Teppei Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Hussain M, El-Zohry AM, Hou Y, Toffoletti A, Zhao J, Barbon A, Mohammed OF. Spin-Orbit Charge-Transfer Intersystem Crossing of Compact Naphthalenediimide-Carbazole Electron-Donor-Acceptor Triads. J Phys Chem B 2021; 125:10813-10831. [PMID: 34542290 DOI: 10.1021/acs.jpcb.1c06498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compact electron donor-acceptor triads based on carbazole (Cz) and naphthalenediimide (NDI) were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). By variation of the molecular conformation and electron-donating ability of the carbazole moieties, the electronic coupling between the two units was tuned, and as a result charge-transfer (CT) absorption bands with different magnitudes were observed (ε = 4000-18 000 M-1 cm-1). Interestingly, the triads with NDI attached at the 3-C position or with a phenyl spacer at the N position of the Cz moiety, thermally activated delayed fluorescence (TADF) was observed. Femtosecond transient absorption (fs-TA) spectroscopy indicated fast electron transfer (0.8-1.5 ps) from the Cz to NDI unit, followed by population of the triplet state (150-600 ps). Long-lived triplet states (up to τT = 45-50 μs) were observed for the triads. The solvent-polarity-dependent singlet-oxygen quantum yield (ΦΔ) is 0-26%. Time-resolved electron paramagnetic resonance (TREPR) spectral study of TADF molecules indicated the presence of the 3CT state for NDI-Cz-Ph (zero-field-splitting parameter D = 21 G) and an 3LE state for NDI-Ph-Cz (D = 586 G). The triads were used as triplet photosensitizers in triplet-triplet annihilation upconversion by excitation into the CT absorption band; the upconversion quantum yield was ΦUC = 8.2%, and there was a large anti-Stokes shift of 0.55 eV. Spatially confined photoexcitation is achieved with the upconversion using focusing laser beam excitation, and not the normally used collimated laser beam, i.e., the upconversion was only observed at the focal point of the laser beam. Photo-driven intermolecular electron transfer was demonstrated with reversible formation of the NDI-• radical anion in the presence of the sacrificial electron donor triethanolamine.
Collapse
Affiliation(s)
- Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,NUIST Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, P. R. China
| | - Ahmed M El-Zohry
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Physics - AlbaNova Universitetscentrum, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Omar F Mohammed
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Liu Y, Li B, Xiang Z. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007576. [PMID: 34160904 DOI: 10.1002/smll.202007576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic H2 evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H2 production due to the excellent merits of the large π-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1 to >20% in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H2 production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingjie Li
- The First Affiliated Hospital Zhengzhou University, 1 Jianshe Street, Zhengzhou, Henan, 450052, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
24
|
Dai G, Zhang M, Wang K, Fan X, Shi Y, Sun D, Liu W, Chen J, Yu J, Ou X, Xiong S, Zheng C, Zhang X. Nonconjugated Triptycene-Spaced Donor-Acceptor-Type Emitters Showing Thermally Activated Delayed Fluorescence via Both Intra- and Intermolecular Charge-Transfer Transitions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25193-25201. [PMID: 34013735 DOI: 10.1021/acsami.1c05646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have aroused considerable attention, particularly for their great potential in organic light-emitting diodes (OLEDs). In typical TADF molecules, intramolecular charge transfer (CT) between electron-donor (D) and electron-acceptor (A) moieties is the dominant transition. Actually, CT transitions can possibly occur between different molecules as well. Herein, we used a nonconjugated triptycene (TPE) moiety to space D and A moieties and developed two novel emitters tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR to explore the roles of intra- and intermolecular CT transitions. Along with weak intramolecular CT transitions, intermolecular CT transitions are dominant for tBuDMAC-TPE-TRZ and tBuDMAC-TPE-TTR neat films. Particularly, tBuDMAC-TPE-TRZ showed a high maximum external quantum efficiency of 10.0% in a nondoped solution-processed OLED, which was evidently higher than that of a corresponding 10 wt % tBuDMAC-TPE-TRZ-doped OLED with 4,4',4″-tris(carbazol-9-yl)triphenylamine (TCTA) as the host matrix. The results prove that intermolecular CT transitions indeed participate in the CT transition process in these systems and they are helpful to enhance the electroluminescence performance of emitting systems with weak intramolecular CT transitions.
