1
|
Arejan NH, Czapski DR, Buonomo JA, Boutte CC. MmpL3, Wag31, and PlrA are involved in coordinating polar growth with peptidoglycan metabolism and nutrient availability. J Bacteriol 2024; 206:e0020424. [PMID: 39320104 PMCID: PMC11500546 DOI: 10.1128/jb.00204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 is responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation and in which the connection between Wag31, PlrA, and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate the synthesis of the different layers of the mycobacterial cell wall in changing conditions. IMPORTANCE This study is performed in Mycobacterium smegmatis, which is used as a model to understand the basic physiology of pathogenic mycobacteria such as Mycobacterium tuberculosis. In this work, we examine the function and regulation of three proteins involved in regulating cell wall elongation in mycobacterial cells, which occurs at the cell tips or poles. We find that Wag31, a regulator of polar elongation, works partly through the regulation of MmpL3, a transporter of cell wall constituents and an important drug target. Our work suggests that, beyond its transport function, MmpL3 has another function in controlling cell wall synthesis broadly in response to stress.
Collapse
Affiliation(s)
| | - Desiree R. Czapski
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Joseph A. Buonomo
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Cara C. Boutte
- Department of Biology, University of Texas, Arlington, Texas, USA
| |
Collapse
|
2
|
Arejan NH, Czapski DR, Buonomo JA, Boutte CC. MmpL3, Wag31 and PlrA are involved in coordinating polar growth with peptidoglycan metabolism and nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591792. [PMID: 38746181 PMCID: PMC11092516 DOI: 10.1101/2024.04.29.591792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen, and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 are responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism, but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth, but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation, and in which the connection between Wag31, PlrA and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate synthesis of the different layers of the mycobacterial cell wall in changing conditions.
Collapse
Affiliation(s)
| | - Desiree R Czapski
- Department of Chemistry and Biochemistry, University of Texas, Arlington
| | - Joseph A Buonomo
- Department of Chemistry and Biochemistry, University of Texas, Arlington
| | - Cara C Boutte
- Department of Biology, University of Texas, Arlington
| |
Collapse
|
3
|
Patterson B, Dinkele R, Gessner S, Koch A, Hoosen Z, January V, Leonard B, McKerry A, Seldon R, Vazi A, Hermans S, Cobelens F, Warner DF, Wood R. Aerosolization of viable Mycobacterium tuberculosis bacilli by tuberculosis clinic attendees independent of sputum-Xpert Ultra status. Proc Natl Acad Sci U S A 2024; 121:e2314813121. [PMID: 38470917 PMCID: PMC10962937 DOI: 10.1073/pnas.2314813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.
Collapse
Affiliation(s)
- Benjamin Patterson
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Ryan Dinkele
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Sophia Gessner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Anastasia Koch
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Zeenat Hoosen
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Vanessa January
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Bryan Leonard
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andrea McKerry
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Ronnett Seldon
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andiswa Vazi
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Sabine Hermans
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Frank Cobelens
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Digby F. Warner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| |
Collapse
|
4
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
5
|
Eskandarian HA, Chen YX, Toniolo C, Belardinelli JM, Palcekova Z, Hom L, Ashby PD, Fantner GE, Jackson M, McKinney JD, Javid B. Mechanical morphotype switching as an adaptive response in mycobacteria. SCIENCE ADVANCES 2024; 10:eadh7957. [PMID: 38170768 PMCID: PMC10776010 DOI: 10.1126/sciadv.adh7957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.
