1
|
Xu H, Zhao J, Renata H. Discovery, Characterization and Synthetic Application of a Promiscuous Nonheme Iron Biocatalyst with Dual Hydroxylase/Desaturase Activity. Angew Chem Int Ed Engl 2024; 63:e202409143. [PMID: 39207909 DOI: 10.1002/anie.202409143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alpha-ketoglutarate-dependent dioxygenases (αKGDs) have recently emerged as useful biocatalysts for C-H oxidation and functionalization. In this work, we characterized a new αKGD from aculene biosynthesis, AneA, which displays broad promiscuity toward a number of substrates with different ring systems. Unexpectedly, AneA was found to be capable of both desaturation and hydroxylation and require an amino ester motif on its substrate for productive catalysis. Insights gathered from the functional characterization and substrate-activity profiling of AneA enabled the development of a chemoenzymatic strategy toward several complex sesquiterpenoids.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| | - Jidong Zhao
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| | - Hans Renata
- Department of Chemistry, Rice University Bioscience Research Collaborative, Houston, TX 77005, USA
| |
Collapse
|
2
|
He JB, Ren Y, Li P, Liu YP, Pan HX, Huang LJ, Wang J, Fang P, Tang GL. Crystal Structure and Mutagenesis of an XYP Subfamily Cyclodipeptide Synthase Reveal Key Determinants of Enzyme Activity and Substrate Specificity. Biochemistry 2024; 63:2969-2976. [PMID: 39475147 PMCID: PMC11580168 DOI: 10.1021/acs.biochem.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin. The structural basis and determinants influencing BcmA enzyme activity and substrate selectivity are not well understood. Here, we report the crystal structure of SsBcmA from Streptomyces sapporonensis. Through structural comparison and systematic site-directed mutagenesis, we highlight the significance of key residues located in the aminoacyl-binding pocket for enzyme activity and substrate specificity. In particular, the nonconserved residues D161 and K165 in pocket P2 are essential for the activity of SsBcmA without significant alteration of the substrate specificity, while the conserved residues F158 as well as F210 and S211 in P2 are responsible for determining substrate selectivity. These findings facilitate the understanding of how CDPSs selectively accept hydrophobic substrates and provide additional clues for the engineering of these enzymes for synthetic biology applications.
Collapse
Affiliation(s)
- Jun-Bin He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yichen Ren
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Peifeng Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yi-Pei Liu
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Hai-Xue Pan
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Lin-Juan Huang
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Jiayuan Wang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Pengfei Fang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| | - Gong-Li Tang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2024. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. Nat Commun 2024; 15:3574. [PMID: 38678027 PMCID: PMC11055893 DOI: 10.1038/s41467-024-48030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
6
|
Stierle SA, Harken L, Li SM. P450 in C-C coupling of cyclodipeptides with nucleobases. Methods Enzymol 2023; 693:231-265. [PMID: 37977732 DOI: 10.1016/bs.mie.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochrome P450 enzymes catalyze various and often intriguing tailoring reactions during the biosynthesis of natural products. In contrast to the majority of membrane-bound P450 enzymes from eukaryotes, bacterial P450 enzymes are soluble proteins and therefore represent excellent candidates for in vitro biochemical investigations. In particular, cyclodipeptide synthase-associated cytochrome P450 enzymes have recently gained attention due to the broad spectrum of reactions they catalyze, i.e. hydroxylation, aromatization, intramolecular C-C bond formation, dimerization, and nucleobase addition. The latter reaction has been described during the biosynthesis of guanitrypmycins, guatrypmethines and guatyromycines in various Streptomyces strains, where the nucleobases guanine and hypoxanthine are coupled to cyclodipeptides via C-C, C-N, and C-O bonds. In this chapter, we provide an overview of cytochrome P450 enzymes involved in the C-C coupling of cyclodipeptides with nucleobases and describe the protocols used for the successful characterization of these enzymes in our laboratory. The procedure includes cloning of the respective genes into expression vectors and subsequent overproduction of the corresponding proteins in E. coli as well as heterologous expression in Streptomyces. We describe the purification and in vitro biochemical characterization of the enzymes and protocols to isolate the produced compounds for structure elucidation.
Collapse
Affiliation(s)
- Sina A Stierle
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
7
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559410. [PMID: 37808672 PMCID: PMC10557607 DOI: 10.1101/2023.09.25.559410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that all CDO-like enzymes are likely enzyme filaments. Our work represents the first structural characterization of a CDO. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Shende VV, Harris NR, Sanders JN, Newmister SA, Khatri Y, Movassaghi M, Houk KN, Sherman DH. Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases. Angew Chem Int Ed Engl 2023; 62:e202210254. [PMID: 36610039 PMCID: PMC10159983 DOI: 10.1002/anie.202210254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
In the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2 -N bond forming dimerase, AspB. Overlay of the AspB structure onto C-C and C-N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C-N bond formation. MD simulations also suggest that intermolecular C-C or C-N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
Collapse
Affiliation(s)
- Vikram V Shende
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Natalia R Harris
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Yogan Khatri
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MÌ 48109, USA
| |
Collapse
|
9
|
Deletti G, Green SD, Weber C, Patterson KN, Joshi SS, Khopade TM, Coban M, Veek-Wilson J, Caulfield TR, Viswanathan R, Lane AL. Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase. Nat Commun 2023; 14:2558. [PMID: 37137876 PMCID: PMC10156859 DOI: 10.1038/s41467-023-38168-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature's molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches.