Collapse
Affiliation(s)
- Gaole Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yizhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Wei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiaxiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xuemei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shiyun Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Caijun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
25
|
Zhou Y, Li Y, Zhang R, Zhao D, Yan Q. White Light Luminescence from a Homo-conjugated Molecule with Thermally Activated Delayed Fluorescence. Chem Asian J 2021; 16:1893-1896. [PMID: 34014616 DOI: 10.1002/asia.202100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Indexed: 11/07/2022]
Abstract
Luminophores with tunable emission properties are appealing due to various applications. Among those properties, thermally activated delayed fluorescence (TADF) has been attracting enormous research interests. Herein, we synthesized a 9,9'-spirobifluorene based homo-conjugated molecule 1, which connects a diphenylamino moiety as electron donor and a naphthalimide group as electron acceptor via 2,2'-positions of spirofluorene. Compound 1 displays dual emission behaviour with both blue and orange fluorescence. The one orange fluorescence around 555 nmshows sensitivity to oxygen and a prolonged lifetime of 284 ns in degassed toluene. Such characteristics imply TADF nature for this emission from a charge-transfer excited state. The other emission at 440 nm with blue colour displayed resistance to oxygen quenching and a normal fluorescence lifetime of 1.5 ns. Compared with control molecule, this emission band is assigned as conventional fluorescence from a localized excited state. In addition, dual emission property allows molecule 1 to be modulated to emit white photoluminescence in thin film with a CIE color coordinate of (0.25, 0.33).
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Rong Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Qifan Yan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
26
|
He L, Bai R, Yu R, Meng X, Tian M, Wang X. Donor/Acceptor Pairs Created by Electrostatic Interaction: Design, Synthesis, and Investigation on the Exciplex Formed Within the Pair. Angew Chem Int Ed Engl 2021; 60:6013-6020. [PMID: 33331060 DOI: 10.1002/anie.202013332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Indexed: 12/23/2022]
Abstract
Exciplexes formed between donors and acceptors have been widely explored but isolating them from each other and tuning the interaction between the donor and acceptor have remained challenges. Here, we report donor/acceptor (D/A) pairs created by electrostatic interaction between a carbazole-based anionic donor and a 1,3,5-triazine-based cationic acceptor and the exciplex formed within the pair. In a diluted film, the D/A pair affords an isolated exciplex which shows thermally activated delayed fluorescence (TADF). By changing the anchoring position of the imidazolium cation in the cationic acceptor, interactions between the donor and acceptor can be changed. Compared to the conventional exciplex formed in a neat film, the isolated exciplex exhibits a substantially higher luminescence efficiency. The D/A pairs show intriguing mechanochromic luminescence and mechanical grinding-induced/reinforced TADF in the solid state and promising performances as emitters in organic light-emitting diodes.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rubing Bai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Renyou Yu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xianwen Meng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Mingxing Tian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaoxiang Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
27
|
|
28
|
He L, Bai R, Yu R, Meng X, Tian M, Wang X. Donor/Acceptor Pairs Created by Electrostatic Interaction: Design, Synthesis, and Investigation on the Exciplex Formed Within the Pair. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lei He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Rubing Bai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Renyou Yu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Xianwen Meng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Mingxing Tian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Xiaoxiang Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
29
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
30
|
Wang X, Yang S, Tian Q, Zhong C, Qu Y, Yu Y, Jiang Z, Liao L. Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angew Chem Int Ed Engl 2021; 60:5213-5219. [DOI: 10.1002/anie.202011384] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xue‐Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Qi‐Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yang‐Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) Wujiang Suzhou Jiangsu 215211 P. R. China
| |
Collapse
|
31
|
Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9908-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Hempe M, Harrison AK, Ward JS, Batsanov AS, Fox MA, Dias FB, Bryce MR. Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. J Org Chem 2021; 86:429-445. [PMID: 33251794 DOI: 10.1021/acs.joc.0c02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | | | - Jonathan S Ward
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrei S Batsanov
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Mark A Fox
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Fernando B Dias
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Martin R Bryce
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
33
|
Fecková M, Kalis IK, Roisnel T, le Poul P, Pytela O, Klikar M, Robin-le Guen F, Bureš F, Fakis M, Achelle S. Photophysics of 9,9-Dimethylacridan-Substituted Phenylstyrylpyrimidines Exhibiting Long-Lived Intramolecular Charge-Transfer Fluorescence and Aggregation-Induced Emission Characteristics. Chemistry 2020; 27:1145-1159. [PMID: 33016475 DOI: 10.1002/chem.202004328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/23/2023]
Abstract
Six pyrimidine-based push-pull systems substituted at positions C2 and C4/6 with phenylacridan and styryl moieties, employing methoxy or N,N-diphenylamino donors, have been designed and synthesized through cross-coupling and Knoevenagel reactions. X-ray analysis confirmed that the molecular structure featured the acridan moiety arranged perpendicularly to the residual π system. Photophysical studies revealed significant differences between the methoxy and N,N-diphenylamino chromophores. Solvatochromic studies revealed that the methoxy derivatives showed dual emission in polar solvents. Time-resolved spectroscopy revealed that the higher energy band involved very fast (<80 ps) fluorescence, whereas the lower energy one included long components (≈30 ns) due to long-lived intramolecular charge-transfer fluorescence. In contrast to N,N-diphenylamino chromophores, the methoxy derivatives also showed aggregation-induced emission in mixtures of THF/water, as well as dual emission in thin films, covering almost the whole visible spectrum with corresponding chromaticity coordinates not far from that of pure white light. These properties render the methoxy derivatives as very promising organic materials for white organic light-emitting diodes.