Collapse
Affiliation(s)
- Haig Alexander Eskandarian
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu-Xiang Chen
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Lesley Hom
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paul D. Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Georg E. Fantner
- School of Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - John D. McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Babak Javid
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Thouvenel L, Rech J, Guilhot C, Bouet JY, Chalut C. In vivo imaging of MmpL transporters reveals distinct subcellular locations for export of mycolic acids and non-essential trehalose polyphleates in the mycobacterial outer membrane. Sci Rep 2023; 13:7045. [PMID: 37120636 PMCID: PMC10148836 DOI: 10.1038/s41598-023-34315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
The mycobacterial cell envelope consists of a typical plasma membrane, surrounded by a complex cell wall and a lipid-rich outer membrane. The biogenesis of this multilayer structure is a tightly regulated process requiring the coordinated synthesis and assembly of all its constituents. Mycobacteria grow by polar extension and recent studies showed that cell envelope incorporation of mycolic acids, the major constituent of the cell wall and outer membrane, is coordinated with peptidoglycan biosynthesis at the cell poles. However, there is no information regarding the dynamics of incorporation of other families of outer membrane lipids during cell elongation and division. Here, we establish that the translocation of non-essential trehalose polyphleates (TPP) occurs at different subcellular locations than that of the essential mycolic acids. Using fluorescence microscopy approaches, we investigated the subcellular localization of MmpL3 and MmpL10, respectively involved in the export of mycolic acids and TPP, in growing cells and their colocalization with Wag31, a protein playing a critical role in regulating peptidoglycan biosynthesis in mycobacteria. We found that MmpL3, like Wag31, displays polar localization and preferential accumulation at the old pole whereas MmpL10 is more homogenously distributed in the plasma membrane and slightly accumulates at the new pole. These results led us to propose a model in which insertion of TPP and mycolic acids into the mycomembrane is spatially uncoupled.
Collapse
Affiliation(s)
- Laurie Thouvenel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
7
|
Jia H, Zhu Y, Liu Y, Guo Y, Sayed SM, Zhu X, Cheng X, Wu F. Direct chemical editing of Gram-positive bacterial cell walls via an enzyme-catalyzed oxidative coupling reaction. EXPLORATION (BEIJING, CHINA) 2022; 2:20220010. [PMID: 37325504 PMCID: PMC10190971 DOI: 10.1002/exp.20220010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Chemically manipulating bacterial surface structures, a cutting-edge research direction in the biomedical field, predominantly relies on metabolic labeling by now. However, this method may involve daunting precursor synthesis and only labels nascent surface structures. Here, we report a facile and rapid modification strategy based on a tyrosinase-catalyzed oxidative coupling reaction (TyOCR) for bacterial surface engineering. This strategy employs phenol-tagged small molecules and tyrosinase to initiate direct chemical modification of Gram-positive bacterial cell walls with high labeling efficiency, while Gram-negative bacteria are inert to this modification due to the hindrance of an outer membrane. By using the biotin‒avidin system, we further present the selective deposition of various materials, including photosensitizer, magnetic nanoparticle, and horseradish peroxidase, on Gram-positive bacterial surfaces, and realize the purification/isolation/enrichment and naked-eye detection of bacterial strains. This work demonstrates that TyOCR is a promising strategy for engineering live bacterial cells.
Collapse
Affiliation(s)
- Hao‐Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Ya‐Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Yi Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Xiao‐Yu Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingP. R. China
| |
Collapse
|
8
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
9
|
Carlier M, Lesur E, Baron A, Lemétais A, Guitot K, Roupnel L, Dietrich C, Doisneau G, Urban D, Bayan N, Beau JM, Guianvarc'h D, Vauzeilles B, Bourdreux Y. Synthesis of chemical tools to label the mycomembrane of corynebacteria using a modified Iron (III) chloride-mediated protection of trehalose. Org Biomol Chem 2022; 20:1974-1981. [DOI: 10.1039/d2ob00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose-based probes are useful tools allowing the detection of the mycomembrane of Mycobacteria through the metabolic labeling approach. Some of them are trehalose analogues conjugated to fluorescent probes and others...