Collapse
Affiliation(s)
- Garrett Deletti
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Sajan D Green
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Caleb Weber
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Kristen N Patterson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Swapnil S Joshi
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Tushar M Khopade
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James Veek-Wilson
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rajesh Viswanathan
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India.
| | - Amy L Lane
- Department of Chemistry & Biochemistry, University of North Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
10
|
Xu ZZ, Zhuang Z, Cai R, Lin GQ, She Z, Zhao Q, He QL. Hydroxylation with Unusual Stereoinversion Catalyzed by an Fe II /2-OG Dependent Oxidase and 3,6-Diene-2,5-diketopiperazine Formation in the Biosynthesis of Brevianamide K. Angew Chem Int Ed Engl 2023; 62:e202216989. [PMID: 36750406 DOI: 10.1002/anie.202216989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Natural products with the 3,6-diene-2,5-diketopiperazine core are widely distributed in nature; however, the biosynthetic mechanism of 3,6-diene-2,5-diketopiperazine in fungi remains to be further elucidated. Through heterologous expression and biochemical investigation of an FeII /2-oxoglutarate-dependent oxidase (AspE) and a heme-dependent P450 enzyme (AspF), we report that AspE, AspF and subsequent dehydration account for the formation of the 3,6-diene-2,5-diketopiperazine substructure of brevianamide K from Aspergillus sp. SK-28, a symbiotic fungus of mangrove plant Kandelia candel. More interestingly, in-depth investigation of the enzymatic mechanism showed that AspE promotes hydroxylation of brevianamide Q with unprecedented stereoinversion through hydrogen atom abstraction and water nucleophilic attack from the opposite face of the resultant iminium cation intermediate.
Collapse
Affiliation(s)
- Zhuo-Zheng Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zheng Zhuang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qunfei Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
11
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
12
|
Characterization of the cyclodipeptide synthase gene cluster in Streptomyces sp. NRRL F-5123 by unraveling the biosynthesis of drimentine B. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Li J, Huang JH, Wang JY, Xu ZG, Chen ZZ, Lei J. An intramolecular hydrogen bond-promoted "green" Ugi cascade reaction for the synthesis of 2,5-diketopiperazines with anticancer activity. RSC Adv 2022; 12:33175-33179. [PMID: 36425196 PMCID: PMC9678023 DOI: 10.1039/d2ra04958a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
We report a "green chemistry"-based Ugi cascade reaction to furnish a series of 2,5-diketopiperazines (through nucleophilic attack of amides upon ketones in Ugi adducts) at moderate-to-good yields. Investigation with the MTT assay revealed compound (±) 5c to exhibit potent anticancer activities against acute myeloid leukaemia (MV411; IC50 = 1.7 μM) and acute T lymphocyte leukaemia (Jurkat; IC50 = 5.7 μM) cell lines.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| | - Jiu Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| | - Jing Ya Wang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| | - Zhi Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| | - Zhong Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and SciencesChongqing 402160China
| |
Collapse
|
14
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
15
|
Wang C, Xiao D, Dun B, Yin M, Tsega AS, Xie L, Li W, Yue Q, Wang S, Gao H, Lin M, Zhang L, Molnár I, Xu Y. Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides. Proc Natl Acad Sci U S A 2022; 119:e2123379119. [PMID: 35914151 PMCID: PMC9371744 DOI: 10.1073/pnas.2123379119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Miaomiao Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Adigo Setargie Tsega
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wenhua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, AZ 85706
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
16
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C-C Bond Formation in cyclo-l-Tyr-l-Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022; 61:e202200377. [PMID: 35201649 PMCID: PMC9401060 DOI: 10.1002/anie.202200377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Tailoring enzymes are important modification biocatalysts in natural product biosynthesis. We report herein six orthologous two‐gene clusters for mycocyclosin and guatyromycine biosynthesis. Expression of the cyclodipeptide synthase genes gymA1–gymA6 in Escherichia coli resulted in the formation of cyclo‐l‐Tyr‐l‐Tyr as the major product. Reconstruction of the biosynthetic pathways in Streptomyces albus and biochemical investigation proved that the cytochrome P450 enzymes GymB1–GymB6 act as both intramolecular oxidases and intermolecular nucleobase transferases. They catalyze not only the oxidative C−C coupling within cyclo‐l‐Tyr‐l‐Tyr, leading to mycocyclosin, but also its connection with guanine and hypoxanthine, and are thus responsible for the formation of tyrosine‐containing guatyromycines, instead of the reported tryptophan‐nucleobase adducts. Phylogenetic data suggest the presence of at least 47 GymB orthologues, indicating the occurrence of a widely distributed enzyme class.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
17
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
18
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
19
|
Liu J, Harken L, Yang Y, Xie X, Li SM. Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular C‐C Bond Formation in cyclo‐l‐Tyr‐l‐Tyr and Its Coupling with Nucleobases. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Liu
