1
|
Wang K, Cai S, Cheng Y, Qi Z, Ni X, Zhang K, Xiao Y, Zhang X, Wang T. Discovery of Benzo[ d]oxazoles as Novel Dual Small-Molecule Inhibitors Targeting PD-1/PD-L1 and VISTA Pathway. J Med Chem 2024; 67:18526-18548. [PMID: 39389791 DOI: 10.1021/acs.jmedchem.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The blockers of programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway have achieved great clinical success. However, the limited efficacy and low tumor response rate of anti-PD-1/PD-L1 monotherapy limit the clinical application of PD-1/PD-L1 inhibitors. V-domain immunoglobulin suppressor of T-cell activation (VISTA), a novel checkpoint regulator, exhibits potential synergy with PD-1/PD-L1 in enhancing antitumor immunity. Herein, we report the discovery of benzo[d]oxazole B3 as novel dual small-molecule inhibitors targeting PD-1/PD-L1 and VISTA with high PD-1/PD-L1 inhibitory activity and VISTA binding affinity. B3 rescues the immunosuppression of T-cells mediated by PD-L1 and VISTA and activates antitumor immunity effectively. Moreover, B3 could induce degradation of PD-L1 and VISTA in tumor cell. Furthermore, B3 displays significant in vivo antitumor efficacy in a CT26 mouse model. Our results discover B3 as a promising dual PD-1/PD-L1 and VISTA inhibitor, providing a novel therapeutic strategy to overcome the limitations of current anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Innovation Department of the Research Institute, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024. [PMID: 39420825 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chenghao Li
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Shujing Liu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Wei Wei
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Simeng Wang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mengjun Sui
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mengdan Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Shumei Lin
- Department of Infectious Disease Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yangyang Cheng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
3
|
Xia Y, Zhang H, Du H, Huang L, Yu C, Wu H, Zhang Y, Xu Y, Zhu Q, Zou Y. Design, synthesis, and antitumor activity evaluation of 1,2,3-triazole derivatives as potent PD-1/PD-L1 inhibitors. Bioorg Chem 2024; 153:107813. [PMID: 39278065 DOI: 10.1016/j.bioorg.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
A series of 1,2,3-triazole derivatives targeting the PD-1/PD-L1 pathway were designed, synthesized, and evaluated both in vitro and in vivo. Among them, compound III-4 demonstrated exceptional inhibitory activity against the interaction of PD-1/PD-L1 and showed great binding affinity with hPD-L1, with an IC50 value of 2.9 nM and a KD value of 3.33 nM. In the co-culture of Hep3B/OS-8/hPD-L1 cells and CD3+ T cells assay, III-4 relieved the inhibition of PD-L1 on PD-1 and promoted the expression of IFN-γ, which shared a comparable effect to that of the PD-1 monoclonal antibody Pembrolizumab (5 μg/mL). Moreover, compound III-5, an ester prodrug derived from III-4, demonstrated significant antitumor effects in the hPD-L1-MC38 C57BL/6 mouse model (TGI: 49.6 %) by oral administration. These findings suggest that compound III-5 holds promise as an inhibitor of the PD-1/PD-L1 interaction for cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Xia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbo Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huijie Du
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Huang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chunqiu Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haozhe Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yiwei Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Zou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Coman O, Grigorescu BL, Huțanu A, Bacârea A, Văsieșiu AM, Fodor RȘ, Stoica F, Azamfirei L. The Role of Programmed Cell Death 1/Programmed Death Ligand 1 (PD-1/PD-L1) Axis in Sepsis-Induced Apoptosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1174. [PMID: 39064603 PMCID: PMC11278887 DOI: 10.3390/medicina60071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Sepsis involves a dysregulated host response, characterized by simultaneous immunosuppression and hyperinflammation. Initially, there is the release of pro-inflammatory factors and immune system dysfunction, followed by persistent immune paralysis leading to apoptosis. This study investigates sepsis-induced apoptosis and its pathways, by assessing changes in PD-1 and PD-L1 serum levels, CD4+ and CD8+ T cells, and Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE II) severity scores. Materials and Methods: This prospective, observational, single-centre study enrolled 87 sepsis patients admitted to the intensive care unit at the County Emergency Clinical Hospital in Târgu Mureș, Romania. We monitored the parameters on day 1 (the day sepsis or septic shock was diagnosed as per the Sepsis-3 Consensus) and day 5. Results: Our study found a statistically significant variation in the SOFA score for the entirety of the patients between the studied days (p = 0.001), as well as for the studied patient groups: sepsis, septic shock, survivors, and non-survivors (p = 0.001, p = 0.003, p = 0.01, p = 0.03). On day 1, we found statistically significant correlations between CD8+ cells and PD-1 (p = 0.02) and PD-L1 (p = 0.04), CD4+ and CD8+ cells (p < 0.0001), SOFA and APACHE II scores (p < 0.0001), and SOFA and APACHE II scores and PD-L1 (p = 0.001 and p = 0.01). On day 5, we found statistically significant correlations between CD4+ and CD8+ cells and PD-L1 (p = 0.03 and p = 0.0099), CD4+ and CD8+ cells (p < 0.0001), and SOFA and APACHE II scores (p < 0.0001). Conclusions: The reduction in Th CD4+ and Tc CD8+ lymphocyte subpopulations were evident from day 1, indicating that apoptosis is a crucial factor in the progression of sepsis and septic shock. The increased expression of the PD-1/PD-L1 axis impairs costimulatory signalling, leading to diminished T cell responses and lymphopenia, thereby increasing the susceptibility to nosocomial infections.
Collapse
Affiliation(s)
- Oana Coman
- Department of Simulation Applied in Medicine, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Bianca-Liana Grigorescu
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| | - Adina Huțanu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
- Center for Advanced Medical and Pharmaceutical Research, Immunology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania
| | - Anca Bacârea
- Department of Pathophysiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Anca Meda Văsieșiu
- Department of Infectious Disease, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| | - Raluca Ștefania Fodor
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| | - Florin Stoica
- Clinic of Internal Medicine II, Emergency County Hospital, 540136 Targu Mures, Romania;
| | - Leonard Azamfirei
- Department of Anaesthesiology and Intensive Therapy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Targu Mures, Romania; (R.Ș.F.); (L.A.)
| |
Collapse
|
5
|
Xu C, Sun Z, Zhang X, Zang Q, Yang Z, Li L, Yang X, He Y, Ma Z, Chen J. Discovery of 4-phenyl-1H-indazole derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction. Bioorg Chem 2024; 147:107376. [PMID: 38640722 DOI: 10.1016/j.bioorg.2024.107376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- The Eighth Affiliated Hospital, Sun Yat sen University, Shenzhen 518033, China
| | - Xixiang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueyu He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Mukherjee S, Rogers A, Creech G, Hang C, Ramirez A, Dummeldinger M, Brueggemeier S, Mapelli C, Zaretsky S, Huang M, Black R, Peddicord MB, Cuniere N, Kempson J, Pawluczyk J, Allen M, Parsons R, Sfouggatakis C. Process Development of a Macrocyclic Peptide Inhibitor of PD-L1. J Org Chem 2024; 89:6651-6663. [PMID: 38663026 DOI: 10.1021/acs.joc.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).
