1
|
Landrini M, Patel R, Tyrrell-Thrower J, Macchioni A, Hughes DL, Tensi L, Hrobárik P, Rocchigiani L. Exploring Ligand Effects on Structure, Bonding, and Photolytic Hydride Transfer of Cationic Gold(I) Bridging Hydride Complexes of Molybdocene and Tungstenocene. Inorg Chem 2024; 63:13525-13545. [PMID: 38989543 DOI: 10.1021/acs.inorgchem.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A diverse family of heterobimetallic bridging hydride adducts of the type [LAu(μ-H)2MCp2][X] (L = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, IPr; 1,3-bis(1-adamantyl)imidazole-2-ylidene, IAd; 1,3-bis(2,6-di-iso-propylphenyl)-5,5-dimethyl-4,6-diketopyrimidinyl-2-ylidene, DippDAC; triphenylphosphine, PPh3; 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl, tBuXPhos; X = SbF6-, BF4- or TfO-) was synthesized by reacting group VI metallocene dihydrides Cp2MH2 (Cp = cyclopentadienyl anion; M = Mo, W) with cationic gold(I) complexes [LAu(NCMe)][X]. Trimetallic [L'Au2(μ-H)2WCp2][X]2 and tetrametallic [L'Au2{(μ-H)2WCp2}2] [X]2 complexes (L' = rac-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene or bis(diphenylphosphinomethane)) were obtained by reacting digold [L'{Au(NCMe)}2][X]2 with Cp2WH2 in a 1:1 and a 1:2 stoichiometry. Accessing such a broad structural diversity allowed us to pinpoint roles played by the ancillary ligands and group VI metals on the bonding properties of this family of bridging hydrides. In particular, a clear effect of the ligand on the interaction energy and electronic structure was observed, with important implications on photolytic reactivity. UV or visible light irradiation, indeed, leads to the selective cleavage of the heterobimetallic Au(μ-H)2M arrangement and formation of molecular gold hydrides. The photolysis was found to be chromoselective (wavelength-dependent), which can be ascribed to different charge redistributions upon excitation to the first (Kasha's reactivity) and higher (anti-Kasha's reactivity) excited states.
Collapse
Affiliation(s)
- Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Rohan Patel
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Joshua Tyrrell-Thrower
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| |
Collapse
|
2
|
Imteyaz S, Suresh CM, Kausar T, Ingole PP. Carbon dioxide capture and its electrochemical reduction study in deep eutectic solvent (DES) via experimental and molecular simulation approaches. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Parr JM, White AJP, Crimmin MR. Magnesium-stabilised transition metal formyl complexes: structures, bonding, and ethenediolate formation. Chem Sci 2022; 13:6592-6598. [PMID: 35756511 PMCID: PMC9172563 DOI: 10.1039/d2sc02063g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/15/2022] [Indexed: 12/02/2022] Open
Abstract
Herein we report the first comprehensive series of crystallographically characterised transition metal formyl complexes. In these complexes, the formyl ligand is trapped as part of a chelating structure between a transition metal (Cr, Mn, Fe, Co, Rh, W, and Ir) and a magnesium (Mg) cation. Calculations suggest that this bonding mode results in significant oxycarbene-character of the formyl ligand. Further reaction of a heterometallic Cr–Mg formyl complex results in a rare example of C–C coupling and formation of an ethenediolate complex. DFT calculations support a key role for the formyl-intermediate in ethenediolate formation. These results show that well-defined transition metal formyl complexes are potential intermediates in the homologation of carbon monoxide. Herein we report a comprehensive series of crystallographically characterised transition metal formyl complexes.![]()
Collapse
Affiliation(s)
- Joseph M Parr
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Andrew J P White
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Mark R Crimmin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| |
Collapse
|
4
|
Sinhababu S, Radzhabov MR, Telser J, Mankad NP. Cooperative Activation of CO 2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. J Am Chem Soc 2022; 144:3210-3221. [PMID: 35157448 PMCID: PMC9308047 DOI: 10.1021/jacs.1c13108] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(μ:κ2-O2C)Fp (3) and LdippAl(Me)(μ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Maxim R. Radzhabov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Silalahi RPB, Wang Q, Liao J, Chiu T, Wu Y, Wang X, Kahlal S, Saillard J, Liu CW. Reactivities of Interstitial Hydrides in a Cu
11
Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rhone P. Brocha Silalahi
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Jian‐Hong Liao
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Tzu‐Hao Chiu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| | - Ying‐Yann Wu