- Philipps-Universitat Marburg Universitatsbibliothek: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Lauritz Harken
- Philipps-Universität Marburg: Philipps-Universitat Marburg Pharmazie GERMANY
| | - Yiling Yang
- Philipps-Universitat Marburg Institut Pharm.Biol.Biotechnol. GERMANY
| | - Xiulan Xie
- Philipps-Universität Marburg: Philipps-Universitat Marburg Chemie GERMANY
| | - Shu-Ming Li
- Philipps-Universität Marburg Institut für Pharmazeutische Biologie Robert-Koch-Str. 4 35037 Marburg GERMANY
| |
Collapse
|
20
|
Tassano E, Moore C, Dussauge S, Vargas A, Snajdrova R. Discovery of New Fe(II)/α-Ketoglutarate-Dependent Dioxygenases for Oxidation of l-Proline. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erika Tassano
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Charles Moore
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Solene Dussauge
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Alexandra Vargas
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Global Discovery Chemistry, Novartis Institute for Biomedical Research, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Harken L, Liu J, Kreuz O, Berger R, Li SM. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Oliver Kreuz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
22
|
Cui Z, Nguyen H, Bhardwaj M, Wang X, Büschleb M, Lemke A, Schütz C, Rohrbacher C, Junghanns P, Koppermann S, Ducho C, Thorson JS, Van Lanen SG. Enzymatic C β-H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. J Am Chem Soc 2021; 143:19425-19437. [PMID: 34767710 DOI: 10.1021/jacs.1c08177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muraymycins are peptidyl nucleoside antibiotics that contain two Cβ-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cβ-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cβ hydroxylation of the Leu residue to generate (2S,3S)-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cβ-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Han Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Minakshi Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Martin Büschleb
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Schütz
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Pierre Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
23
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Deciphering a Cyclodipeptide Synthase Pathway Encoding Prenylated Indole Alkaloids in Streptomyces leeuwenhoekii. Appl Environ Microbiol 2021; 87:AEM.02525-20. [PMID: 33741615 DOI: 10.1128/aem.02525-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the formation of cyclodipeptides using aminoacylated tRNAs as the substrates and have great potential in the production of diverse 2,5-diketopiperazines (2,5-DKPs). Genome mining of Streptomyces leeuwenhoekii NRRL B-24963 revealed a two-gene locus, saz, encoding CDPS SazA and a unique fused enzyme (SazB) harboring two domains: phytoene synthase-like prenyltransferase (PT) and methyltransferase (MT). Heterologous expression of the saz gene(s) in Streptomyces albus J1074 led to the production of four prenylated indole alkaloids, among which streptoazines A to C (compounds 3 to 5) are new compounds. Expression of different gene combinations showed that the SazA catalyzes the formation of cyclo(l-Trp-l-Trp) (cWW; compound 1), followed by consecutive prenylation and methylation by SazB. Biochemical assays demonstrated that SazB is a bifunctional enzyme, catalyzing sequential C-3/C-3' prenylation(s) by SazB-PT and N-1/N-1' methylation(s) by SazB-MT. Of note, the substrate selectivity of SazB-PT and SazB-MT was probed, revealing the stringent specificity of SazB-PT but relative flexibility of SazB-MT.IMPORTANCE Natural products with a 2,5-diketopiperazine (2,5-DKP) skeleton have long sparked interest in drug discovery and development. Recent advances in microbial genome sequencing have revealed that the potential of cyclodipeptide synthase (CDPS)-dependent pathways encoding new 2,5-DKPs are underexplored. In this study, we report the genome mining of a new CDPS-encoding two-gene operon and activation of this cryptic gene cluster through heterologous expression, leading to the discovery of four indole 2,5-DKP alkaloids. The cyclo(l-Trp-l-Trp) (cWW)-synthesizing CDPS SazA and the unusual prenyltransferase (PT)-methyltransferase (MT) fused enzyme SazB were characterized. Our results expand the repertoire of CDPSs and associated tailoring enzymes, setting the stage for accessing diverse prenylated alkaloids using synthetic biology strategies.
Collapse
|
25
|
Meyer F, Frey R, Ligibel M, Sager E, Schroer K, Snajdrova R, Buller R. Modulating Chemoselectivity in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase for the Oxidative Modification of a Nonproteinogenic Amino Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabian Meyer
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Raphael Frey
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathieu Ligibel
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
26
|
Canu N, Moutiez M, Belin P, Gondry M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep 2021; 37:312-321. [PMID: 31435633 DOI: 10.1039/c9np00036d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to mid-2019 Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNA as substrates. The recent characterization of large sets of CDPSs has revealed that they can produce highly diverse products, and therefore have great potential for use in the production of different 2,5-diketopiperazines (2,5-DKPs). Sequence similarity networks (SSNs) are presented as a new, efficient way of classifying CDPSs by specificity and identifying new CDPS likely to display novel specificities. Several strategies for further increasing the diversity accessible with these enzymes are discussed here, including the incorporation of non-canonical amino acids by CDPSs and use of the remarkable diversity of 2,5-DKP-tailoring enzymes discovered in recent years.