Collapse
|
10
|
Yoon SA, Park SY, Cha Y, Gopala L, Lee MH. Strategies of Detecting Bacteria Using Fluorescence-Based Dyes. Front Chem 2021; 9:743923. [PMID: 34458240 PMCID: PMC8397417 DOI: 10.3389/fchem.2021.743923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Identification of bacterial strains is critical for the theranostics of bacterial infections and the development of antibiotics. Many organic fluorescent probes have been developed to overcome the limitations of conventional detection methods. These probes can detect bacteria with "off-on" fluorescence change, which enables the real-time imaging and quantitative analysis of bacteria in vitro and in vivo. In this review, we outline recent advances in the development of fluorescence-based dyes capable of detecting bacteria. Detection strategies are described, including specific interactions with bacterial cell wall components, bacterial and intracellular enzyme reactions, and peptidoglycan synthesis reactions. These include theranostic probes that allow simultaneous bacterial detection and photodynamic antimicrobial effects. Some examples of other miscellaneous detections in bacteria have also been described. In addition, this review demonstrates the validation of these fluorescent probes using a variety of biological models such as gram-negative and -positive bacteria, antibiotic-resistant bacteria, infected cancer cells, tumor-bearing, and infected mice. Prospects for future research are outlined by presenting the importance of effective in vitro and in vivo detection of bacteria and development of antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | - Min Hee Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul, South Korea
| |
Collapse
|
11
|
Abstract
The mycobacterial cell envelope includes a unique outer membrane, also known as the mycomembrane, which is the major defense barrier that confers intrinsic drug tolerance to Mycobacterium tuberculosis (Mtb) and related bacteria. The mycomembrane is typified by long-chain mycolic acids that are esterified to various acceptors, including: (1) trehalose, forming trehalose mono- and di-mycolate; (2) arabinogalactan, forming arabinogalactan-linked mycolates; and (3) in some species, protein serine residues, forming O-mycoloylated proteins. Synthetic trehalose and trehalose monomycolate analogs have been shown to specifically and metabolically incorporate into mycomembrane components, facilitating their analysis in native contexts and opening new avenues for the specific detection and therapeutic targeting of mycobacterial pathogens in complex settings. This chapter highlights trehalose-based probes that have been developed to date, briefly discusses their applications, and describes protocols for their use in mycobacteria research.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
12
|
Biegas KJ, Swarts BM. Chemical probes for tagging mycobacterial lipids. Curr Opin Chem Biol 2021; 65:57-65. [PMID: 34216933 DOI: 10.1016/j.cbpa.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
13
|
Dinkele R, Gessner S, McKerry A, Leonard B, Seldon R, Koch AS, Morrow C, Gqada M, Kamariza M, Bertozzi CR, Smith B, McLoud C, Kamholz A, Bryden W, Call C, Kaplan G, Mizrahi V, Wood R, Warner DF. Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathog 2021; 17:e1009262. [PMID: 33524021 PMCID: PMC7877778 DOI: 10.1371/journal.ppat.1009262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/11/2021] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Interrupting transmission is an attractive anti-tuberculosis (TB) strategy but it remains underexplored owing to our poor understanding of the events surrounding transfer of Mycobacterium tuberculosis (Mtb) between hosts. Determining when live, infectious Mtb bacilli are released and by whom has proven especially challenging. Consequently, transmission chains are inferred only retrospectively, when new cases are diagnosed. This process, which relies on molecular analyses of Mtb isolates for epidemiological fingerprinting, is confounded by the prolonged infectious period of TB and the potential for transmission from transient exposures. We developed a Respiratory Aerosol Sampling Chamber (RASC) equipped with high-efficiency filtration and sampling technologies for liquid-capture of all particulate matter (including Mtb) released during respiration and non-induced cough. Combining the mycobacterial cell wall probe, DMN-trehalose, with fluorescence microscopy of RASC-captured bioaerosols, we detected and quantified putative live Mtb bacilli in bioaerosol samples arrayed in nanowell devices. The RASC enabled non-invasive capture and isolation of viable Mtb from bioaerosol within 24 hours of collection. A median 14 live Mtb bacilli (range 0-36) were isolated in single-cell format from 90% of confirmed TB patients following 60 minutes bioaerosol sampling. This represented a significant increase over previous estimates of transmission potential, implying that many more organisms might be released daily than commonly assumed. Moreover, variations in DMN-trehalose incorporation profiles suggested metabolic heterogeneity in aerosolized Mtb. Finally, preliminary analyses indicated the capacity for serial image capture and analysis of nanowell-arrayed bacilli for periods extending into weeks. These observations support the application of this technology to longstanding questions in TB transmission including the propensity for asymptomatic transmission, the impact of TB treatment on Mtb bioaerosol release, and the physiological state of aerosolized bacilli.