Collapse
Affiliation(s)
- Subha Mukherjee
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Amanda Rogers
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Gardner Creech
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chao Hang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael Dummeldinger
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Claudio Mapelli
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Masano Huang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Regina Black
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Michael B Peddicord
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Nicolas Cuniere
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - James Kempson
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Joseph Pawluczyk
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Martin Allen
- Discovery Chemistry, Bristol Myers Squibb, Princeton, New Jersey 08540, United States
| | - Rodney Parsons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chris Sfouggatakis
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
7
|
Xianyu B, Pan S, Gao S, Xu H, Li T. Selenium-Containing Nanocomplexes Achieve Dual Immune Checkpoint Blockade for NK Cell Reinvigoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306225. [PMID: 38072799 DOI: 10.1002/smll.202306225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Indexed: 05/12/2024]
Abstract
The blockade of immune checkpoints has emerged as a promising strategy for cancer immunotherapy. However, most of the current approaches focus on T cells, leaving natural killer (NK) cell-mediated therapeutic strategies rarely explored. Here, a selenium-containing nanocomplex is developed that acts as a dual immune checkpoint inhibitor to reinvigorate NK cell-based cancer immunotherapy. The Se nanocomplex can deliver and release siRNA that targets programmed death ligand-1 (PD-L1) in tumor cells, thereby silencing the checkpoint receptor PD-L1. The intracellular reactive oxygen species generated by porphyrin derivatives in the nanocomplexes can oxidize the diselenide bond into seleninic acid, which blocks the expression of another checkpoint receptor, human leukocyte antigen E. The blockade of dual immune checkpoints shows synergistic effects on promoting NK cell-mediated antitumoral activity. This study provides a new strategy to reinvigorate NK cell immunity for the development of combined cancer immunotherapy.
Collapse
Affiliation(s)
- Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiqian Gao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Guo J, Yu F, Zhang K, Jiang S, Zhang X, Wang T. Beyond inhibition against the PD-1/PD-L1 pathway: development of PD-L1 inhibitors targeting internalization and degradation of PD-L1. RSC Med Chem 2024; 15:1096-1108. [PMID: 38665824 PMCID: PMC11042118 DOI: 10.1039/d3md00636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 04/28/2024] Open
Abstract
Tumor cells hijack the programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway to suppress the immune response through overexpressing PD-L1 to interact with PD-1 of T cells. With in-depth ongoing research, tumor-intrinsic PD-L1 is found to play important roles in tumor progression without interaction with PD-1 expressed on T cells, which provides an additional important target and therapeutic approach for development of PD-L1 inhibitors. Existing monoclonal antibody (mAb) drugs against the PD-1/PD-L1 pathway generally behave by conformationally blocking the interactions of PD-1 with PD-L1 on the cell surface. Beyond general inhibition of the protein-protein interaction (PPI), inhibitors targeting PD-L1 currently focus on the functional inhibition of the interaction between PD-1/PD-L1 and degradation of tumor-intrinsic PD-L1. This perspective will clarify the evolution of PD-L1 inhibitors and provide insights into the current development of PD-L1 inhibitors, especially targeting internalization and degradation of PD-L1.
Collapse
Affiliation(s)
- Jiazheng Guo
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Fengyi Yu
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
9
|
van der Straat R, Draijer R, Surmiak E, Butera R, Land L, Magiera-Mularz K, Musielak B, Plewka J, Holak TA, Dömling A. 1,5-Disubstituted tetrazoles as PD-1/PD-L1 antagonists. RSC Med Chem 2024; 15:1210-1215. [PMID: 38665826 PMCID: PMC11042242 DOI: 10.1039/d3md00746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
The progress in cancer survival and treatment has witnessed a remarkable transformation through the innovative approach of targeting the inhibitory immune checkpoint protein PD-1/PD-L1 complex by mAbs, e.g. pembrolizumab (Keytruda). While generating 17.2 billion U.S. dollars in revenue in 2021, the true significance of these developments lies in their ability to enhance cancer patient outcomes. Despite the proven efficacy of mAbs in inhibiting the PD-1/PD-L1 signaling pathways, they face significant challenges, including limited response rates, high production costs, missing oral bioavailability, and extended half-lives that can lead to immune-related adverse effects. A promising alternative approach involves the use of small molecules acting as PD-1/PD-L1 antagonists to stimulate PD-L1 dimerization. However, the precise mechanisms of action of these molecules remain partially understood, posing challenges to their development. In this context, our research focuses on the creation of a novel scaffold based on the Ugi tetrazole four-component reaction (UT-4CR) to develop low-molecular-weight inhibitors of PD-L1. Employing structure-based methods, we synthesized a library of small compounds using biphenyl vinyl isocyanide, leading to the discovery of a structure-activity relationship among 1,5-disubstituted tetrazole-based inhibitors. Supported by a cocrystal structure with PD-L1, these inhibitors underwent biophysical testing, including HTRF and protein NMR experiments, resulting in the identification of potent candidates with sub-micromolar PD-L1 affinities. This finding opens opportunities to the further development of a new class of PD-L1 antagonists, holding promise for improved cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Robin van der Straat
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Rosalie Draijer
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Roberto Butera
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Lennart Land
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University 30-387 Kraków Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen 9713 AV Groningen The Netherlands
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackȳ University in Olomouc Olomouc Czech Republic
| |
Collapse
|
10
|
Javed SA, Najmi A, Ahsan W, Zoghebi K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: success and challenges. Front Immunol 2024; 15:1383456. [PMID: 38660299 PMCID: PMC11039846 DOI: 10.3389/fimmu.2024.1383456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.
Collapse
Affiliation(s)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
11
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
12
|
Donati G, Viviano M, D'Amore VM, Cipriano A, Diakogiannaki I, Amato J, Tomassi S, Brancaccio D, Russomanno P, Di Leva FS, Arosio D, Seneci P, Taliani S, Magiera-Mularz K, Musielak B, Skalniak L, Holak TA, Castellano S, La Pietra V, Marinelli L. A combined approach of structure-based virtual screening and NMR to interrupt the PD-1/PD-L1 axis: Biphenyl-benzimidazole containing compounds as novel PD-L1 inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300583. [PMID: 38110703 DOI: 10.1002/ardp.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | | | | | | | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Cieplińska K, Niedziela E, Kowalska A. Immunological Processes in the Orbit and Indications for Current and Potential Drug Targets. J Clin Med 2023; 13:72. [PMID: 38202079 PMCID: PMC10780108 DOI: 10.3390/jcm13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid eye disease (TED) is an extrathyroidal manifestation of Graves' disease (GD). Similar to GD, TED is caused by an autoimmune response. TED is an autoimmune inflammatory disorder of the orbit and periorbital tissues, characterized by upper eyelid retraction, swelling, redness, conjunctivitis, and bulging eyes. The pathophysiology of TED is complex, with the infiltration of activated T lymphocytes and activation of orbital fibroblasts (OFs) and autoantibodies against the common autoantigen of thyroid and orbital tissues. Better understanding of the multifactorial pathogenesis of TED contributes to the development of more effective therapies. In this review, we present current and potential drug targets. The ideal treatment should slow progression of the disease with as little interference with patient immunity as possible. In the future, TED treatment will target the immune mechanism involved in the disease and will be based on a strategy of restoring tolerance to autoantigens.