Collapse
Affiliation(s)
- Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
27
|
Harken L, Li SM. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P 450 enzymes. Appl Microbiol Biotechnol 2021; 105:2277-2285. [PMID: 33625545 PMCID: PMC7954767 DOI: 10.1007/s00253-021-11178-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
2,5-Diketopiperazines are the smallest cyclic peptides comprising two amino acids connected via two peptide bonds. They can be biosynthesized in nature by two different enzyme families, either by nonribosomal peptide synthetases or by cyclodipeptide synthases. Due to the stable scaffold of the diketopiperazine ring, they can serve as precursors for further modifications by different tailoring enzymes, such as methyltransferases, prenyltransferases, oxidoreductases like cyclodipeptide oxidases, 2-oxoglutarate-dependent monooxygenases and cytochrome P450 enzymes, leading to the formation of intriguing secondary metabolites. Among them, cyclodipeptide synthase-associated P450s attracted recently significant attention, since they are able to catalyse a broader variety of astonishing reactions than just oxidation by insertion of an oxygen. The P450-catalysed reactions include hydroxylation at a tertiary carbon, aromatisation of the diketopiperazine ring, intramolecular and intermolecular carbon-carbon and carbon-nitrogen bond formation of cyclodipeptides and nucleobase transfer reactions. Elucidation of the crystal structures of three P450s as cyclodipeptide dimerases provides a structural basis for understanding the reaction mechanism and generating new enzymes by protein engineering. This review summarises recent publications on cyclodipeptide modifications by P450s.Key Points• Intriguing reactions catalysed by cyclodipeptide synthase-associated cytochrome P450s• Homo- and heterodimerisation of diketopiperazines• Coupling of guanine and hypoxanthine with diketopiperazines.
Collapse
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
28
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
29
|
Huang DY, Nong XH, Zhang YQ, Xu W, Sun LY, Zhang T, Chen GY, Han CR. Two new 2,5-diketopiperazine derivatives from mangrove-derived endophytic fungus Nigrospora camelliae-sinensis S30. Nat Prod Res 2021; 36:3651-3656. [PMID: 33517796 DOI: 10.1080/14786419.2021.1878168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new 2,5-diketopiperazines derivatives (1-2), together with eight known analogs (3-10), were isolated from a culture broth of an endophytic fungus Nigrospora camelliae-sinensis S30, derived from mangrove Lumnitzera littorea. Their complete structures were determined by a detailed analysis of spectroscopic data and ECD calculations. The antimicrobial activity and neuroprotective activity of these isolated compounds were also evaluated.
Collapse
Affiliation(s)
- Dan-Yu Huang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Yu-Qin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Long-Yu Sun
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Tao Zhang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Chang-Ri Han
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan, China.,Hainan Vocational University of Science and Technology, Haikou, Hainan, China
| |
Collapse
|
30
|
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. RSC Chem Biol 2021; 2:230-240. [PMID: 33937777 PMCID: PMC8084100 DOI: 10.1039/d0cb00142b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/14/2021] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) produce a variety of cyclic dipeptide products by utilising two aminoacylated tRNA substrates. We sought to investigate the minimal requirements for substrate usage in this class of enzymes as the relationship between CDPSs and their substrates remains elusive. Here, we investigated the Bacillus thermoamylovorans enzyme, BtCDPS, which synthesises cyclo(l-Leu-l-Leu). We systematically tested where specificity arises and, in the process, uncovered small molecules (activated amino esters) that will suffice as substrates, although catalytically poor. We solved the structure of BtCDPS to 1.7 Å and combining crystallography, enzymatic assays and substrate docking experiments propose a model for how the minimal substrates interact with the enzyme. This work is the first report of a CDPS enzyme utilizing a molecule other than aa-tRNA as a substrate; providing insights into substrate requirements and setting the stage for the design of improved simpler substrates.
Collapse
Affiliation(s)
- Christopher J Harding
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Emmajay Sutherland
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Jane G Hanna
- Arab Academy for Science, Technology, and Maritime Transport (AASTMT) Cairo Campus Egypt
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh Waddington 1 Building, King's Buildings Edinburgh EH9 3BF UK
| | - Clarissa M Czekster
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| |
Collapse
|
31
|
Liu R, Yu D, Deng Z, Liu T. Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Curr Opin Biotechnol 2020; 69:1-9. [PMID: 33027693 DOI: 10.1016/j.copbio.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Well-known issues amid in vivo research of natural product discovery and overproduction, such as unculturable or unmanipulable microorganisms, labor-intensive experimental cycles, and hidden rate-limiting steps, have hampered relevant investigations. To overcome these long-standing challenges, many researchers are turning toward in vitro platforms, which bypass the complicated cellular machinery and simplify the study of natural products. Here, we summarize the in vitro driven rational engineering and mining (iDREAM) strategy, which harnesses the flexibility and controllability of in vitro systems to rationally overproduce commodity chemicals and efficiently mine novel compounds. The iDREAM strategy promises to make further significant contributions toward both fundamental advances and industrial practices.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Dingchen Yu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China.