Collapse
Affiliation(s)
- Ryan Dinkele
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sophia Gessner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrea McKerry
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Bryan Leonard
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anastasia S. Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carl Morrow
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Melitta Gqada
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Brian Smith
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Courtney McLoud
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Andrew Kamholz
- Edge Embossing, Boston, Massachusetts, United States of America
| | - Wayne Bryden
- Zeteo Tech, Sykesville, Maryland, United States of America
| | - Charles Call
- Zeteo Tech, Sykesville, Maryland, United States of America
| | - Gilla Kaplan
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
15
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
16
|
Kalera K, Stothard AI, Woodruff PJ, Swarts BM. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chem Commun (Camb) 2020; 56:11528-11547. [PMID: 32914793 PMCID: PMC7919099 DOI: 10.1039/d0cc04955g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose, a disaccharide of glucose, is increasingly recognized as an important contributor to virulence in major bacterial pathogens, such as Mycobacterium tuberculosis, Clostridioides difficile, and Burkholderia pseudomallei. Accordingly, bacterial trehalose metabolic pathways that are not present in humans have gained traction as targets for antibiotic and diagnostic development. Toward this goal, trehalose can be modified through a combination of rational design and synthesis to produce functionalized trehalose analogues, which can be deployed to probe or inhibit bacterial trehalose metabolism. However, the unique α,α-1,1-glycosidic bond and C2 symmetry of trehalose make analogue synthesis via traditional chemical methods very challenging. We and others have turned to the creation of chemoenzymatic synthesis methods, which in principle allow the use of nature's trehalose-synthesizing enzymes to stereo- and regioselectively couple simple, unprotected substrates to efficiently and conveniently generate trehalose analogues. Here, we provide a contextual account of our team's development of a trehalose analogue synthesis method that employs a highly substrate-tolerant, thermostable trehalose synthase enzyme, TreT from Thermoproteus tenax. Then, in three vignettes, we highlight how chemoenzymatic synthesis has accelerated the development of trehalose-based imaging probes and inhibitors that target trehalose-utilizing bacterial pathogens. We describe the role of TreT catalysis and related methods in the development of (i) tools for in vitro and in vivo imaging of mycobacteria, (ii) anti-biofilm compounds that sensitize drug-tolerant mycobacteria to clinical anti-tubercular compounds, and (iii) degradation-resistant trehalose analogues that block trehalose metabolism in C. difficile and potentially other trehalose-utilizing bacteria. We conclude by recapping progress and discussing priorities for future research in this area, including improving the scope and scale of chemoenzymatic synthesis methods to support translational research and expanding the functionality and applicability of trehalose analogues to study and target diverse bacterial pathogens.
Collapse
Affiliation(s)
- Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Alicyn I Stothard
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
17
|
Dai T, Xie J, Zhu Q, Kamariza M, Jiang K, Bertozzi CR, Rao J. A Fluorogenic Trehalose Probe for Tracking Phagocytosed Mycobacterium tuberculosis. J Am Chem Soc 2020; 142:15259-15264. [DOI: 10.1021/jacs.0c07700] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tingting Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Qihua Zhu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Ke Jiang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
18
|
Marshall AP, Shirley JD, Carlson EE. Enzyme-targeted fluorescent small-molecule probes for bacterial imaging. Curr Opin Chem Biol 2020; 57:155-165. [PMID: 32799037 DOI: 10.1016/j.cbpa.2020.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Molecular imaging methods to visualize myriad biochemical processes in bacteria have traditionally been dependent upon molecular biology techniques to incorporate fluorescent biomolecules (e.g., fusion proteins). Such methods have been instrumental in our understanding of how bacteria function but are not without drawbacks, including potential perturbation to native protein expression and function. To overcome these limitations, the use of fluorescent small-molecule probes has gained much attention. Here, we highlight examples from the recent literature that showcase the utility of small-molecule probes for the fluorescence imaging of bacterial cells, including electrophilic, metabolic, and enzyme-activated probes. Although the use of these types of compounds for bacterial imaging is still relatively new, the selected examples demonstrate the exciting potential of these critical tools in the exploration of bacterial physiology.