Collapse
Affiliation(s)
| | - Emilia Niedziela
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| |
Collapse
|
14
|
Li X, Zeng Q, Xu F, Jiang Y, Jiang Z. Progress in programmed cell death-1/programmed cell death-ligand 1 pathway inhibitors and binding mode analysis. Mol Divers 2023; 27:1935-1955. [PMID: 35948846 DOI: 10.1007/s11030-022-10509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) plays an important role in negative regulating immunity. The search for effective PD-1/PD-L1 inhibitors has been at the cutting-edge of academic and industrial medicinal chemistry, leading to the emergence of 16 clinical candidate drugs and the launch of six monoclonal antibodies (mAbs) drugs. However, due to the unclear mechanism of the interaction between drugs and substances in vivo, the screening of preclinical drugs often takes a long time. In order to shorten the time of drug development as much as possible, the binding mode analysis that can simulate the interaction between drugs and substances in vivo at the molecular level can significantly shorten the drug development process. This paper reviews the mechanism of PD-1/PD-L1 signaling pathway at the molecular level, as well as the research progress and obstacles of inhibitors. Besides, we analyzed the binding mode of recently reported PD-1/PD-L1 inhibitors with PD-1 or PD-L1 protein in detail in order to provide ideas for the development of PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Pharmacy, Chun'an County Hospital of Traditional Chinese Medicine, Hangzhou, 311700, Zhejiang, China
| | - Qin Zeng
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fengjiao Xu
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Jiang
- Laboratory of Pharmacology, Department of Pharmacology, School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhongmei Jiang
- Department of Pharmacy, Chun'an County Hospital of Traditional Chinese Medicine, Hangzhou, 311700, Zhejiang, China.
| |
Collapse
|
15
|
Ważyńska MA, Butera R, Requesens M, Plat A, Zarganes-Tzitzikas T, Neochoritis CG, Plewka J, Skalniak L, Kocik-Krol J, Musielak B, Magiera-Mularz K, Rodriguez I, Blok SN, de Bruyn M, Nijman HW, Elsinga PH, Holak TA, Dömling A. Design, Synthesis, and Biological Evaluation of 2-Hydroxy-4-phenylthiophene-3-carbonitrile as PD-L1 Antagonist and Its Comparison to Available Small Molecular PD-L1 Inhibitors. J Med Chem 2023. [PMID: 37450644 PMCID: PMC10388299 DOI: 10.1021/acs.jmedchem.3c00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In search of a potent small molecular PD-L1 inhibitor, we designed and synthesized a compound based on a 2-hydroxy-4-phenylthiophene-3-carbonitrile moiety. Ligand's performance was tested in vitro and compared side-by-side with a known PD-L1 antagonist with a proven bioactivity BMS1166. Subsequently, we modified both compounds to allow 18F labeling that could be used for PET imaging. Radiolabeling, which is used in drug development and diagnosis, was applied to investigate the properties of those ligands and test them against tissue sections with diverse expression levels of PD-L1. We confirmed biological activity toward hPD-L1 for this inhibitor, comparable with BMS1166, while holding enhanced pharmacological properties.
Collapse
Affiliation(s)
- Marta A Ważyńska
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Roberto Butera
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Centre for Medicines Discovery, Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, Roosevelt Drive, OX3 7FZ Oxford, U.K
| | | | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Justyna Kocik-Krol
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicz St 11, 30-348 Krakow, Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodriguez
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicz St 11, 30-348 Krakow, Poland
| | - Simon N Blok
- Department of Nuclear Medicine and MolecularImaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and MolecularImaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Olomouc 77900, Czech Republic
| |
Collapse
|
16
|
Zhao L, Ma Y, Song X, Wu Y, Jin P, Chen G. PD-1: A New Candidate Target for Analgesic Peptide Design. THE JOURNAL OF PAIN 2023; 24:1142-1150. [PMID: 36781089 DOI: 10.1016/j.jpain.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
Chronic pain is a common health problem in humans. The unique properties and valuable clinical applications of analgesic peptides make them attractive pharmacotherapy options for pain control. Numerous targets for pain modulation processes are currently known, including opioid receptors, transient receptor potential (TRP) channels, voltage-gated ion channels, neuronal nicotinic receptors, and neurotensin receptors. However, these targets are not able to address the development needs of peptide-based drugs. Recent studies revealed that programmed cell death 1 (PD-1) is widely expressed in the dorsal root ganglia (DRG), spinal cord, and cerebral cortex. PD-1 signaling in neurons is involved in the regulation of neuronal excitability, synaptic transmission, and synaptic plasticity. PD-1 is able to silence nociceptive neurons upon activation. Consistently, Pd1 deficiency or blockade increases the pain sensitivity in naïve mice. PD-1 agonists, including PD-L1 and H-20, evoke Src homology 2 domain-containing tyrosine phosphatase-1 (SHP-1) phosphorylation, modulate neuronal excitability, and attenuate acute and chronic pain with minimal opioid-related adverse effects, suggesting a superior therapeutic index and a sound strategy for the development novel nonopioid analgesics. In addition, PD-1 signaling in non-neuronal cells could alleviate chronic pain by regulating neuroinflammation. Here, we review the potential and challenges of PD-1 as a candidate target for the development of analgesic peptides. PERSPECTIVE: This review paper aims to review recent advances in research on PD-1 in the domain of pain interference, explore how to obtain more promising PD-1 receptor-targeting analgesic peptides based on PD-L1 and analgesic peptide H-20 for relieving pathological pain, and offer potential optimization strategies for follow-up work of H-20.
Collapse
Affiliation(s)
- Long Zhao
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaofei Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yongjiang Wu
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Pengjie Jin
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gang Chen
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
17
|
Zhu H, Yang K, Yao H, Chen X, Yan S, He Y, Cao Y, Luo J, Wang D. Multifunctional Nanoplatform-Mediated Chemo-Photothermal Therapy Combines Immunogenic Cell Death with Checkpoint Blockade to Combat Triple-Negative Breast Cancer and Distant Metastasis. Int J Nanomedicine 2023; 18:3109-3124. [PMID: 37323948 PMCID: PMC10265501 DOI: 10.2147/ijn.s408855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Background Breast cancer has become the most common cancer in women. Compare with other subtypes of breast cancer, triple-negative breast cancer (TNBC) is more likely to relapse and metastasize. Highly effective therapeutic strategies are desperately needed to be explored. In this study, a multifunctional nanoplatform is expected to mediate chemo-photothermal therapy, which can combine immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis. Methods Poly (lactic acid-glycolic acid)-Poly (ethylene glycol) (PLGA-PEG) nanoparticles (NPs), a type of polymeric NPs, loaded with IR780, a near-infrared (NIR) dye, and doxorubicin (DOX) as the chemotherapeutic drug, were assembled by an improved double emulsification method (designated as IDNPs). The characterization, intracellular uptake, biosafety, photoacoustic (PA) imaging performance, and biodistribution of IDNPs were studied. Chemo-photothermal therapeutic effect and immunogenic cell death (ICD) were evaluated both in vitro and in vivo. The potency of chemo-photothermal therapy-triggered ICD in combination with anti-PD-1 immune checkpoint blockade (ICB) immunotherapy in eliciting immune response and treating distant tumors was further investigated. Results IR780 and DOX were successfully loaded into PLGA-PEG to form the IDNPs, with size of 243.87nm and Zeta potential of -6.25mV. The encapsulation efficiency of IR780 and DOX was 83.44% and 5.98%, respectively. IDNPs demonstrated remarkable on-site accumulation and PA imaging capability toward 4T1 TNBC models. Chemo-photothermal therapy demonstrated satisfactory therapeutic effects both in vitro and in vivo, and triggered ICD efficiently. ICD, in combination with anti-PD-1, provoked a systemic antitumor immune response against distant tumors. Conclusion Multifunctional IDNPs were successfully synthesized to mediate chemo-photothermal therapy, which combines immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis, showing great promise preclinically and clinically.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ke Yang
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huan Yao
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xueying Chen
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujin Yan
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jie Luo
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Cai S, Wang K, Qi Z, Ye K, Zhou X, Jiang S, Zhang K, Zhang X, Wang T. Design, synthesis, and evaluation of PD-1/PD-L1 small-molecule inhibitors bearing a rigid indane scaffold. Eur J Med Chem 2023; 256:115468. [PMID: 37207535 DOI: 10.1016/j.ejmech.2023.115468] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
Discovery of small-molecule inhibitors against programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis provides a promising alternative to overcome the inevitable defects of PD-1/PD-L1 monoclonal antibodies (mAbs). Here, we report a series of indanes as novel small-molecule inhibitors of PD-1/PD-L1 interaction. Thirty-one indanes were synthesized and the structure-activity relationships (SARs) demonstrated that conformational restriction with (S)-indane is superior in potency to inhibit the interaction of PD-1 and PD-L1. Compound D3 was found to be the most potent inhibitor with an IC50 value of 2.2 nM against PD-1/PD-L1 interaction. Cell-based assay showed that D3 significantly induced immune activity of peripheral blood mononuclear cells (PBMCs) against MDA-MB-231 cells and could restore the immune function of T cells by promoting secretion of the IFN-γ. The above results indicate that compound D3 is a promising PD-1/PD-L1 inhibitor that deserves further development.