| |
Collapse
|
32
|
Shende VV, Khatri Y, Newmister SA, Sanders JN, Lindovska P, Yu F, Doyon TJ, Kim J, Houk KN, Movassaghi M, Sherman DH. Structure and Function of NzeB, a Versatile C-C and C-N Bond-Forming Diketopiperazine Dimerase. J Am Chem Soc 2020; 142:17413-17424. [PMID: 32786740 DOI: 10.1021/jacs.0c06312] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dimeric diketopiperazine (DKPs) alkaloids are a diverse family of natural products (NPs) whose unique structural architectures and biological activities have inspired the development of new synthetic methodologies to access these molecules. However, catalyst-controlled methods that enable the selective formation of constitutional and stereoisomeric dimers from a single monomer are lacking. To resolve this long-standing synthetic challenge, we sought to characterize the biosynthetic enzymes that assemble these NPs for application in biocatalytic syntheses. Genome mining enabled identification of the cytochrome P450, NzeB (Streptomyces sp. NRRL F-5053), which catalyzes both intermolecular carbon-carbon (C-C) and carbon-nitrogen (C-N) bond formation. To identify the molecular basis for the flexible site-selectivity, stereoselectivity, and chemoselectivity of NzeB, we obtained high-resolution crystal structures (1.5 Å) of the protein in complex with native and non-native substrates. This, to our knowledge, represents the first crystal structure of an oxidase catalyzing direct, intermolecular C-H amination. Site-directed mutagenesis was utilized to assess the role individual active-site residues play in guiding selective DKP dimerization. Finally, computational approaches were employed to evaluate plausible mechanisms regarding NzeB function and its ability to catalyze both C-C and C-N bond formation. These results provide a structural and computational rationale for the catalytic versatility of NzeB, as well as new insights into variables that control selectivity of CYP450 diketopiperazine dimerases.
Collapse
Affiliation(s)
| | | | | | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Petra Lindovska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | - Justin Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
33
|
Le Chevalier F, Correia I, Matheron L, Babin M, Moutiez M, Canu N, Gondry M, Lequin O, Belin P. In vivo characterization of the activities of novel cyclodipeptide oxidases: new tools for increasing chemical diversity of bioproduced 2,5-diketopiperazines in Escherichia coli. Microb Cell Fact 2020; 19:178. [PMID: 32894164 PMCID: PMC7487605 DOI: 10.1186/s12934-020-01432-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background Cyclodipeptide oxidases (CDOs) are enzymes involved in the biosynthesis of 2,5-diketopiperazines, a class of naturally occurring compounds with a large range of pharmaceutical activities. CDOs belong to cyclodipeptide synthase (CDPS)-dependent pathways, in which they play an early role in the chemical diversification of cyclodipeptides by introducing Cα-Cβ dehydrogenations. Although the activities of more than 100 CDPSs have been determined, the activities of only a few CDOs have been characterized. Furthermore, the assessment of the CDO activities on chemically-synthesized cyclodipeptides has shown these enzymes to be relatively promiscuous, making them interesting tools for cyclodipeptide chemical diversification. The purpose of this study is to provide the first completely microbial toolkit for the efficient bioproduction of a variety of dehydrogenated 2,5-diketopiperazines. Results We mined genomes for CDOs encoded in biosynthetic gene clusters of CDPS-dependent pathways and selected several for characterization. We co-expressed each with their associated CDPS in the pathway using Escherichia coli as a chassis and showed that the cyclodipeptides and the dehydrogenated derivatives were produced in the culture supernatants. We determined the biological activities of the six novel CDOs by solving the chemical structures of the biologically produced dehydrogenated cyclodipeptides. Then, we assessed the six novel CDOs plus two previously characterized CDOs in combinatorial engineering experiments in E. coli. We co-expressed each of the eight CDOs with each of 18 CDPSs selected for the diversity of cyclodipeptides they synthesize. We detected more than 50 dehydrogenated cyclodipeptides and determined the best CDPS/CDO combinations to optimize the production of 23. Conclusions Our study establishes the usefulness of CDPS and CDO for the bioproduction of dehydrogenated cyclodipeptides. It constitutes the first step toward the bioproduction of more complex and diverse 2,5-diketopiperazines.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Isabelle Correia
- Laboratoire des Biomolécules (LBM), Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, 75005, Paris, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), FRE3631, 75005, Paris, France
| | - Morgan Babin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mireille Moutiez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nicolas Canu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Muriel Gondry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Lequin
- Laboratoire des Biomolécules (LBM), Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, 75005, Paris, France
| | - Pascal Belin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Johnston CW, Badran AH, Collins JJ. Continuous bioactivity-dependent evolution of an antibiotic biosynthetic pathway. Nat Commun 2020; 11:4202. [PMID: 32826900 PMCID: PMC7443133 DOI: 10.1038/s41467-020-18018-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
Antibiotic biosynthetic gene clusters (BGCs) produce bioactive metabolites that impart a fitness advantage to their producer, providing a mechanism for natural selection. This selection drives antibiotic evolution and adapts BGCs for expression in different organisms, potentially providing clues to improve heterologous expression of antibiotics. Here, we use phage-assisted continuous evolution (PACE) to achieve bioactivity-dependent adaptation of the BGC for the antibiotic bicyclomycin (BCM), facilitating improved production in a heterologous host. This proof-of-principle study demonstrates that features of natural bioactivity-dependent evolution can be engineered to access unforeseen routes of improving metabolic pathways and product yields. Biosynthetic gene clusters (BGCs) make small molecules with fitness-enhancing activities that drive BGC evolution. Here, the authors show that synthetic biology can leverage bioactivity to achieve continuous evolution of an antibiotic BGC in the lab and improve antibiotic production in a new host.
