1
|
|
2
|
Iwasawa N, Ono K. 3D-Boronic Ester Architectures: Synthesis, Host-Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. CHEM REC 2021; 22:e202100214. [PMID: 34596949 DOI: 10.1002/tcr.202100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Boronic esters are known to be formed simply by mixing boronic acids and alcohols under neutral conditions, and the equilibrium is in favor of the boronic esters when 1,2- or 1,3-diols are employed as alcohols. By utilizing the dynamic nature of the boronic ester formation, our group successfully constructed unique boron-containing 3D structures, such as ring-shaped macrocycles, cages, and tubes, based on the boronic ester formation of various aromatic di-, tri-, or hexaboronic acids with an originally designed tetrol 1 containing two sets of fixed 1,2-diol units oriented on the same face of an indacene framework. Various functions of the obtained boronates were further pursued to disclose the characteristic features of this system. This personal account describes our self-assembled boronate system using tetrol 1 including synthesis, host-guest chemistry, kinetic connection, characteristic dynamic behaviors, and supramolecular catalysis.
Collapse
Affiliation(s)
- Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
3
|
Pang XY, Zhou H, Yao H, Jiang W. Naphthobox: a selective molecular box for planar aromatic cations. Org Chem Front 2021. [DOI: 10.1039/d1qo00819f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular box with an electron-rich cavity, namely naphthobox, was contructed and showed selective binding to planar aromatic cations.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
4
|
Tanaka D, Tsutsui Y, Konishi A, Nakaoka K, Nakajima H, Baba A, Chiba K, Yasuda M. Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a π-Pocket within Cage-Shaped Borates for Molecular Recognition. Chemistry 2020; 26:15023-15034. [PMID: 32870540 DOI: 10.1002/chem.202003594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Selective bond formations are one of the most important reactions in organic synthesis. In the Lewis acid mediated electrophile reactions of carbonyls, the selective formation of a carbonyl-acid complex plays a critical role in determining selectivity, which is based on the difference in the coordinative interaction between the carbonyl and Lewis acid center. Although this strategy has attained progress in selective bond formations, the discrimination between similarly sized aromatic and aliphatic carbonyls that have no functional anchors to strongly interact with the metal center still remains a challenging issue. Herein, this work focuses on molecular recognition driven by dispersion interactions within some aromatic moieties. A Lewis acid catalyst with a π-space cavity, which is referred to as a π-pocket, as the recognition site for aromatic carbonyls is designed. Cage-shaped borates 1B with various π-pockets demonstrated significant chemoselectivity for aromatic aldehydes 3 b-f over that of aliphatic 3 a in competitive hetero-Diels-Alder reactions. The effectiveness of our catalysts was also evidenced by intramolecular recognition of the aromatic carbonyl within a dicarbonyl substrate. Mechanistic and theoretical studies demonstrated that the selective activation of aromatic substrates was driven by the preorganization step with a larger dispersion interaction, rather than the rate-determining step of the C-C bond formation, and this was likely to contribute to the preferred activation of aromatic substrates over that of aliphatic ones.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Koichi Nakaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Hideto Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akio Baba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouji Chiba
- Material Science Division, MOLSIS Inc., 1-28-38 Shinkawa, Chuo-ku, Tokyo, 1040033, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
5
|
Manankandayalage CP, Unruh DK, Krempner C. Boronic, diboronic and boric acid esters of 1,8-naphthalenediol - synthesis, structure and formation of boronium salts. Dalton Trans 2020; 49:4834-4842. [PMID: 32215427 DOI: 10.1039/d0dt00745e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 1,8-naphthalenediolate [1,8-O2C10H8] supported boronic and boric acid esters of general formula X-B(1,8-O2C10H8), where X = C6H5 (1a), C6F5 (2a), 3,4,5-F3-C6H2 (3a), 2,4,6-F3-C6H2 (4a), 2,6-F2-C6H3 (5a), 2,6-Cl2-C6H3 (6a), 2,4,6-Me3-C6H2 (7a), 2,6-(MeO)3-C6H3 (8a), Bun (9a), MeO (10a), OH (11a) and Cl (13a), were synthesized, NMR spectroscopically characterized, and the solid-state structures of 1a-5a, 8a and 10a determined by X-ray crystallography. The acceptor numbers of 1a-7a and 13a were determined and found to be similar to their catecholate analogues, R-Bcat, indicating similar Lewis acidities of these two classes of boronic acid esters. The reaction of B2(NMe2)4 with 1,8-naphthalenediol, followed by addition of HCl furnished the diboronic acid ester B2(1,8-O2C10H8)4 (16a) in ca. 70% yield. Cl-B(1,8-O2C10H8) (13a) was shown to react with O[double bond, length as m-dash]PEt3, DMAP, 1,10-phenanthroline and 2,2'-bipyridine, resp., to give the boronium salts [(Et3P[double bond, length as m-dash]O)2B(1,8-O2C10H8)]Cl (18a), [(DMAP)2B(1,8-O2C10H8)]Cl (22a), [(2,2'-bipyridine)B(1,8-O2C10H8)]Cl (23a) and [(1,10-phenanthroline)B(1,8-O2C10H8)]Cl (24a), which were characterized by NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Chamila P Manankandayalage
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, TX 79409, USA.