Collapse
Affiliation(s)
- Shi Cai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kaizhen Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhihao Qi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Ye
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyuan Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Boisgerault N, Bertrand P. Inside PD-1/PD-L1,2 with their inhibitors. Eur J Med Chem 2023; 256:115465. [PMID: 37196547 DOI: 10.1016/j.ejmech.2023.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
This review summarizes current knowledge in the development of immune checkpoint inhibitors, including antibodies and small molecules.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université D'Angers, CRCI2NA, LabEx IGO, F-44000, Nantes, France
| | - Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 Rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
20
|
Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:cells12040659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
|
21
|
The Interaction of Programmed Cell Death Protein and Its Ligands with Non-Coding RNAs in Neoplasms: Emerging Anticancer Immunotherapeutics. Processes (Basel) 2023. [DOI: 10.3390/pr11020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Recent studies have demonstrated that cancer cells can elude immune cells by creating a sanctuary within the tumor’s microenvironment. Large amounts of immune-suppressing signaling proteins can be expressed by cancer cells. One of the most important mechanisms in this system is immune suppression caused by tumors and the modulation of the immune checkpoint. The immune checkpoint is modulated by both the programmed cell death protein 1 (PD-1) and its ligands, programmed death ligand 1 (PD-L1) and PD-L2. Non-coding RNAs (ncRNA), including the more well-known microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), all play roles in the regulation of biological processes and extensive diseases such as cancer. Thus, the focus of this study is on the interactions between the programmed death protein and its ligands with miRNAs, lncRNAs, and circRNAs during tumorigenesis and tumor progression. Furthermore, some FDA-approved drugs for the treatment of various cancers were based on their interactions with PD-1, PD-Ls, and ncRNAs. This promising strategy is still in the production stages, with additional results and clinical trials being processed.
Collapse
|
22
|
PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023; 12:cells12040530. [PMID: 36831197 PMCID: PMC9954559 DOI: 10.3390/cells12040530] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The application of immunotherapy for cancer treatment is rapidly becoming more widespread. Immunotherapeutic agents are frequently combined with various types of treatments to obtain a more durable antitumor clinical response in patients who have developed resistance to monotherapy. Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR) frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases the tumor's susceptibility to combined therapies. Here we review the recent advances in how the DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum compounds on the anti-tumor immune response.
Collapse
|
23
|
AmeliMojarad M, AmeliMojarad M, Cui X. Prospective role of PD-1/PD-L1 immune checkpoint inhibitors in GI cancer. Pathol Res Pract 2023; 244:154338. [PMID: 36905697 DOI: 10.1016/j.prp.2023.154338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
One of the mechanisms by which tumor cells can evade the immune system is over activation of the programmed cell death protein-1 (PD-1) / programmed death-ligand 1 (PD-L1) pathway. The binding of PD-1 to its ligand PD-L1 can trigger an inhibitory signal for reducing T-cell proliferation, inhibiting the anticancer effect of T cells, and limiting the anti-tumor immunity of effectors T cell responses to protect tissues from immune-mediated tissue damage in the tumor microenvironment (TME). PD-1/PD-L1 immune checkpoint inhibitors have created a new pattern in cancer immunotherapy and can increase T cell- surveillance; therefore, the development of better clinical application of PD-1/PD-L1 inhibitors can significantly enhance antitumor immunity and prolong survival in GI cancer patients.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
24
|
Gu T, Tian X, Wang Y, Yang W, Li W, Song M, Zhao R, Wang M, Gao Q, Li T, Zhang C, Kundu JK, Liu K, Dong Z, Lee MH. Repurposing pentamidine for cancer immunotherapy by targeting the PD1/PD-L1 immune checkpoint. Front Immunol 2023; 14:1145028. [PMID: 37205112 PMCID: PMC10185823 DOI: 10.3389/fimmu.2023.1145028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach to several cancer types. The reinvigoration of tumor-infiltrating lymphocyte-mediated immune responses via the blockade of immune checkpoint markers, such as program cell death-1 (PD-1) or its cognate ligand PD-L1, has been the basis for developing clinically effective anticancer therapies. We identified pentamidine, an FDA-approved antimicrobial agent, as a small-molecule antagonist of PD-L1. Pentamidine enhanced T-cell-mediated cytotoxicity against various cancer cells in vitro by increasing the secretion of IFN-γ, TNF-α, perforin, and granzyme B in the culture medium. Pentamidine promoted T-cell activation by blocking the PD-1/PD-L1 interaction. In vivo administration of pentamidine attenuated the tumor growth and prolonged the survival of tumor-bearing mice in PD-L1 humanized murine tumor cell allograft models. Histological analysis of tumor tissues showed an increased number of tumor-infiltrating lymphocytes in tissues derived from pentamidine-treated mice. In summary, our study suggests that pentamidine holds the potential to be repurposed as a novel PD-L1 antagonist that may overcome the limitations of monoclonal antibody therapy and can emerge as a small molecule cancer immunotherapy.