Collapse
Affiliation(s)
- Chad W Johnston
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. .,Harvard-MIT Program in Health Sciences and Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Zwick CR, Renata H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat Prod Rep 2020; 37:1065-1079. [PMID: 32055818 PMCID: PMC7426249 DOI: 10.1039/c9np00075e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to the end of 2019Iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGs) represent a versatile and intriguing enzyme family by virtue of their ability to directly functionalize unactivated C-H bonds at the cost of αKG and O2. Fe/αKGs play an important role in the biosynthesis of natural products, valuable biologically active secondary metabolites frequently pursued as drug leads. The field of natural product total synthesis seeks to contruct these molecules as effeciently as possible, although natural products continue to challenge chemists due to their intricate structural complexity. Chemoenzymatic approaches seek to remedy the shortcomings of traditional synthetic methodology by combining Nature's biosynthetic machinery with traditional chemical methods to efficiently construct natural products. Although other oxygenase families have been widely employed for this purpose, Fe/αKGs remain underutilized. The following review will cover recent chemoenzymatic total syntheses involving Fe/αKG enzymes. Additionally, related information involving natural product biosynthesis, methods development, and non-chemoenzymatic total syntheses will be discussed to inform retrosynthetic logic and synthetic design.
Collapse
Affiliation(s)
- Christian R Zwick
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
36
|
Yao T, Liu J, Jin E, Liu Z, Li H, Che Q, Zhu T, Li D, Li W. Expanding the Structural Diversity of Drimentines by Exploring the Promiscuity of Two N-methyltransferases. iScience 2020; 23:101323. [PMID: 32659721 PMCID: PMC7358741 DOI: 10.1016/j.isci.2020.101323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022] Open
Abstract
Methylation is envisioned as a promising way to rationally improve key pharmacokinetic characteristics of lead compounds. Although diverse tailoring enzymes are found to be clustered with cyclodipeptide synthases (CDPSs) to perform further modification reactions on the diketopiperazine (DKP) rings generating complex DKP-containing compounds, so far, a limited number of methyltransferases (MTs) co-occurring with CDPS have been experimentally characterized. Herein, we deciphered the methylation steps during drimentines (DMTs) biosynthesis with identification and characterization of DmtMT2-1 (from Streptomyces sp. NRRL F-5123) and DmtMT1 (from Streptomyces youssoufiensis OUC6819). DmtMT2-1 catalyzes N4-methylation of both pre-DMTs and DMTs; conversely, DmtMT1 recognizes the DKP rings, functioning before the assembly of the terpene moiety. Notably, both MTs display broad substrate promiscuity. Their combinatorial expression with the dmt1 genes in different Streptomyces strains successfully generated eight unnatural DMT analogs. Our results enriched the MT tool-box, setting the stage for exploring the structural diversity of DKP derivatives for drug development. The methylation steps during drimentines biosynthesis were unraveled Two N-MTs with different regioselectivities were identified The substrate promiscuities of DmtMT1 and DmtMT2-1 were probed Combinatorial biosynthesis expanded the chemical space of drimentines
Collapse
Affiliation(s)
- Tingting Yao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Enjing Jin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Loenarz C. Ein Gespür für Sauerstoff: Entdeckung des molekularen Mechanismus der zellulären Sauerstoffregulation rückt die Hydroxylierung von Makromolekülen in den Blickpunkt. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Loenarz
- Institut für Pharmazeutische Wissenschaften Albert-Ludwigs-Universität Freiburg Albertstr. 25 79104 Freiburg Deutschland
| |
Collapse
|
38
|
Loenarz C. An Oxygen Sensation: Progress in Macromolecule Hydroxylation Triggered by the Elucidation of Cellular Oxygen Sensing. Angew Chem Int Ed Engl 2020; 59:3776-3780. [PMID: 31961479 DOI: 10.1002/anie.201913263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/06/2022]
Abstract
The 2019 Nobel Prize in Physiology or Medicine honours three scientists that devoted their careers to pursuing an audacious basic science question: by what mechanisms do animals sense oxygen, and how can cells adapt to a lack of oxygen? The identification of the human hypoxia inducible factor pathway has enabled new approaches for the therapy of related diseases including cancer, cardiovascular disease, anaemia, and stroke. The intricate molecular details of oxygen sensing broadened interest in the family of iron- and 2-oxoglutarate-dependent oxygenases known from elaborate natural product chemistry, and catalysed major progress in macromolecule hydroxylation. The laureates' work enables numerous avenues for molecular scientists, from C-H activation chemistry to PROTAC technology, medicinal chemistry, and epigenetics.