| | - Daniel K Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, TX 79409, USA.
| | - Clemens Krempner
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host-Guest Charge-Transfer Interaction: Visible-Light-Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020; 59:7403-7408. [PMID: 32043287 DOI: 10.1002/anie.201916732] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 01/22/2023]
Abstract
Supramolecular photocatalysis via charge-transfer excitation of a host-guest complex was developed by use of the macrocyclic boronic ester [2+2]BTH-F containing highly electron-deficient difluorobenzothiadiazole moieties. In the presence of a catalytic amount of [2+2]BTH-F , the triplet excited state of anthracene was generated from the charge-transfer excited state of anthracene@[2+2]BTH-F by visible-light irradiation, and cycloaddition of the excited anthracene with several dienes and alkenes proceeded in a [4+2] manner in high yields.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.,Present address: Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Mari Oshima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Minami Kawasaki
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
7
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host–Guest Charge‐Transfer Interaction: Visible‐Light‐Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
- Present address: Department of ChemistryFaculty of ScienceGakushuin University, Mejiro, Toshima-ku Tokyo 171-8588 Japan
| | - Mari Oshima
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Minami Kawasaki
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
8
|
Ono K, Niibe M, Iwasawa N. A K +-promoted Diels-Alder reaction by using a self-assembled macrocyclic boronic ester containing two crown ether moieties. Chem Sci 2019; 10:7627-7632. [PMID: 31588314 PMCID: PMC6761878 DOI: 10.1039/c9sc01597c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
A K+-promoted Diels-Alder reaction of 1,4,9,10-anthradiquinone with various dienes is achieved in the presence of a self-assembled macrocyclic boronic ester [2+2]crown containing two crown ether moieties. The reaction rate is remarkably accelerated (up to 206-fold) compared to that in the absence of the promoter. Furthermore, the reaction proceeds regioselectively to yield an internal adduct. The self-assembly protocol was also demonstrated.
Collapse
Affiliation(s)
- Kosuke Ono
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| | - Morikazu Niibe
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| | - Nobuharu Iwasawa
- Department of Chemistry , Tokyo Institute of Technology , O-okayama, Meguro-ku , Tokyo 152-8551 , Japan .
| |
Collapse
|
9
|
Wenholz DS, Bhadbhade M, Kandemir H, Ho J, Kumar N, Black DS. Substituent effects in solid-state assembly of activated benzotriazoles. CrystEngComm 2019. [DOI: 10.1039/c8ce01757c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic donor–acceptor stacking involving electron-rich π-donors and electron-deficient π-acceptors has been utilized in a broad spectrum of diverse applications to great effect.
Collapse
Affiliation(s)
| | | | - Hakan Kandemir
- School of Chemistry
- UNSW Sydney
- Australia
- Department of Chemistry
- Faculty of Art and Science
| | | | | | | |
Collapse
|
10
|
Liang J, Soucie LN, Blechschmidt DR, Yoder A, Gustafson A, Liu Y. Aromatic Donor–Acceptor Interaction-Based Co(III)-salen Self-Assemblies and Their Applications in Asymmetric Ring Opening of Epoxides. Org Lett 2018; 21:513-518. [DOI: 10.1021/acs.orglett.8b03824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Liang
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| | - Luke N. Soucie
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| | - Daniel R. Blechschmidt
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| | - Aaron Yoder
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| | - Addie Gustafson
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| | - Yu Liu
- Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855, United States
| |
Collapse
|