Collapse
Affiliation(s)
- Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenqian Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenwen Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiao Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Tiepeng Li
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengjuan Zhang
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- *Correspondence: Zigang Dong, ; Mee-Hyun Lee,
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
- *Correspondence: Zigang Dong, ; Mee-Hyun Lee,
| |
Collapse
|
25
|
Xia W, He L, Bao J, Qi Y, Zhang JZH. Insights into small molecule inhibitor bindings to PD-L1 with residue-specific binding free energy calculation. J Biomol Struct Dyn 2022; 40:12277-12285. [PMID: 34486939 DOI: 10.1080/07391102.2021.1971558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeting the immunological checkpoint PD-1/PD-L1 with antibodies has shown opportunities to improve cancer treatment in recent years. However, antibody therapy is a double-edged sword with high cost, low patient tolerance, lack of oral bioavailability, and a reaction to most solid tumors that prevents the adoption of antibodies. Advancement of small-molecule PD-1/PD-L1 inhibitors that could overwhelm these drawbacks is sluggish because of the poor pharmacodynamic properties and shallow pocket of the PD-1/PD-L1 binding interface. Recently, a number of compounds have been discovered to bind the PD-L1/PD-L1 dimer interface, providing an excellent alternative to inhibit the interaction between PD-1/PD-L1 and small molecules. Quantitative characterization of PD-L1 interactions with these inhibitors will advance the design of novel and efficient inhibitors in the future. Here, the binding free energies of 35 PD-L1 dimer inhibitors have been calculated using the alanine-scanning-interaction-entropy (AS-IE) method. Hotspot residues on PD-L1 and potential modification groups on the inhibitors were identified. The experimental results for the AS-IE method were better correlated than the classical MM/GBSA method. These results may set the stage for the design the more powerful PD-L1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liping He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, USA
| |
Collapse
|
26
|
Zhang L, Li M, Wang M, Li L, Guo M, Ke Y, Zhou P, Wang W. Tailored Cross-β Assemblies Establish Peptide "Dominos" Structures for Anchoring Undruggable Pharmacophores. Angew Chem Int Ed Engl 2022; 61:e202212527. [PMID: 36102014 DOI: 10.1002/anie.202212527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/15/2022]
Abstract
β-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the β-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of β-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Peng Zhou
- College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
27
|
Padmanabhan R, Kheraldine H, Gupta I, Meskin N, Hamad A, Vranic S, Al Moustafa AE. Quantification of the growth suppression of HER2+ breast cancer colonies under the effect of trastuzumab and PD-1/PD-L1 inhibitor. Front Oncol 2022; 12:977664. [PMID: 36568154 PMCID: PMC9769711 DOI: 10.3389/fonc.2022.977664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Immune checkpoint blockade (ICB)-based therapy is revolutionizing cancer treatment by fostering successful immune surveillance and effector cell responses against various types of cancers. However, patients with HER2+ cancers are yet to benefit from this therapeutic strategy. Precisely, several questions regarding the right combination of drugs, drug modality, and effective dose recommendations pertaining to the use of ICB-based therapy for HER2+ patients remain unanswered. Methods In this study, we use a mathematical modeling-based approach to quantify the growth inhibition of HER2+ breast cancer (BC) cell colonies (ZR75) when treated with anti-HER2; trastuzumab (TZ) and anti-PD-1/PD-L1 (BMS-202) agents. Results and discussion Our data show that a combination therapy of TZ and BMS-202 can significantly reduce the viability of ZR75 cells and trigger several morphological changes. The combination decreased the cell's invasiveness along with altering several key pathways, such as Akt/mTor and ErbB2 compared to monotherapy. In addition, BMS-202 causes dose-dependent growth inhibition of HER2+ BC cell colonies alone, while this effect is significantly improved when used in combination with TZ. Based on the in-vitro monoculture experiments conducted, we argue that BMS-202 can cause tumor growth suppression not only by mediating immune response but also by interfering with the growth signaling pathways of HER2+BC. Nevertheless, further studies are imperative to substantiate this argument and to uncover the potential crosstalk between PD-1/PD-L1 inhibitors and HER2 growth signaling pathways in breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Nader Meskin
- Department of Electrical Engineering, Qatar University, Doha, Qatar,*Correspondence: Nader Meskin, ; Ala-Eddin Al Moustafa,
| | - Anas Hamad
- Pharmaceutical Department at Hamad Medical Corporation, Hamad Medical Corporation, Doha, Qatar
| | - Semir Vranic
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar,Biomedical Research Centre, Qatar University, Doha, Qatar,*Correspondence: Nader Meskin, ; Ala-Eddin Al Moustafa,
| |
Collapse
|
28
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Barati M, Mirzavi F, Atabaki M, Bibak B, Mohammadi M, Jaafari MR. A review of PD-1/PD-L1 siRNA delivery systems in immune T cells and cancer cells. Int Immunopharmacol 2022; 111:109022. [PMID: 35987146 DOI: 10.1016/j.intimp.2022.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Programmed cell death 1 (PD-1) is a member of the CD28/CTLA-4 family of inhibitory immunological checkpoint receptors that's also widely produced by exhausted T lymphocytes in an immunosuppressive tumor microenvironment. PD-1 binds to programmed death ligand (PD-L1) and suppresses anti-cancer activity of T lymphocytes. We examined the current literature on how siRNA delivery systems can be used to target PD-1 and PD-L1, as well as the anti-cancer mechanisms and challenges associated with siRNA molecules. We look at studies that use program death 1 siRNA or program death 1 ligand siRNA to treat cancer. Several databases have been used for this purpose, including NCBI, Scopus, and Google Scholar. KEY FINDINGS This study looked at several methods for delivering siRNA to immune cells and cancer cells. According to these findings, suppressing PD-1 in T cells increases T lymphocyte activity. PD-L1 suppression in DCs improves antigen presentation and co-stimulatory signals on their surface, resulting in T cell activation. Chemotherapy resistance and cancer cell suppression of T cells are reduced when PD-L1/2 is suppressed in cancer cells. CONCLUSION The findings of this study indicated that several strategies for siRNA transfection to immune and cancer cells have been evaluated in recent decades, some of which effectively transfect siRNA to target cells, and defined PD-1 siRNA as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bahram Bibak
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
31
|
Barati M, Mirzavi F, Nikpoor AR, Sankian M, Namdar Ahmadabad H, Soleimani A, Mashreghi M, Tavakol Afshar J, Mohammadi M, Jaafari MR. Enhanced antitumor immune response in melanoma tumor model by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Cancer Gene Ther 2022; 29:814-824. [PMID: 34341501 DOI: 10.1038/s41417-021-00367-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Programmed cell death protein-1 (PD-1), as an immune checkpoint molecule, attenuates T-cell activity and induces T-cell exhaustion. Although siRNA has a great potential in cancer immunotherapy, its delivery to target cells is the main limitation of using siRNA. This study aimed to prepare a liposomal formulation as a siRNA carrier to silence PD-1 expression in T cells and investigate it's in vivo antitumor efficacy. The liposomal siRNA was prepared and characterized by size, zeta potential, and biodistribution. Following that, the uptake assay and mRNA silencing were evaluated in vitro at mRNA and protein levels. siRNA-PD-1 (siPD-1)-loaded liposome nanoparticles were injected into B16F0 tumor-bearing mice to evaluate tumor growth, tumor-infiltrating lymphocytes, and survival rate. Liposomal siPD-1 efficiently silenced PD-1 mRNA expression in T cells (P < 0.0001), and siPD-1-loaded liposomal nanoparticles enhanced the infiltration of T-helper 1 (Th 1) and cytotoxic T lymphocytes into the tumor tissue (P < 0.0001). Liposome-PD-1 siRNA monotherapy and PD-1 siRNA-Doxil (liposomal doxorubicin) combination therapy improved the survival significantly, compared to the control treatment (P < 0.001). Overall, these findings suggest that immunotherapy with siPD-1-loaded liposomes by enhancing T-cell-mediated antitumor immune responses could be considered as a promising strategy for the treatment of melanoma cancer.