Collapse
Affiliation(s)
- Andrew P Marshall
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
19
|
Wu Z, Wei W, Zhou Y, Guo H, Zhao J, Liao Q, Chen L, Zhang X, Zhou L. Integrated Quantitative Proteomics and Metabolome Profiling Reveal MSMEG_6171 Overexpression Perturbing Lipid Metabolism of Mycobacterium smegmatis Leading to Increased Vancomycin Resistance. Front Microbiol 2020; 11:1572. [PMID: 32793136 PMCID: PMC7393984 DOI: 10.3389/fmicb.2020.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/17/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the treatment of tuberculosis is once again facing a severe situation because the existing antituberculosis drugs have become weaker and weaker with the emergence of drug-resistant Mycobacterium tuberculosis (Mtb). The studies of cell division and cell cycle-related factors in Mtb are particularly important for the development of new drugs with broad-spectrum effects. Mycobacterium smegmatis (Msm) has been used as a model organism to study the molecular, physiological, and drug-resistant mechanisms of Mtb. Bioinformatics analysis has predicted that MSMEG_6171 is a MinD-like protein of the septum site-determining protein family associated with cell division in Mycobacterium smegmatis. In our study, we use ultrastructural analysis, proteomics, metabolomics, and molecular biology techniques to comprehensively investigate the function of MSMEG_6171. Overexpression of MSMEG_6171 in Msm resulted in elongated cells, suggesting an important role of MSMEG_6171 in regulating cell wall morphology. The MSMEG_6171 overexpression could enhance the bacterial resistance to vancomycin, ethionamide, meropenem, and cefamandole. The MSMEG_6171 overexpression could alter the lipid metabolism of Msm to cause the changes on cellular biofilm property and function, which enhances bacterial resistance to antibiotics targeting cell wall synthesis. MSMEG_6171 could also induce the glyceride and phospholipid alteration in vivo to exhibit the pleiotropic phenotypes and various cellular responses. The results showed that amino acid R249 in MSMEG_6171 was a key site that can affect the level of bacterial drug resistance, suggesting that ATPase activity is required for function.
Collapse
Affiliation(s)
- Zhuhua Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Wenjing Wei
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Huixin Guo
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiao Zhao
- School of Medicine, Jinan University, Guangzhou, China
| | - Qinghua Liao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Xiaoli Zhang
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Lin Zhou
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
21
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
22
|
Holmes N, Kavunja HW, Yang Y, Vannest BD, Ramsey CN, Gepford DM, Banahene N, Poston AW, Piligian BF, Ronning DR, Ojha AK, Swarts BM. A FRET-Based Fluorogenic Trehalose Dimycolate Analogue for Probing Mycomembrane-Remodeling Enzymes of Mycobacteria. ACS OMEGA 2019; 4:4348-4359. [PMID: 30842987 PMCID: PMC6396954 DOI: 10.1021/acsomega.9b00130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
The mycobacterial outer membrane, or mycomembrane, is essential for the viability and virulence of Mycobacterium tuberculosis and related pathogens. The mycomembrane is a dynamic structure, whose chemical composition and biophysical properties can change during stress to give an advantage to the bacterium. However, the mechanisms that govern mycomembrane remodeling and their significance to mycobacterial pathogenesis are still not well characterized. Recent studies have shown that trehalose dimycolate (TDM), a major glycolipid of the mycomembrane, is broken down by the mycobacteria-specific enzyme TDM hydrolase (Tdmh) in response to nutrient deprivation, a process which appears to modulate the mycomembrane to increase nutrient acquisition, but at the expense of stress tolerance. Tdmh activity thus balances the growth of M. tuberculosis during infection in a manner that is contingent upon host immunity. Current methods to probe Tdmh activity are limited, impeding the development of inhibitors and the investigation of the role of Tdmh in bacterial growth and persistence. Here, we describe the synthesis and evaluation of FRET-TDM, which is a fluorescence-quenched analogue of TDM that is designed to fluoresce upon hydrolysis by Tdmh and potentially other trehalose ester-degrading hydrolases involved in mycomembrane remodeling. We found that FRET-TDM was efficiently activated in vitro by recombinant Tdmh, generating a 100-fold increase in fluorescence. FRET-TDM was also efficiently activated in the presence of whole cells of Mycobacterium smegmatis and M. tuberculosis, but the observed signal was predominantly Tdmh-independent, suggesting that physiological levels of Tdmh are low and that other mycobacterial enzymes also hydrolyze the probe. The latter notion was confirmed by employing a native protein gel-based fluorescence assay to profile FRET-TDM-activating enzymes from M. smegmatis lysates. On the other hand, FRET-TDM was capable of detecting the activity of Tdmh in cells when it was overexpressed. Together, our data demonstrate that FRET-TDM is a convenient and sensitive in vitro probe of Tdmh activity, which will be beneficial for Tdmh enzymatic characterization and inhibitor screening. In more complex samples, for example, live cells or cell lysates, FRET-TDM can serve as a tool to probe Tdmh activity at elevated enzyme levels, and it may facilitate the identification and characterization of related hydrolases that are involved in mycomembrane remodeling. Our study also provides insights as to how the structure of FRET-TDM or related fluorogenic probes can be optimized to achieve improved specificity and sensitivity for detecting mycobacteria.