Collapse
Affiliation(s)
- Michaela Fecková
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France.,Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | | | - Thierry Roisnel
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Pascal le Poul
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Oldřich Pytela
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Milan Klikar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Françoise Robin-le Guen
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studenská 573, 53210, Pardubice, Czech Republic
| | - Mihalis Fakis
- Department of Physics, University of Patras, 26504, Patras, Greece
| | - Sylvain Achelle
- Institut des Sciences Chimique de Rennes, UMR 6226, Univ. Rennes, CNRS, 35000, Rennes, France
| |
Collapse
|
34
|
Demangeat C, Dou Y, Hu B, Bretonnière Y, Andraud C, D'Aléo A, Wu JW, Kim E, Le Bahers T, Attias A. σ‐Conjugation and H‐Bond‐Directed Supramolecular Self‐Assembly: Key Features for Efficient Long‐Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Catherine Demangeat
- Building Blocks for FUture Electronics Laboratory, UMI 2002 CNRS-Sorbonne Université-Yonsei University Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Yixuan Dou
- Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA
| | - Bin Hu
- Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA
| | - Yann Bretonnière
- Univ. Lyon Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 Laboratoire de Chimie 69342 Lyon France
| | - Chantal Andraud
- Univ. Lyon Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 Laboratoire de Chimie 69342 Lyon France
| | - Anthony D'Aléo
- Building Blocks for FUture Electronics Laboratory, UMI 2002 CNRS-Sorbonne Université-Yonsei University Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Jeong Weon Wu
- Department of Physics Ewha Womans University Seoul 03760 South Korea
| | - Eunkyoung Kim
- Building Blocks for FUture Electronics Laboratory, UMI 2002 CNRS-Sorbonne Université-Yonsei University Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
- Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Tangui Le Bahers
- Building Blocks for FUture Electronics Laboratory, UMI 2002 CNRS-Sorbonne Université-Yonsei University Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
- Univ. Lyon Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 Laboratoire de Chimie 69342 Lyon France
| | - André‐Jean Attias
- Building Blocks for FUture Electronics Laboratory, UMI 2002 CNRS-Sorbonne Université-Yonsei University Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| |
Collapse
|
35
|
Tang X, Cui LS, Li HC, Gillett AJ, Auras F, Qu YK, Zhong C, Jones STE, Jiang ZQ, Friend RH, Liao LS. Highly efficient luminescence from space-confined charge-transfer emitters. NATURE MATERIALS 2020; 19:1332-1338. [PMID: 32541938 DOI: 10.1038/s41563-020-0710-z] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.
Collapse
Affiliation(s)
- Xun Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Lin-Song Cui
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hong-Cheng Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | | | - Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Yang-Kun Qu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, China
| | - Saul T E Jones
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Zuo-Quan Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | | | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| |
Collapse
|
36
|
Demangeat C, Dou Y, Hu B, Bretonnière Y, Andraud C, D'Aléo A, Wu JW, Kim E, Le Bahers T, Attias AJ. σ-Conjugation and H-Bond-Directed Supramolecular Self-Assembly: Key Features for Efficient Long-Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angew Chem Int Ed Engl 2020; 60:2446-2454. [PMID: 33089921 DOI: 10.1002/anie.202011770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/21/2023]
Abstract
Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.