- Institute of Chemistry Academia Sinica Taipei 11528 Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | | | - C. W. Liu
- Department of Chemistry National Dong Hwa University No. 1, Sec 2, Da Hsueh Rd. Hualien 974301 Taiwan, R.O.C
| |
Collapse
|
6
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
7
|
Silalahi RPB, Wang Q, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Saillard JY, Liu CW. Reactivities of Interstitial Hydrides in a Cu 11 Template: En Route to Bimetallic Clusters. Angew Chem Int Ed Engl 2021; 61:e202113266. [PMID: 34755440 DOI: 10.1002/anie.202113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Indexed: 11/10/2022]
Abstract
In sharp contrast to surface hydrides, reactivities of interstitial hydrides are difficult to explore. When treated with a metal ion (Cu+ , Ag+ , and Au+ ), the stable CuI dihydride template [Cu11 H2 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ] (H2 Cu11 ) generates surprisingly three very different compounds, namely [CuH2 Cu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 ]+ (1), [AgH2 Cu14 {S2 P(Oi Pr)2 }6 ((C≡CPh)6 ]+ (2), and [AuCu11 {S2 P(Oi Pr)2 }6 (C≡CPh)3 Cl] (3). Compounds 1 and 2 are both MI species and maintain the same number of hydride ligands as their H2 Cu11 precursor. Neutron diffraction revealed the first time a trigonal-pyramidal hydride coordination mode in the AgCu3 environment of 2. 3 has no hydride and exhibits a mixed-valent [AuCu11 ]10+ metal core, making it a two-electron superatom.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Qi Wang
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| | - Ying-Yann Wu
- Institute of Chemistry, Academia Sinica, Taipei, 11528, Taiwan, R.O.C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec 2, Da Hsueh Rd., Hualien, 974301, Taiwan, R.O.C
| |
Collapse
|
8
|
Dhara D, Scheschkewitz D, Chandrasekhar V, Yildiz CB, Jana A. Reactivity of NHC/diphosphene-coordinated Au(I)-hydride. Chem Commun (Camb) 2021; 57:809-812. [PMID: 33367425 DOI: 10.1039/d0cc05461e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the reactivity of isolable Au(i)-hydride stabilized by an NHC-coordinated diphosphene towards substrates containing C-C and N-N multiple bonds (NHC = N-heterocyclcic carbene). Reactions with dimethyl acetylenedicarboxylate and azobenzene lead to a trans-addition of the Au(i)-H across the C-C triple bond and the N-N double bond, respectively. In contrast, the reaction with ethyl diazoacetate affords a gold(i)-hydrazonide as the 1,1-addition product to the terminal nitrogen atom. With phenyl acetylene, the corresponding Au(i)-alkynyl complex is obtained under the elimination of dihydrogen. Strikingly, diphosphene-containing Au(i)-hydride is more reactive - affording different products in some cases - than a related NHC-stabilized Au(i)-hydride without the mediating diphosphene moiety.
Collapse
Affiliation(s)
- Debabrata Dhara
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India. and Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Cem B Yildiz
- Department of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
9
|
Huse K, Li B, Ghosh S, Wölper C, Schulz S. Synthesis of Homo‐ and Heteroleptic Al, Ga and Zn Complexes Containing (Per)fluorinated
β
‐Diketiminate Ligands. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin Huse
- Institute for Inorganic Chemistry University of Duisburg‐Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Bin Li
- Institute for Inorganic Chemistry University of Duisburg‐Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Swarup Ghosh
- Institute for Inorganic Chemistry University of Duisburg‐Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry University of Duisburg‐Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (Cenide) University of Duisburg‐Essen Universitätsstraße 5–7 45117 Essen Germany
| |
Collapse
|
10
|
Mears KL, Stennett CR, Taskinen EK, Knapp CE, Carmalt CJ, Tuononen HM, Power PP. Molecular Complexes Featuring Unsupported Dispersion-Enhanced Aluminum-Copper and Gallium-Copper Bonds. J Am Chem Soc 2020; 142:19874-19878. [PMID: 33170691 DOI: 10.1021/jacs.0c10099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reaction of the copper(I) β-diketiminate copper complex {(Cu(BDIMes))2(μ-C6H6)} (BDIMes = N,N'-bis(2,4,6-trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal β-diketiminates M(BDIDip) (M = Al or Ga; BDIDip = N,N'-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)CuGa(BDIDip)}. These feature unsupported copper-aluminum or copper-gallium bonds with short metal-metal distances, Cu-Al = 2.3010(6) Å and Cu-Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the calculated association enthalpies can be attributed to London dispersion forces.