Collapse
Affiliation(s)
- Christoph Loenarz
- Institute of Pharmaceutical Sciences, Albert Ludwig University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| |
Collapse
|
39
|
Witwinowski J, Moutiez M, Coupet M, Correia I, Belin P, Ruzzini A, Saulnier C, Caraty L, Favry E, Seguin J, Lautru S, Lequin O, Gondry M, Pernodet JL, Darbon E. Study of bicyclomycin biosynthesis in Streptomyces cinnamoneus by genetic and biochemical approaches. Sci Rep 2019; 9:20226. [PMID: 31882990 PMCID: PMC6934819 DOI: 10.1038/s41598-019-56747-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring. Here, we paired in vivo and in vitro studies to complete the characterization of the bicyclomycin biosynthetic gene cluster. The construction of in-frame deletion mutants in the biosynthetic gene cluster allowed for the accumulation and identification of biosynthetic intermediates. The identity of the intermediates, which were reproduced in vitro using purified enzymes, allowed us to characterize the pathway and corroborate previous reports. Finally, we show that the putative antibiotic transporter was dispensable for the producing strain.
Collapse
Affiliation(s)
- Jerzy Witwinowski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Coupet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Correia
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antonio Ruzzini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corinne Saulnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laëtitia Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emmanuel Favry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Frédéric Joliot Institute for Life Sciences, CEA, SPI, Saclay, France
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- CEA, DEN, Centre de Marcoule, Bagnols-sur-Cèze, France
| | - Sylvie Lautru
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emmanuelle Darbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
40
|
Ferlin F, Marini A, Ascani N, Ackermann L, Lanari D, Vaccaro L. Heterogeneous Manganese‐Catalyzed Oxidase C−H/C−O Cyclization to Access Pharmaceutically Active Compounds. ChemCatChem 2019. [DOI: 10.1002/cctc.201901659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Ferlin
- Laboratory of Green S.O.C. Dipartimento di Chimica Biologia e BiotecnologieUniversità di Perugia Via Elce di Sotto 8 Perugia 06123 Italy
| | - Alberto Marini
- Laboratory of Green S.O.C. Dipartimento di Chimica Biologia e BiotecnologieUniversità di Perugia Via Elce di Sotto 8 Perugia 06123 Italy
| | - Nicola Ascani
- Laboratory of Green S.O.C. Dipartimento di Chimica Biologia e BiotecnologieUniversità di Perugia Via Elce di Sotto 8 Perugia 06123 Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 Göttingen 37077 Germany
| | - Daniela Lanari
- Dipartimento di Scienze FarmaceuticheUniversità di Perugia Via del Liceo 1 Perugia 06123 Italy
| | - Luigi Vaccaro
- Laboratory of Green S.O.C. Dipartimento di Chimica Biologia e BiotecnologieUniversità di Perugia Via Elce di Sotto 8 Perugia 06123 Italy
| |
Collapse
|
41
|
Shi J, Xu X, Zhao EJ, Zhang B, Li W, Zhao Y, Jiao RH, Tan RX, Ge HM. Genome Mining and Enzymatic Total Biosynthesis of Purincyclamide. Org Lett 2019; 21:6825-6829. [DOI: 10.1021/acs.orglett.9b02461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Er Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Liu J, Xie X, Li SM. Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio- and Stereospecific Guaninyl-Transfer Reactions. Angew Chem Int Ed Engl 2019; 58:11534-11540. [PMID: 31206992 DOI: 10.1002/anie.201906891] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/22/2022]
Abstract
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450-associated cyclodipeptide synthase-containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3-guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo-l-Trp-l-Phe and cyclo-l-Trp-l-Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N-methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio- and stereospecific 3α-guaninylation at the indole ring of the tryptophanyl moiety. Isotope-exchange experiments provided evidence for the non-enzymatic epimerization of the biosynthetic pathway products via keto-enol tautomerism. This post-pathway modification during cultivation further increases the structural diversity of guanitrypmycins.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037, Marburg, Germany
| |
Collapse
|
44
|
Liu J, Xie X, Li S. Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio‐ and Stereospecific Guaninyl‐Transfer Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps-Universität Marburg Robert-Koch Straße 4 35037 Marburg Germany
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Shu‐Ming Li
- Institut für Pharmazeutische Biologie und BiotechnologiePhilipps-Universität Marburg Robert-Koch Straße 4 35037 Marburg Germany
| |
Collapse
|
45
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
46
|
Jiang G, Zhang Y, Powell MM, Hylton SM, Hiller NW, Loria R, Ding Y. A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic C-H Bonds of Aromatic 2,5-Diketopiperazines. Chembiochem 2019; 20:1068-1077. [PMID: 30604585 PMCID: PMC8162728 DOI: 10.1002/cbic.201800736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 enzymes generally functionalize inert C-H bonds, and thus, they are important biocatalysts for chemical synthesis. However, enzymes that catalyze both aliphatic and aromatic hydroxylation in the same biotransformation process have rarely been reported. A recent biochemical study demonstrated the P450 TxtC for the biosynthesis of herbicidal thaxtomins as the first example of this unique type of enzyme. Herein, the detailed characterization of substrate requirements and biocatalytic applications of TxtC are reported. The results reveal the importance of N-methylation of the thaxtomin diketopiperazine (DKP) core on enzyme reactions and demonstrate the tolerance of the enzyme to modifications on the indole and phenyl moieties of its substrates. Furthermore, hydroxylated, methylated, aromatic DKPs are synthesized through a biocatalytic route comprising TxtC and the promiscuous N-methyltransferase Amir_4628; thus providing a basis for the broad application of this unique P450.