Collapse
Affiliation(s)
- Catherine Demangeat
- Building Blocks for FUture Electronics Laboratory, UMI 2002, CNRS-Sorbonne Université-Yonsei University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yixuan Dou
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Bin Hu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yann Bretonnière
- Univ. Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
| | - Chantal Andraud
- Univ. Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
| | - Anthony D'Aléo
- Building Blocks for FUture Electronics Laboratory, UMI 2002, CNRS-Sorbonne Université-Yonsei University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Weon Wu
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Eunkyoung Kim
- Building Blocks for FUture Electronics Laboratory, UMI 2002, CNRS-Sorbonne Université-Yonsei University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tangui Le Bahers
- Building Blocks for FUture Electronics Laboratory, UMI 2002, CNRS-Sorbonne Université-Yonsei University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Univ. Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
| | - André-Jean Attias
- Building Blocks for FUture Electronics Laboratory, UMI 2002, CNRS-Sorbonne Université-Yonsei University, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
37
|
Yan CX, Lin QQ, Li S, Wu CJ, Li YA, Fan JZ, Ma JP, Geng Y, Dong YB. Synthesis of fulvene-containing boron complexes with aggregation-induced emission and mechanochromic luminescence. Chem Commun (Camb) 2020; 56:14435-14438. [PMID: 33146183 DOI: 10.1039/d0cc05757f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two donor-acceptor motif fulvene-containing boron complexes were synthesized with fulvene diketonate boron difluoride (FDB) as the organic acceptor. Both difluoroboron complexes present aggregation-induced emission (AIE) properties and cell tracing function with excellent biocompatibility. And mechanochromic luminescence has been accomplished by the synthesis, isolation and characterization of BL2.
Collapse
Affiliation(s)
- Cai-Xin Yan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang SY, Wang YK, Peng CC, Wu ZG, Yuan S, Yu YJ, Li H, Wang TT, Li HC, Zheng YX, Jiang ZQ, Liao LS. Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J Am Chem Soc 2020; 142:17756-17765. [DOI: 10.1021/jacs.0c08980] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chen-Chen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tong-Tong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hong-Cheng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - You-Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou, Jiangsu 215211, China
| |
Collapse
|
39
|
Jin R, Xin J. Rational Design of π-Conjugated Tricoordinated Organoboron Derivatives With Thermally Activated Delayed Fluorescent Properties for Application in Organic Light-Emitting Diodes. Front Chem 2020; 8:577834. [PMID: 33195067 PMCID: PMC7554541 DOI: 10.3389/fchem.2020.577834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
A series of donor–acceptor (D–A) tricoordinated organoboron derivatives (1–10) have been systematically investigated for thermally activated delayed fluorescent (TADF)-based organic light-emitting diode (OLED) materials. The calculated results show that the designed molecules exhibit small singlet-triplet energy gap (ΔEST) values. Density functional theory (DFT) analysis indicated that the designed molecules display an efficient separation between donor and acceptor fragments because of a small overlap between donor and acceptor fragments on HOMOs and LUMOs. Furthermore, the delayed fluorescence emission color can be tuned effectively by introduction of different polycyclic aromatic fragments in parent molecule 1. The calculated results show that molecules 2, 3, and 4 possess more significant Stokes shifts and red emission with small ΔEST values. Nevertheless, other molecules exhibit green (1, 7, and 8), light green (6 and 10), and blue (5 and 9) emissions. Meanwhile, they are potential ambipolar charge transport materials except that 4 and 10 can serve as electron and hole transport materials only, respectively. Therefore, we proposed a rational way for the design of efficient TADF materials as well as charge transport materials for OLEDs simultaneously.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
- *Correspondence: Ruifa Jin
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
| |
Collapse
|
40
|
Wang H, Jing C, Noble A, Aggarwal VK. Stereospecific 1,2-Migrations of Boronate Complexes Induced by Electrophiles. Angew Chem Int Ed Engl 2020; 59:16859-16872. [PMID: 32592274 PMCID: PMC7540471 DOI: 10.1002/anie.202008096] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/16/2022]
Abstract
The stereospecific 1,2-migration of boronate complexes is one of the most representative reactions in boron chemistry. This process has been used extensively to develop powerful methods for asymmetric synthesis, with applications spanning from pharmaceuticals to natural products. Typically, 1,2-migration of boronate complexes is driven by displacement of an α-leaving group, oxidation of an α-boryl radical, or electrophilic activation of an alkenyl boronate complex. The aim of this article is to summarize the recent advances in the rapidly expanding field of electrophile-induced stereospecific 1,2-migration of groups from boron to sp2 and sp3 carbon centers. It will be shown that three different conceptual approaches can be utilized to enable the 1,2-migration of boronate complexes: stereospecific Zweifel-type reactions, catalytic conjunctive coupling reactions, and transition metal-free sp2 -sp3 couplings. A discussion of the reaction scope, mechanistic insights, and synthetic applications of the work described is also presented.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Changcheng Jing