Collapse
Affiliation(s)
- Nathan
J. Holmes
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Herbert W. Kavunja
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Yong Yang
- Division
of Genetics, Wadsworth Center, New York
State Department of Health, Albany, New York 12208, United States
| | - B. Dillon Vannest
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Claudia N. Ramsey
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Dana M. Gepford
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Anne W. Poston
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Brent F. Piligian
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Donald R. Ronning
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606-3390, United States
| | - Anil K. Ojha
- Division
of Genetics, Wadsworth Center, New York
State Department of Health, Albany, New York 12208, United States
- Department
of Biomedical Sciences, University at Albany, New York 12208, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- E-mail:
| |
Collapse
|
23
|
Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nat Chem Biol 2019; 15:221-231. [PMID: 30664686 DOI: 10.1038/s41589-018-0206-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.
Collapse
|
24
|
Pomerantz AK, Sari-Sarraf F, Grove KJ, Pedro L, Rudewicz PJ, Fathman JW, Krucker T. Enabling drug discovery and development through single-cell imaging. Expert Opin Drug Discov 2018; 14:115-125. [DOI: 10.1080/17460441.2019.1559147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrea K. Pomerantz
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Farid Sari-Sarraf
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Kerri J. Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Liliana Pedro
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Patrick J. Rudewicz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - John W. Fathman
- Cancer Therapeutics, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Thomas Krucker
- Alliance Management and Partnering, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| |
Collapse
|
25
|
García-Heredia A, Pohane AA, Melzer ES, Carr CR, Fiolek TJ, Rundell SR, Lim HC, Wagner JC, Morita YS, Swarts BM, Siegrist MS. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. eLife 2018; 7:37243. [PMID: 30198841 PMCID: PMC6191288 DOI: 10.7554/elife.37243] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Rod-shaped mycobacteria expand from their poles, yet d-amino acid probes label cell wall peptidoglycan in this genus at both the poles and sidewall. We sought to clarify the metabolic fates of these probes. Monopeptide incorporation was decreased by antibiotics that block peptidoglycan synthesis or l,d-transpeptidation and in an l,d-transpeptidase mutant. Dipeptides complemented defects in d-alanine synthesis or ligation and were present in lipid-linked peptidoglycan precursors. Characterizing probe uptake pathways allowed us to localize peptidoglycan metabolism with precision: monopeptide-marked l,d-transpeptidase remodeling and dipeptide-marked synthesis were coincident with mycomembrane metabolism at the poles, septum and sidewall. Fluorescent pencillin-marked d,d-transpeptidation around the cell perimeter further suggested that the mycobacterial sidewall is a site of cell wall assembly. While polar peptidoglycan synthesis was associated with cell elongation, sidewall synthesis responded to cell wall damage. Peptidoglycan editing along the sidewall may support cell wall robustness in pole-growing mycobacteria.
Collapse
Affiliation(s)
- Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| | - Amol Arunrao Pohane
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Emily S Melzer
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Caleb R Carr
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Taylor J Fiolek
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, United States
| | - Sarah R Rundell
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, United States
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Jeffrey C Wagner
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Yasu S Morita
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States.,Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, United States
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States.,Department of Microbiology, University of Massachusetts, Amherst, United States
| |
Collapse
|
26
|
Neue Mitglieder der Royal Society: P. L. Arnold, M. A. Brimble, F. Caruso, R. S. Goody, R. H. Crabtree, C. Bertozzi, J. Sauer / Jochen‐Block‐Preis: A. Vorholt / Otto‐Bayer‐Preis: T. Erb. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Elected to the Royal Society: P. L. Arnold, M. A. Brimble, F. Caruso, R. S. Goody, R. H. Crabtree, C. Bertozzi, J. Sauer / Jochen Block Prize: A. Vorholt / Otto Bayer Award: T. Erb. Angew Chem Int Ed Engl 2018; 57:7937-7938. [DOI: 10.1002/anie.201806177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|