Collapse
Affiliation(s)
- Mehdi Barati
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Department, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Namdar Ahmadabad
- Department of Pathobiology and medical laboratory science, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshar
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Liu Z, Liu Y, Liu M, Gong Q, Shi A, Li X, Bai X, Guan X, Hao B, Liu F, Zhou X, Yuan H. PD-L1 Inhibits T Cell-Induced Cytokines and Hyaluronan Expression via the CD40-CD40L Pathway in Orbital Fibroblasts From Patients With Thyroid Associated Ophthalmopathy. Front Immunol 2022; 13:849480. [PMID: 35619700 PMCID: PMC9128409 DOI: 10.3389/fimmu.2022.849480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital fibroblast activation, is an organ-specific autoimmune disease which is still short of effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported hindering the progression of Graves’ disease to some extent by inhibiting T cell activity, and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be associated with the pathogenesis of TAO. However, it remains unknown whether the PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital fibroblasts from patients with TAO do not express PD-L1. Based on in vitro OF-T cell co-culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40 and the phosphorylation levels of MAPK and NF-κB pathways in orbital fibroblasts of the OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating the phosphorylation levels of MAPK and NF-κB pathways with SB203580, PD98059, SP600125, and PDTC can both reduce the expression of these cytokines and hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to reconstruct the orbital immune tolerance microenvironment may be a potential treatment strategy for TAO.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingming Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingjia Gong
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| |
Collapse
|
33
|
Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. NANOMATERIALS 2022; 12:nano12101656. [PMID: 35630880 PMCID: PMC9144442 DOI: 10.3390/nano12101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Immunotherapy has emerged as one of the major strategies for cancer treatment. Unlike conventional therapeutic methods, immunotherapy can treat both primary and distant metastatic tumors through triggering systematic antitumor immune responses and can even prevent tumor recurrence after causing the formation of immune memory. However, immunotherapy still has the issues of low patient response rates and severe immune-related adverse events in clinical practices. In this regard, the combination of nanomedicine-mediated therapy with immunotherapy can modulate a tumor immunosuppressive microenvironment and thus amplify antitumor immunity. In particular, second near-infrared (NIR-II) photothermal therapy (PTT), which utilizes light conversions to generate heat for killing cancer cells, has shown unique advantages in combining with immunotherapy. In this review, the recent progress of engineering nanomedicines for NIR-II PTT combinational immunotherapy is summarized. The role of nanomedicine-mediated NIR-II PTT in inducing immunogenic cell death and reprogramming the tumor immunosuppressive microenvironment for facilitating immunotherapy are highlighted. The development of NIR-II-absorbing organic and inorganic nonmetal and inorganic metal nanomedicines for the NIR-II PTT combinational immunotherapy of cancer is also introduced in detail. Lastly, the current challenges and future perspectives of these nanomedicines for combinational immunotherapy are proposed.
Collapse
Affiliation(s)
- Fengshuo Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Correspondence: (Y.W.); (J.L.)
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
34
|
Sun P, Han Y, Hu K, Huang S, Wang M, Zhou K, Fu L, Chen H, Tang G. Synthesis and biological evaluation of Al[18F]-NOTA-IPB-PDL1P as a molecular probe for PET imaging of PD-L1 positive tumors. Bioorg Chem 2022; 122:105682. [DOI: 10.1016/j.bioorg.2022.105682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
|
35
|
Meng Y, Chu C, Niu X, Cheng L, Wu D, Liu L, Zhang S, Li T, Hou Y, Liu Y, Qin M. Discovery of 4-phenylindolines containing a (5-cyanopyridin-3-yl)methoxy moiety as potent inhibitors of the PD-1/PD-L1 interaction. Bioorg Med Chem Lett 2022; 63:128647. [PMID: 35231577 DOI: 10.1016/j.bmcl.2022.128647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
With the great success of anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) monoclonal antibodies in clinical applications, blocking the PD-1/PD-L1 pathway has become the most compelling strategy in the field of tumor immunotherapy. In this study, a novel series of 4-phenylindolines containing a (5-cyanopyridin-3-yl)methoxy moiety were developed, and their structure-activity relationships were preliminarily discussed. Among them, compounds M17 and M23 exhibited the most potent ability to disrupt the PD-1/PD-L1 interaction, demonstrating IC50 values of 60.1 nM and 53.2 nM, respectively. The binding mode of M23 was further explored by molecular docking analysis with dimeric PD-L1. Therefore, M17 and M23 are promising lead compounds for developing potent inhibitors of the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Yangyang Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cuiping Chu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinyu Niu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Liuyang Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lei Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shaopeng Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tianqi Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
36
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S. Design, Synthesis, and Evaluation of PD-1/PD-L1 Antagonists Bearing a Benzamide Scaffold. ACS Med Chem Lett 2022; 13:586-592. [PMID: 35450381 PMCID: PMC9014519 DOI: 10.1021/acsmedchemlett.1c00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Several antibodies targeting programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) have been approved by the U.S. Food and Drug Administration (FDA) for cancer therapy. Although many small-molecule inhibitors of the PD-1/PD-L1 pathway have been reported, no small-molecule inhibitors have been approved for cancer treatment. In this work, a series of novel benzamide derivatives were designed, synthesized, and evaluated to find effective inhibitors of the PD-1/PD-L1 interaction. The most potent compound D2 exhibited better activity than that of BMS202, with an IC50 of 16.17 nM. D2 could activate the antitumor immunity of T cells efficiently in PBMCs. The proposed binding mode of compound D2 was investigated by docking analysis. These results indicate that compound D2 is a promising lead compound that can be used for further development.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry and Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
Jouini N, Cardinale J, Mindt TL. Evaluation of a Radiolabelled Macrocyclic Peptide as Potential PET Imaging Probe for PD-L1. ChemMedChem 2022; 17:e202200091. [PMID: 35388635 PMCID: PMC9320808 DOI: 10.1002/cmdc.202200091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/16/2022]
Abstract
The interaction between the immune checkpoint PD‐1 and PD−L1 promotes T‐cell deactivation and cancer proliferation. Therefore, immune checkpoint inhibition therapy, which relies on prior assessment of the target, has been widely used for many cancers. As a non‐invasive molecular imaging tool, radiotracers bring novel information on the in vivo expression of biomarkers (e. g., PD−L1), enabling a personalized treatment of patients. Our work aimed at the development of a PD−L1‐specific, peptide‐based PET radiotracer. We synthesized and evaluated a radiolabeled macrocyclic peptide adapted from a patent by Bristol Myers Squibb. Synthesis of [68Ga]Ga‐NJMP1 yielded a product with a radiochemical purity>95 % that was evaluated in vitro. However, experiments on CHO−K1 hPD−L1 cells showed very low cell binding and internalization rates of [68Ga]Ga‐NJMP1 in comparison to a control radiopeptide (WL12). Non‐radioactive cellular assays using time‐resolved fluorescence energy transfer confirmed the low affinity of the reported parent peptide and the DOTA‐derivatives towards PD−L1. The results of our studies indicate that the macrocyclic peptide scaffold reported in the patent literature is not suitable for radiotracer development due to insufficient affinity towards PD−L1 and that C‐terminal modifications of the macrocyclic peptide interfere with important ligand/receptor interactions.