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
41
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
42
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:17018-17025. [DOI: 10.1002/anie.202009077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
43
|
Auffray M, Balijapalli U, Ribierre JC, Tsuchiya Y, Adachi C. Sub-Microsecond TADF Emission in D-D′-A Emitters. CHEM LETT 2020. [DOI: 10.1246/cl.200337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Jean-Charles Ribierre
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Zhao YJ, Ma JP, Fan J, Geng Y, Dong YB. Syntheses and structures of two novel fluorescent metal-organic frameworks generated from a tridentate donor-acceptor motif ligand. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:605-615. [PMID: 32499459 DOI: 10.1107/s2053229620006488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022]
Abstract
The tridentate organic ligand 4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid (H3L) has been synthesized (as the methanol 1.25-solvate, C48H39NO6·1.25CH3OH). As a donor-acceptor motif molecule, H3L possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, H3L molecules construct a two-dimensional (2D) network, which pack together into three-dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on H3L and M(NO3)2 salts (M = Cd and Zn) under solvothermal conditions, two metal-organic frameworks (MOFs), namely, catena-poly[[triaquacadmium(II)]-μ-10-(4-carboxyphenyl)-4,4'-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6-diyl)dibenzoato], [Cd(C48H37NO6)(H2O)3]n, I, and poly[[μ3-4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoato](μ3-hydroxido)zinc(II)], [Zn2(C48H36NO6)(OH)]n, II, were synthesized. Single-crystal analysis revealed that both MOFs adopt a 3D structure. In I, partly deprotonated HL2- behaves as a bidentate ligand to link a CdII ion to form a one-dimensional chain. In the solid state of I, the existence of weak interactions, such as O-H...O hydrogen bonds and π-π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I. The deprotonated ligand L3- in II is utilized as a tridentate building block to bind ZnII ions to construct 3D networks, where unusual Zn4O14 clusters act as connection nodes. As a donor-acceptor molecule, H3L exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red-shifted with even higher PLQYs of 79 and 85% for I and II, respectively.
Collapse
Affiliation(s)
- Yong Jin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jian Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jianzhong Fan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yan Geng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yu Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
45
|
Kumar S, Rajamalli P, Cordes DB, Slawin AMZ, Zysman‐Colman E. Highly Fluorescent Emitters Based on Triphenylamine‐π‐Triazine (D‐π‐A) System: Effect of Extended Conjugation on Singlet‐Triplet Energy Gap. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shiv Kumar
- Organic Semiconductor Centre EaStCHEM School of ChemistryUniversity of St Andrews St Andrews, Fife KY16 9ST United Kingdom
| | - Pachaiyappan Rajamalli
- Organic Semiconductor Centre EaStCHEM School of ChemistryUniversity of St Andrews St Andrews, Fife KY16 9ST United Kingdom
- Current address: Materials Research CentreIndian Institute of Science Bangalore 560012 India
| | - David B. Cordes
- Organic Semiconductor Centre EaStCHEM School of ChemistryUniversity of St Andrews St Andrews, Fife KY16 9ST United Kingdom
| | - Alexandra M. Z. Slawin
- Organic Semiconductor Centre EaStCHEM School of ChemistryUniversity of St Andrews St Andrews, Fife KY16 9ST United Kingdom
| | - Eli Zysman‐Colman
- Organic Semiconductor Centre EaStCHEM School of ChemistryUniversity of St Andrews St Andrews, Fife KY16 9ST United Kingdom
| |
Collapse
|
46
|
Tsuchiya Y, Tsuji K, Inada K, Bencheikh F, Geng Y, Kwak HS, Mustard TJL, Halls MD, Nakanotani H, Adachi C. Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Front Chem 2020; 8:403. [PMID: 32435635 PMCID: PMC7218164 DOI: 10.3389/fchem.2020.00403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Quantum chemical calculations are necessary to develop advanced emitter materials showing thermally-activated delayed fluorescence (TADF) for organic light-emitting diodes (OLEDs). However, calculation costs become problematic when more accurate functionals were used, therefore it is judicious to use a multimethod approach for efficiency. Here we employed combinatorial chemistry in silico to develop the deep blue TADF materials with a new concept of homo-junction design. The homo-junction materials containing TADF candidates designed by calculation were synthesized and analyzed. We found that these materials showed the emission from charge transfer (CT) state, and the clear delayed emission was provided in solid state. Because the homo-junction TADF materials showed three exponential decayed emission in solid state, we employed novel four-state kinetic analysis.