Collapse
Affiliation(s)
- Kristian L Mears
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Cary R Stennett
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Elina K Taskinen
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Caroline E Knapp
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Claire J Carmalt
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Heikki M Tuononen
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Philip P Power
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
11
|
Cao Y, Zhang S, Antilla JC. Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shouqi Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C. Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, P. R. China
| |
Collapse
|
12
|
Huse K, Weinert H, Wölper C, Schulz S. Electronic effect of a perfluorinated β-diketiminate ligand on the bonding nature of copper carbonyl complexes. Dalton Trans 2020; 49:9773-9780. [PMID: 32618301 DOI: 10.1039/d0dt01943g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two copper complexes 17Fnac2Cu(C6H6) (3) and 17Fnac2CuCO (4) containing the monoanionic, perfluorinated β-diketiminate 17Fnac2- ligand (1) (17Fnac2 = FC[C(CF3)N(C6F5)]2) were synthesized and characterized by IR and NMR spectroscopy (1H, 13C, 19F), cyclovaltammometry (CV), elemental analysis and single crystal X-ray diffraction. The perfluorinated 17Fnac2- ligand marginally reduces the π-back-bonding capacity of the copper centre to the carbonyl group in 4 when compared with the corresponding 16Fnac2- substituted complexes but substantially when compared with the fluorine free substituted derivatives. Quantum chemical calculations gave deeper insight into the bonding situation of this carbonyl complex, while CV studies were performed to determine the oxidation potential of 3 in solution. Based on these data, the influence of the degree of fluorination in different β-diketimine ligands on the electronic nature of the corresponding copper complexes is discussed.
Collapse
Affiliation(s)
- Kevin Huse
- Faculty of Chemistry and Center for NanoIntegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Hanns Weinert
- Faculty of Chemistry and Center for NanoIntegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Christoph Wölper
- Faculty of Chemistry and Center for NanoIntegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| | - Stephan Schulz
- Faculty of Chemistry and Center for NanoIntegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, S07 S03 C30, D-45117 Essen, Germany.
| |
Collapse
|
13
|
Rocchigiani L, Klooster WT, Coles SJ, Hughes DL, Hrobárik P, Bochmann M. Hydride Transfer to Gold: Yes or No? Exploring the Unexpected Versatility of Au⋅⋅⋅H−M Bonding in Heterobimetallic Dihydrides. Chemistry 2020; 26:8267-8280. [DOI: 10.1002/chem.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Luca Rocchigiani
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Wim T. Klooster
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - Simon J. Coles
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - David L. Hughes
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Peter Hrobárik
- Department of Inorganic ChemistryFaculty of Natural SciencesComenius University 84215 Bratislava Slovakia
| | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| |
Collapse
|
14
|
Desnoyer AN, Nicolay A, Ziegler MS, Torquato NA, Tilley TD. A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angew Chem Int Ed Engl 2020; 59:12769-12773. [DOI: 10.1002/anie.202004346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Addison N. Desnoyer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Amélie Nicolay
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Micah S. Ziegler
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Nicole A. Torquato
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
| | - T. Don Tilley
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
15
|
Desnoyer AN, Nicolay A, Ziegler MS, Torquato NA, Tilley TD. A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Addison N. Desnoyer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Amélie Nicolay
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Micah S. Ziegler
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Nicole A. Torquato
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
| | - T. Don Tilley
- Department of Chemistry University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
16
|
Lakliang Y, Mankad NP. Heterometallic Cu2Fe and Zn2Fe2 Complexes Derived from [Fe(CO)4]2– and Cu/Fe Bifunctional N2O Activation Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
17
|
|
18
|
Liu T, Wu K, Wang L, Fan H, Zhou YG, Yu Z. Assembled Multinuclear Ruthenium(II)–NNNN Complexes: Synthesis, Catalytic Properties, and DFT Calculations. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tingting Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, PR China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Liandi Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Hongjun Fan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PR China
| |
Collapse
|
19
|
Dhara D, Das S, Pati SK, Scheschkewitz D, Chandrasekhar V, Jana A. NHC‐Coordinated Diphosphene‐Stabilized Gold(I) Hydride and Its Reversible Conversion to Gold(I) Formate with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debabrata Dhara