Collapse
Affiliation(s)
- Nedra Jouini
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarkers, AUSTRIA
| | - Jens Cardinale
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarker, AUSTRIA
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, Imaging Biomarker, Währinger Gürtel 18-20, AKH, c/o Sekretariat Nuklearmedizin, 1090, Vienna, AUSTRIA
| |
Collapse
|
39
|
Design, Synthesis and Biological Evaluation of New Dihydropyridine Derivatives as PD-L1 Degraders for Enhancing Antitumor Immunity. Bioorg Chem 2022; 125:105820. [DOI: 10.1016/j.bioorg.2022.105820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022]
|
40
|
Xiang Q, Yang C, Luo Y, Liu F, Zheng J, Liu W, Ran H, Sun Y, Ren J, Wang Z. Near-Infrared II Nanoadjuvant-Mediated Chemodynamic, Photodynamic, and Photothermal Therapy Combines Immunogenic Cell Death with PD-L1 Blockade to Enhance Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107809. [PMID: 35143709 DOI: 10.1002/smll.202107809] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The efficacy of immune checkpoint inhibition in inducing death of cancer cells is affected by the immunosuppressive "cold" tumor microenvironment, which results in a poor response by the patient's antitumor immune system. However, the immunomodulatory effects of immunogenic cell death in response to irritation by heat energy and reactive oxygen species (ROS) can switch the tumor microenvironment from "cold" to "hot." This study has developed a nanoadjuvant for immune therapy using iron tungsten oxide (FeWOx)-based nanosheets with surface PEGylation (FeWOx-PEG). This FeWOx-PEG nanoadjuvant serves as a chemodynamic reagent via the Fenton reaction and acts as a photosensitizer for photodynamic and photothermal therapy under near-infrared II laser irradiation; however, it could also be used to augment tumor-infiltrating T-cells and provoke a systemic antitumor immune response by combining the immunogenic cell death triggered by ROS and photothermal therapy with the immune checkpoint blockade. This research demonstrates that application of the FeWOx-PEG nanoadjuvant under the guidance of magnetic resonance/computed tomography/photoacoustic imaging can eliminate the primary tumor and suppress the growth of distant tumors.
Collapse
Affiliation(s)
- Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400010, P. R. China
| | - Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Fan Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jianli Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
41
|
Gay M, Diaz-Lobo M, Gusi-Vives M, Arauz-Garofalo G, Vilanova M, Giralt E, Vilaseca M, Guardiola S. Proteomic tools for the quantitative analysis of artificial peptide libraries: detection and characterization of target-amplified PD-1 inhibitors. Chembiochem 2022; 23:e202200152. [PMID: 35362647 DOI: 10.1002/cbic.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Indexed: 11/07/2022]
Abstract
We report a quantitative proteomics data analysis pipeline which, coupled to protein-directed dynamic combinatorial chemistry (DDC) experiments, enables the rapid discovery and direct characterization of protein-protein interaction (PPI) modulators. A low-affinity PD-1 binder was incubated with a library of >100 D-peptides under thiol-exchange favoring conditions, in the presence of the target protein PD-1, and we determined the S-linked dimeric species that resulted amplified in the protein samples versus the controls. We chemically synthesized the target dimer candidates and validated them by thermophoresis binding and protein-protein interaction assays. The results provide a proof-of-concept for using this strategy in the high-throughput search of improved drug-like peptide binders that block therapeutically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Marina Gay
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mireia Diaz-Lobo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Gusi-Vives
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Mar Vilanova
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, mas, SPAIN
| | - Ernest Giralt
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, SPAIN
| | - Marta Vilaseca
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Mass Spectrometry Core Facility, SPAIN
| | - Salvador Guardiola
- Institute for Research in Biomedicine: Institut de Recerca Biomedica, Pharmacology, Baldiri Reixac, 4, 08028, Barcelona, SPAIN
| |
Collapse
|
42
|
Chen N, Ba W, Zhao D, Sheng L, Zhang X. Response of Tonsil Follicular Dendritic Cell Sarcoma to Multimodal Treatment Including Pembrolizumab: A Case Report and Literature Review. Front Oncol 2022; 12:816903. [PMID: 35299752 PMCID: PMC8922364 DOI: 10.3389/fonc.2022.816903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Follicular dendritic cell sarcoma (FDCS) is a rare malignant neoplasm that was classified by the World Health Organization (WHO) under histiocytic and dendritic cell neoplasms in the 2016 revision. Considering the rarity of this tumor, there is no standardized treatment. It is usually treated by complete surgical resection. Adjuvant chemotherapy and radiotherapy are alternative methods. Immune checkpoint inhibitors (ICIs) represented by the programmed death receptor 1/programmed death ligand 1 (PD-1/PD-L1) antibody have achieved significant clinical benefits in a variety of solid tumors. However, reports on the treatment of FDCS with ICIs are rare. FDCS often expresses high levels of PD-L1, which provides a rationale to use immunotherapy in cases of FDCS. Here, we present a 51-year-old Filipino-Chinese man with FDCS who was treated with multimodal treatment, including the PD-1 inhibitor pembrolizumab and achieved a relatively long disease-free survival of 24 months. This case emphasizes that the application of ICIs under the guidance of NGS technology seems to be a meaningful treatment option for patients with FDCS.
Collapse
Affiliation(s)
- Nanxiang Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei Ba
- Department of Pathology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Dawei Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Lei Sheng
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinxin Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
43
|
Wang T, Cai S, Cheng Y, Zhang W, Wang M, Sun H, Guo B, Li Z, Xiao Y, Jiang S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J Med Chem 2022; 65:3879-3893. [PMID: 35188766 DOI: 10.1021/acs.jmedchem.1c01682] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several monoclonal antibodies targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway have been used successfully in anticancer immunotherapy. Inherent limitations of antibody-based therapies remain, however, and alternative small-molecule inhibitors that can block the PD-1/PD-L1 axis are urgent needed. Herein, we report the discovery of compound 17 as a bifunctional inhibitor of PD-1/PD-L1 interactions. 17 inhibits PD-1/PD-L1 interactions and promotes dimerization, internalization, and degradation of PD-L1. 17 promotes cell-surface PD-L1 internalized into the cytosol and induces the degradation of PD-L1 in tumor cells through a lysosome-dependent pathway. Furthermore, 17 suppresses tumor growth in vivo by activating antitumor immunity. These results demonstrate that 17 targets the PD-1/PD-L1 axis and induces PD-L1 degradation.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanheng Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minmin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Binghua Guo
- Syntron Company, Ltd., Yanchen 224500, China
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
44
|
Ge YX, Zhang TW, Zhou L, Ding W, Liang HF, Hu ZC, Chen Q, Dong J, Xue FF, Yin XF, Jiang LB. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials 2022; 282:121407. [DOI: 10.1016/j.biomaterials.2022.121407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
|
45
|
Huang X, Chen H, Dai X, Xu M, Wang K, Feng Z. Design, synthesis, and structure-activity relationship of PD-1/PD-L1 inhibitors with a benzo[d]isoxazole scaffold. Bioorg Med Chem Lett 2021; 52:128403. [PMID: 34610423 DOI: 10.1016/j.bmcl.2021.128403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Blocking the programmed cell death protein 1 (PD-1) and programmed death-ligand (PD-L1) interaction has emerged as one of the most promising treatments for cancer immunotherapy. A novel series of compounds bearing a benzo[d]isoxazole scaffold was developed as PD-1/PD-L1 inhibitors, among them, compound P20 exhibited the most potent inhibitory activity, with an IC50 value of 26.8 nM. The preliminary structure-activity relationship was also investigated. The docking analysis of compound P20 with the PD-L1 dimer complex (PDB ID: 5j89) indicated that compound P20 was bound to the PD-L1 dimer with high affinity. These results suggest that compound P20 is a promising lead compound for the development of inhibitors of the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Xupeng Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hao Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinyan Dai
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Meiqin Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ke Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhiqiang Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
46
|