Collapse
Affiliation(s)
- Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Magan M Powell
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah M Hylton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas W Hiller
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Rosemary Loria
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
47
|
Drummond MJ, Ford CL, Gray DL, Popescu CV, Fout AR. Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation. J Am Chem Soc 2019; 141:6639-6650. [PMID: 30969766 DOI: 10.1021/jacs.9b01516] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.
Collapse
Affiliation(s)
- Michael J Drummond
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Courtney L Ford
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Danielle L Gray
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Codrina V Popescu
- Department of Chemistry , University of Saint Thomas , 2115 Summit Avenue , Saint Paul , Minnesota 55105 , United States
| | - Alison R Fout
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
48
|
Borgman P, Lopez RD, Lane AL. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org Biomol Chem 2019; 17:2305-2314. [PMID: 30688950 DOI: 10.1039/c8ob03063d] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganisms are remarkable chemists, with enzymes as their tools for executing multi-step syntheses to yield myriad natural products. Microbial synthetic aptitudes are illustrated by the structurally diverse 2,5-diketopiperazine (DKP) family of bioactive nonribosomal peptide natural products. Nonribosomal peptide synthetases (NRPSs) have long been recognized as catalysts for formation of DKP scaffolds from two amino acid substrates. Cyclodipeptide synthases (CDPSs) are more recently recognized catalysts of DKP assembly, employing two aminoacyl-tRNAs (aa-tRNAs) as substrates. CDPS-encoding genes are typically found in genomic neighbourhoods with genes encoding additional biosynthetic enzymes. These include oxidoreductases, cytochrome P450s, prenyltransferases, methyltransferases, and cyclases, which equip the DKP scaffold with groups that diversify chemical structures and confer biological activity. These tailoring enzymes have been characterized from nine CDPS-containing biosynthetic pathways to date, including four during the last year. In this review, we highlight these nine DKP pathways, emphasizing recently characterized tailoring reactions and connecting new developments to earlier findings. Featured pathways encompass a broad spectrum of chemistry, including the formation of challenging C-C and C-O bonds, regioselective methylation, a unique indole alkaloid DKP prenylation strategy, and unprecedented peptide-nucleobase bond formation. These CDPS-containing pathways also provide intriguing models of metabolic pathway evolution across related and divergent microorganisms, and open doors to synthetic biology approaches for generation of DKP combinatorial libraries. Further, bioinformatics analyses support that much unique genetically encoded DKP tailoring potential remains unexplored, suggesting opportunities for further expansion of Nature's biosynthetic spectrum. Together, recent studies of DKP pathways demonstrate the chemical ingenuity of microorganisms, highlight the wealth of unique enzymology provided by bacterial biosynthetic pathways, and suggest an abundance of untapped biosynthetic potential for future exploration.
Collapse
Affiliation(s)
- Paul Borgman
- Department of Chemistry, University of North Florida, 1 UNF Dr, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
49
|
Yao T, Liu J, Liu Z, Li T, Li H, Che Q, Zhu T, Li D, Gu Q, Li W. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery. Nat Commun 2018; 9:4091. [PMID: 30291234 PMCID: PMC6173783 DOI: 10.1038/s41467-018-06411-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) can catalyze the formation of two successive peptide bonds by hijacking aminoacyl-tRNAs from the ribosomal machinery resulting in diketopiperazines (DKPs). Here, three CDPS-containing loci (dmt1–3) are discovered by genome mining and comparative genome analysis of Streptomyces strains. Among them, CDPS DmtB1, encoded by the gene of dmt1 locus, can synthesize cyclo(L-Trp-L-Xaa) (with Xaa being Val, Pro, Leu, Ile, or Ala). Systematic mutagenesis experiments demonstrate the importance of the residues constituting substrate-binding pocket P1 for the incorporation of the second aa-tRNA in DmtB1. Characterization of dmt1–3 unravels that CDPS-dependent machinery is involved in CDPS-synthesized DKP formation followed by tailoring steps of prenylation and cyclization to afford terpenylated DKP compounds drimentines. A phytoene-synthase-like family prenyltransferase (DmtC1) and a membrane terpene cyclase (DmtA1) are required for drimentines biosynthesis. These results set the foundation for further increasing the natural diversity of complex DKP derivatives. Diketopiperazine derivatives are bioactive molecules with scaffold formed by the condensation of two amino acids. Here, Yao et al. mine the genomes of Streptomyces strains and identify new biosynthetic machinery for drimentines biosynthesis, which includes cyclodipeptide synthase, prenyltransferase, and terpene cyclase.
Collapse
Affiliation(s)
- Tingting Yao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China.
| |
Collapse
|
50
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|