- Tata Institute of Fundamental Research Hyderabad, Gopanpally Hyderabad- 500107 Telangana India
| | - Shubhajit Das
- Theoretical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore- 560064 India
- Present address: Laboratory for Computational Molecular Design Institute of Chemical Sciences and Engineering Ecole Polytechnique Federale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Swapan K. Pati
- Theoretical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore- 560064 India
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry Saarland University 66123 Saarbrücken Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally Hyderabad- 500107 Telangana India
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur- 208016 India
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally Hyderabad- 500107 Telangana India
| |
Collapse
|
20
|
Dhara D, Das S, Pati SK, Scheschkewitz D, Chandrasekhar V, Jana A. NHC-Coordinated Diphosphene-Stabilized Gold(I) Hydride and Its Reversible Conversion to Gold(I) Formate with CO 2. Angew Chem Int Ed Engl 2019; 58:15367-15371. [PMID: 31414524 PMCID: PMC6916326 DOI: 10.1002/anie.201909798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 01/05/2023]
Abstract
An NHC-coordinated diphosphene is employed as ligand for the synthesis of a hydrocarbon-soluble monomeric AuI hydride, which readily adds CO2 at room temperature yielding the corresponding AuI formate. The reversible reaction can be expedited by the addition of NHC, which induces β-hydride shift and the removal of CO2 from equilibrium through the formation of an NHC-CO2 adduct. The AuI formate is alternatively formed by dehydrogenative coupling of the AuI hydride with formic acid (HCO2 H), thus in total establishing a reaction sequence for the AuI hydride mediated dehydrogenation of HCO2 H as chemical hydrogen storage material.
Collapse
Affiliation(s)
- Debabrata Dhara
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad-500107TelanganaIndia
| | - Shubhajit Das
- Theoretical Sciences UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangalore-560064India
- Present address: Laboratory for Computational Molecular Design Institute of Chemical Sciences and EngineeringEcole Polytechnique Federale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Swapan K. Pati
- Theoretical Sciences UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangalore-560064India
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic ChemistrySaarland University66123SaarbrückenGermany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad-500107TelanganaIndia
- Department of ChemistryIndian Institute of Technology KanpurKanpur-208016India
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad-500107TelanganaIndia
| |
Collapse
|
21
|
Alonso JM, Muñoz MP. Platinum and Gold Catalysis: à la Carte Hydroamination of Terminal Activated Allenes with Azoles. Org Lett 2019; 21:7639-7644. [DOI: 10.1021/acs.orglett.9b02949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- José Miguel Alonso
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
22
|
Kruppa SV, Groß C, Gui X, Bäppler F, Kwasigroch B, Sun Y, Diller R, Klopper W, Niedner-Schatteburg G, Riehn C, Thiel WR. Photoinitiated Charge Transfer in a Triangular Silver(I) Hydride Complex and Its Oxophilicity. Chemistry 2019; 25:11269-11284. [PMID: 31188502 DOI: 10.1002/chem.201901981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/08/2019] [Indexed: 12/28/2022]
Abstract
The photoexcitation of a triangular silver(I) hydride complex, [Ag3 (μ3 -H)(μ2 -dcpm)3 ](PF6 )2 ([P](PF6 )2 , dcpm=bis(dicyclohexylphosphino)methane), designed with "UV-silent" bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe-Salpeter equation (GW-BSE). Specific photofragments of mass-selected [P]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag3 (μ3 -H)]2+ scaffold. This structural motif of [P](PF6 )2 has been unequivocally verified by 1 H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag-Ag distances (dAgAg =3.08 Å) within the range of argentophilic interactions. The reduced radical cation [P]. + exhibits strong oxophilicity, forming [P+O2 ].+ ,which is a model intermediate for silver oxidation catalysis.
Collapse
Affiliation(s)
- Sebastian V Kruppa
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Cedric Groß
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Florian Bäppler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Björn Kwasigroch
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Yu Sun
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Werner R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| |
Collapse
|
23
|
Smith PW, Ellis SR, Handford RC, Tilley TD. An Anionic Ruthenium Dihydride [Cp*(iPr2MeP)RuH2]− and Its Conversion to Heterobimetallic Ru(μ-H)2M (M = Ir or Cu) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick W. Smith
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Scott R. Ellis
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Rex C. Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
24
|
Dhayal RS, van Zyl WE, Liu CW. Copper hydride clusters in energy storage and conversion. Dalton Trans 2019; 48:3531-3538. [DOI: 10.1039/c8dt04639e] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper hydride clusters of variable nuclearity are derived from hydrogen and HCOOH as emerging energy storage materials and models.