Russomanno P, Assoni G, Amato J, D'Amore VM, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L. Interfering with the Tumor-Immune Interface: Making Way for Triazine-Based Small Molecules as Novel PD-L1 Inhibitors. J Med Chem 2021; 64:16020-16045. [PMID: 34670084 DOI: 10.1021/acs.jmedchem.1c01409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Giulia Assoni
- Department of Cellular, Computational and Integrative Biology, (CIBIO), Università degli Studi di Trento, Via Sommarive 9, Povo I-38123, Trento, Italy.,Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Vincenzo Maria D'Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Riccardo Scaglia
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Martina Pedrini
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Giovanna Polcaro
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Paolo Orlando
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Marianna Falzoni
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Linda Cerofolini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Stefano Giuntini
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Marco Fragai
- Centro di Risonanza Magnetica, CERM, Università di Firenze, Firenze 50019, Italy
| | - Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | - Greta Donati
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| | | | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples, Italy; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy.,Department of Molecular Medicine and Medical Biotechnology, "Federico II" University, Naples 80131, Italy
| | - Francesco Sabbatino
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Pierfausto Seneci
- Chemistry Department, Università degli Studi di Milano, Via C. Golgi 19, Milan 20133, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, Milan 20133, Italy
| | - Stefano Pepe
- Dipartimento di Medicina e Chirurgia, Ospedale "San Giovanni di Dio e Ruggi d'Aragona", Università di Salerno, Salerno 84131, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Napoli 80131, Italy
| |
Collapse
|
47
|
Yin H, Zhou X, Huang YH, King GJ, Collins BM, Gao Y, Craik DJ, Wang CK. Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. J Am Chem Soc 2021; 143:18536-18547. [PMID: 34661406 DOI: 10.1021/jacs.1c08132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptides have potential to be developed into immune checkpoint inhibitors, but the target interfaces are difficult to inhibit. Here, we explored an approach to mimic the binding surface of PD-1 to design inhibitors. Mimicking native PD-1 resulted in a mimetic with no activity. However, mimicking an affinity-optimized PD-1 resulted in the peptide mimetic MOPD-1 that displayed nanomolar affinity to PD-L1 and could inhibit PD-1:PD-L1 interactions in both protein- and cell-based assays. Mutagenesis and structural characterization using NMR spectroscopy and X-ray crystallography revealed that binding residues from the high affinity PD-1 are crucial for the bioactivity of MOPD-1. Furthermore, MOPD-1 was extremely stable in human serum and inhibited tumor growth in vivo, suggesting it has potential for use in cancer immunotherapy. The successful design of an inhibitor of PD-1:PD-L1 using the mimicry approach described herein illustrates the value of placing greater emphasis on optimizing the target interface before inhibitor design and is an approach that could have broader utility for the design of peptide inhibitors for other complex protein-protein interactions.
Collapse
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gordon J King
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
48
|
Zhang R, Cheng G, Liu S, Lv H, Li J. A four-in-one pure nanomedicine for synergistic multi-target therapy against breast cancer. J Mater Chem B 2021; 9:8809-8822. [PMID: 34633023 DOI: 10.1039/d1tb01820e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Designing a multi-target nanomedicine without a carrier is pivotal for successful cancer nanotherapy. This study details a novel four-in-one RRX/BMS/CA4/PTX nanomedicine by simple nanoprecipitation. In this multi-target pure nanomedicine, paclitaxel (PTX) causes the immunogenic cell death of 4T1 tumour cells and the differentiation of marrow-derived suppressor cells (MDSCs) into dendritic cells (DCs) at low dose; repertaxin (RRX) selectively depletes cancer stem cells (CSCs) that are not killed by paclitaxel to inhibit lung metastasis from the breast; BMS-1 blocks the PD-1/PD-L1 pathway for proliferating effector T cells; and combretastatin A4 (CA4) targets tumour microvessels to cut off the blood supply in the tumour microenvironment. The synergy of multi-target therapies results in excellent antitumour effects. The tumour inhibition rate of 4T1 tumours is 92.5%, and the lung metastasis suppression rate exceeds 90%; no relapse is observed at 46 days after the treatment endpoint, and the survival of 50% of mice is prolonged by 95 days. Due to the low dose of PTX administration, the systemic toxicity of the RRX/BMS/CA4/PTX nanomedicine is not found. Our results suggest a strategy for designing multi-target pure nanomedicines with simple construction and efficacious therapeutic responses that present potential for clinical transformation.
Collapse
Affiliation(s)
- Rui Zhang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Ge Cheng
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Shengnan Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hongying Lv
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine Chinese Academy of Medical Sciences, Institute of Radiation Medicine, Tianjin, 300192, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
49
|
Emerging targets for anticancer vaccination: PD-1. ESMO Open 2021; 6:100278. [PMID: 34649221 PMCID: PMC8517287 DOI: 10.1016/j.esmoop.2021.100278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Among the mechanisms by which tumor cells escape the immune surveillance, one is the interaction between programmed cell death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1). Inhibition of the PD-1/PD-L1 pathway with monoclonal antibodies as immune checkpoint inhibitors targeting PD-1 or its ligand, PD-L1, represents a milestone in cancer therapy. The application of these antibodies, however, suffers from drawbacks including failure to show a response or benefit in a majority of patients following monotherapy or combination therapy, their frequent administration, and cost intensiveness. Small peptides capable of interfering with PD-1/PD-L1 interaction represent interesting alternatives to antibody-based immune checkpoint inhibitors. Moreover, peptides representing PD-1 or PD-L1 sequences can be used in active immunization approaches to induce antibodies that enhance antitumor immunity by effectively preventing PD-1-mediated inhibition in the host. Importantly, such peptides can readily be combined with peptides derived from cancer antigens to effectively induce an antitumor immune response. In this review, we have summarized the recent developments in the use of small molecules and peptides either to directly block PD-1/PD-L1 interaction, or in vaccination approaches to induce antibody responses stimulating anticancer immunity by blocking PD-1-mediated T-cell inhibition. Blockade of the PD-1/PD-L1 interaction by antibodies as immune checkpoint inhibitors (ICIs) is a milestone in immunotherapy. Treatment by ICIs has disadvantages, like frequent administration, low response in some patients, and cost intensiveness. Direct blockade by small compounds or vaccination by peptides are two promising alternatives to the treatments with ICIs. Such alternatives may pave the way to therapeutics which could be used as monotherapy, or in combination with ICIs.
Collapse
|
50
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Blockade of the checkpoint PD-1 by its ligand PD-L1 and the immuno-oncological drugs pembrolizumab and nivolumab. Phys Chem Chem Phys 2021; 23:21207-21217. [PMID: 34533552 DOI: 10.1039/d1cp03064g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigate the interaction between the programmed cell death protein 1 (PD-1) and the programmed cell death ligand 1 (PD-L1), as well as the immuno-oncological drugs pembrolizumab (PEM), and nivolumab (NIV), through quantum chemistry methods based on the Density Functional Theory (DFT) and the molecular fractionation with conjugate caps (MFCC) scheme, in order to map their hot-spot regions. Our results showed that the total interaction energy order of the three complexes is in good agreement with the experimental binding affinity order: PD-1/PEM > PD-1/NIV > PD-1/PD-L1. Besides, a detailed investigation revealed the energetically most relevant residue-residue pairs-interaction for each complex. Our computational results give a better understanding of the interaction mechanism between the protein PD-1 and its ligands (natural and inhibitors), unleashing the immune surveillance to destroy the cancer cells by decreasing their immune evasion. They are also an efficient alternative towards the development of new small-molecules and antibody-based drugs, pointing out to new treatments for cancer therapy.
Collapse
Affiliation(s)
- Ana Beatriz M L A Tavares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil. .,Hospital das Clínicas, Universidade Federal de Pernambuco, 50.670-901, Recife-PE, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - E L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| |
Collapse
|