Collapse
Affiliation(s)
- Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka, Japan
| | - Keita Tsuji
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
| | - Ko Inada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka, Japan
| | - Fatima Bencheikh
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka, Japan
| | - Yan Geng
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
| | | | | | | | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka, Japan.,Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka, Japan.,Department of Chemistry and Biochemistry, Kyushu University, Fukuoka, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Serevičius T, Skaisgiris R, Dodonova J, Jagintavičius L, Banevičius D, Kazlauskas K, Tumkevičius S, Juršėnas S. Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine-Pyrimidine Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10727-10736. [PMID: 32020805 PMCID: PMC7467543 DOI: 10.1021/acsami.9b21394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/05/2020] [Indexed: 05/29/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials, combining high fluorescence quantum efficiency and short delayed emission lifetime, are highly desirable for application in organic light-emitting diodes (OLEDs) with negligible external quantum efficiency (EQE) roll-off. Here, we present the pathway for shortening the TADF lifetime of highly emissive 4,6-bis[4-(10-phenoxazinyl)phenyl]pyrimidine derivatives. Tiny manipulation of the molecular structure with methyl groups was applied to tune the singlet-triplet energy-level scheme and the corresponding coupling strengths, enabling the boost of the reverse intersystem crossing (rISC) rate (from 0.7 to 6.5) × 106 s-1 and shorten the TADF lifetime down to only 800 ns in toluene solutions. An almost identical TADF lifetime of roughly 860 ns was attained also in solid films for the compound with the most rapid TADF decay in toluene despite the presence of inevitable conformational disorder. Concomitantly, the boost of fluorescence quantum efficiency to near unity was achieved in solid films due to the weakened nonradiative decay. Exceptional EQE peak values of 26.3-29.1% together with adjustable emission wavelength in the range of 502-536 nm were achieved in TADF OLEDs. Reduction of EQE roll-off was demonstrated by lowering the TADF lifetime.
Collapse
Affiliation(s)
- Tomas Serevičius
- Institute of Photonics
and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute of Photonics
and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Jelena Dodonova
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Laimis Jagintavičius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Dovydas Banevičius
- Institute of Photonics
and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute of Photonics
and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics
and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
48
|
Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Kim JU, Wong MY, Kumar S, Hayes OG, Duncan F, Chan CY, Wong BYW, Ye H, Cui LS, Nakanotani H, Zysman-Colman E, Adachi C. High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. CHEM LETT 2019. [DOI: 10.1246/cl.190412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jong Uk Kim
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michael Y. Wong
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST
| | - Oliver G. Hayes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST
| | - Finlay Duncan
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ben Yiu-Wing Wong
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hao Ye
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Lin-Song Cui
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
Sun L, Hua W, Liu Y, Tian G, Chen M, Chen M, Yang F, Wang S, Zhang X, Luo Y, Hu W. Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet Energy Gap via Charge Transfer. Angew Chem Int Ed Engl 2019; 58:11311-11316. [DOI: 10.1002/anie.201904427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Lingjie Sun
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Weijie Hua
- Department of Applied PhysicsSchool of ScienceNanjing University of Science and Technology Nanjing 210094 China
| | - Yang Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic PhysicsDepartment of PhysicsPeking University Beijing 100871 China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 China
| | - Mingxi Chen
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Mingxing Chen
- Analytical Instrumentation CenterPeking University Beijing 100871 China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic PhysicsDepartment of PhysicsPeking University Beijing 100871 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yi Luo
- Hefei National Laboratory for Physical Science at the MicroscaleUniversity of Science and Technology of China Hefei China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|