Collapse
Affiliation(s)
- Rajendra S. Dhayal
- Department of Chemical Sciences
- School of Basic and Applied Sciences
- Central University of Punjab
- Bathinda 151 001
- India
| | - Werner E. van Zyl
- School of Chemistry and Physics
- University of KwaZulu Natal
- Durban 4000
- South Africa
| | - C. W. Liu
- Department of Chemistry
- National Dong Hwa University
- Hualien
- Taiwan 97401
| |
Collapse
|
25
|
Xu R, Hua L, Li X, Yao Y, Leng X, Chen Y. Rare-earth/zinc heterometallic complexes containing both alkoxy-amino-bis(phenolato) and chiral salen ligands: synthesis and catalytic application for copolymerization of CO2 with cyclohexene oxide. Dalton Trans 2019; 48:10565-10573. [DOI: 10.1039/c9dt00064j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ten rare-earth/zinc heterometallic complexes were synthesized and their catalytic application for copolymerization of CO2 with cyclohexene oxide was explored.
Collapse
Affiliation(s)
- Ruoyu Xu
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Linyan Hua
- Key Laboratory of Organic Synthesis of Jiangsu Province and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| |
Collapse
|
26
|
Hicken A, White AJP, Crimmin MR. Preparation and characterisation of heterobimetallic copper-tungsten hydride complexes. Dalton Trans 2018; 47:10595-10600. [PMID: 29786734 DOI: 10.1039/c8dt01569d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The preparation and structural characterisation of three new heterobimetallic hydride complexes containing 3-centre,2-electron W-H-Cu bonds is reported. These complexes have been characterised by single crystal X-ray crystallography and multinuclear NMR spectroscopy. The bonding in these complexes has been analysed by DFT calculations.
Collapse
Affiliation(s)
- Alexandra Hicken
- SSCP DTP, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK and Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Li G, Chen J, Zhu DY, Chen Y, Xia JB. DBU-Catalyzed Selective N
-Methylation and N
-Formylation of Amines with CO2
and Polymethylhydrosiloxane. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800140] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- School Chemistry of Chemical Engineering; Guizhou University; Guiyang, 550025, People's Republic of China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Dao-Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Ye Chen
- School Chemistry of Chemical Engineering; Guizhou University; Guiyang, 550025, People's Republic of China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
28
|
Huang F, Wang Q, Guo J, Wen M, Wang ZX. Computational mechanistic study of Ru-catalyzed CO 2 reduction by pinacolborane revealing the σ-π coupling mechanism for CO 2 decarbonylation. Dalton Trans 2018; 47:4804-4819. [PMID: 29561047 DOI: 10.1039/c8dt00081f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been reported that RuH2(η2-H2)2(PCy3)2 (1) could mediate CO2 reduction by pinacolborane (HBpin), affording pinBOBpin (7), pinBOCH3 (8), pinBOCHO (9), pinBOCH2OBpin (10), and an unprecedented C2 species pinBOCH2OCHO (11), which meanwhile is converted to the Ru complexes, including the transient 3 (RuH(κ2-O2CH)(CO)(PCy3)2) and 5 (RuH{(μ-H)2Bpin}(CO)(PCy3)2), and the persistent 4 (RuH(κ2-O2CH)(CO)2(PCy3)2) and 6 (RuH2(CO)2(PCy3)2). To gain an insight into the catalysis, a DFT study was carried out. The study identified the key active catalyst to be the hydride 13 (RuH2(CO)(PCy3)2) and characterized the mechanisms leading to the experimentally observed species (3-11). By investigating the experimental system, we learned a new mechanism called σ-π coupling for CO2 decarbonylation. Under this mechanism, CO2 and HBpin first co-coordinate to the Ru center of 13, then σ-π coupling takes place, forming a B-O bond between CO2 and HBpin, Ru-H and Ru-C bonds, and simultaneously breaking the H-Bpin bond, followed by -OBpin group migration to the Ru center, completing the CO2 decarbonylation. An interesting feature regarding the Ru catalysis was the involvement of η1-Hη1-H → η2-H2 and η1-Hη1-Bpin → η2-HBpin reductions, which facilitated the oxidative H-Bpin addition or the coordination mode change of CO2 from η1-O to η2-CO for CO2 activation or σ-π coupling. The facilitation effects could be attributed to the reductions enhancing the electron donations from the Ru center to the antibonding orbitals of the activating bonds.
Collapse
Affiliation(s)
- Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jiandong Guo
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing, 100049, China.
| | - Mingwei Wen
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing, 100049, China.
| | - Zhi-Xiang Wang
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing, 100049, China.
| |
Collapse
|