1
|
Zhu Z, Kuang Z, Shen L, Wang S, Ai X, Abdurahman A, Peng Q. Dual Channel Emissions of Kasha and Anti-Kasha from a Single Radical Molecule. Angew Chem Int Ed Engl 2024; 63:e202410552. [PMID: 39024492 DOI: 10.1002/anie.202410552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Stable open-shell luminescent radicals have recently attracted much attention due to their unique luminescence properties. However, a radical molecule with both Kasha and anti-Kasha doublet emission properties has not been reported. Herein, we have successfully synthesized a stable chlorine-substituted Chichibabin's hydrocarbon, TTM-TTM, along with its mono-radical counterpart, TTM-HTTM. The emission of TTM-TTM follows Kasha's rule in the near infrared region. However, TTM-HTTM shows dual channel doublet emissions of Kasha and anti-Kasha. Remarkably, these two types of emission compete dynamically in both solution and condensed states. Our findings provide valuable insights into the rational design and discovery of stable radicals that possess distinctive luminescent properties, thus broadening the horizons of luminescent materials research.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, P. R. China
| | - Shengjie Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xin Ai
- School of Materials Science and Engineering, Collaborative Innovation Center of Information Technology, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Renmin Avenue 58, Haikou, 570228, P. R. China
| | - Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Sun YF, Chen XL, Zhang DH, Huo P, Liu Z, Zhou L, Lin FL, Lu CZ. Efficient Deep-Blue Organic Light-Emitting Diodes Employing Doublet Sensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408118. [PMID: 39252676 DOI: 10.1002/adma.202408118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Fast and efficient exciton utilization is a crucial solution and highly desirable for achieving high-performance blue organic light-emitting diodes (OLEDs). However, the rate and efficiency of exciton utilization in traditional OLEDs, which employ fully closed-shell materials as emitters, are inevitably limited by spin statistical limitations and transition prohibition. Herein, a new sensitization strategy, namely doublet-sensitized fluorescence (DSF), is proposed to realize high-performance deep-blue electroluminescence. In the DSF-OLED, a doublet-emitting cerium(III) complex, Ce-2, is utilized as sensitizer for multi-resonance thermally activated delayed fluorescence emitter ν-DABNA. Experimental results reveal that holes and electrons predominantly recombine on Ce-2 to form doublet excitons, which subsequently transfer energy to the singlet state of ν-DABNA via exceptionally fast (over 108 s-1) and efficient (≈100%) Förster resonance energy transfer for deep-blue emission. Due to the circumvention of spin-flip in the DSF mechanism, near-unit exciton utilization efficiency and remarkably short exciton residence time of 1.36 µs are achieved in the proof-of-concept deep-blue DSF-OLED, which achieves a Commission Internationale de l'Eclairage coordinate of (0.13, 0.14), a high external quantum efficiency of 30.0%, and small efficiency roll-off of 14.7% at a luminance of 1000 cd m-2. The DSF device exhibits significantly improved operational stability compared with unsensitized reference device.
Collapse
Affiliation(s)
- Yu-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Dong-Hai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fu-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Wu C, Lu C, Yu S, Zhang M, Zhang H, Zhang M, Li F. Highly Efficient Near-Infrared Luminescent Radicals with Emission Peaks over 750 nm. Angew Chem Int Ed Engl 2024:e202412483. [PMID: 39218804 DOI: 10.1002/anie.202412483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Purely organic molecules exhibiting near-infrared (NIR) emission possess considerable potential for applications in both biological and optoelectronic technological domains, owing to their inherent advantages such as cost-effectiveness, biocompatibility, and facile chemical modifiability. However, the repertoire of such molecules with emission peaks exceeding 750 nm and concurrently demonstrating high photoluminescence quantum efficiency (PLQE) remains relatively scarce due to the energy gap law. Herein, we report two open-shell NIR radical emitters, denoted as DMNA-Cz-BTM and DMNA-PyID-BTM, achieved through the strategic integration of a donor group (DMNA) onto the Cz-BTM and PyID-BTM frameworks, respectively. We found that the donor-acceptor molecular structure allows the two designed radical emitters to exhibit a charge-transfer excited state and spatially separated electron and hole levels with non-bonding characteristics. Thus, the high-frequency vibrations are effectively suppressed. Besides, the reduction of low-frequency vibrations is observed. Collectively, the non-radiative decay channel is significantly suppressed, leading to exceptional NIR PLQE values. Specifically, DMNA-Cz-BTM manifests an emission peak at 758 nm alongside a PLQE of 55 %, whereas DMNA-PyID-BTM exhibits an emission peak at 778 nm with a PLQE of 66 %. Notably, these represent the pinnacle of PLQE among metal-free organic NIR emitters with emission peaks surpassing 750 nm.
Collapse
Affiliation(s)
- Chunxiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Shilong Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Minzhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Steffenfauseweh H, Rottschäfer D, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. Non-Kekulé meta-Quinodimethane Singlet Diradicals Based on Classical N-Heterocyclic Carbenes. Chemistry 2024:e202403029. [PMID: 39140842 DOI: 10.1002/chem.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Diradicals based on a meta-quinodimethane (m-QDM) scaffold generally have a triplet ground state and are rather scarce. Herein, m-QDM-based non-Kekulé diradicals [3,3'-(NHC)2BP] (3-NHC) (NHC = SIPr = C{N(Dipp)CH2}2; IPr = C{N(Dipp)CH}2, Me-IPr = C{N(Dipp)CMe}2; Dipp = 2,6-iPr2C6H3; BP = 1,1'-C6H4C6H4) featuring N-heterocyclic carbene (NHC) pendants are reported as crystalline solids. The EPR spectra of 3-NHC show both allowed (Δms = 1) and forbidden (Δms = 2; 'half-field') transitions characteristic for triplet diradicals. Variable temperature EPR studies however reveal a singlet ground state for 3-SIPr. Consistent with the EPR spectra, calculations predict a remarkably small singlet-triplet energy gap (ΔEST ≤ 0.26 kcal/mol) for the 3-NHC compounds. The calculated singlet diradical character for the ground states of the 3-NHC compounds amounts to ~99 %.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
5
|
Stanitska M, Keruckiene R, Sini G, Volyniuk D, Marsalka A, Shi ZE, Liu CM, Lin YR, Chen CP, Grazulevicius JV. Exploring the Charge-Transport and Optical Characteristics of Organic Doublet Radicals: A Theoretical and Experimental Study with Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41230-41243. [PMID: 39052450 PMCID: PMC11310911 DOI: 10.1021/acsami.4c08524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Herein, we present a series of stable radicals containing a trityl carbon-centered radical moiety exhibiting interesting properties. The radicals demonstrate the most blue-shifted anti-Kasha doublet emission reported so far with high color purity (full width at half-maximum of 46 nm) and relatively high photoluminescence quantum yields of deoxygenated toluene solutions reaching 31%. The stable radicals demonstrate equilibrated bipolar charge transport with charge mobility values reaching 10-4 cm2/V·s at high electric fields. The experimental results in combination with the results of TD-DFT calculations confirm that the blue emission of radicals violates the Kasha rule and originates from higher excited states, whereas the bipolar charge transport properties are found to stem from the particularity of radicals to involve the same molecular orbital(s) in electron and hole transport. The radicals act as the efficient materials for interlayers, passivating interfacial defects and enhancing charge extraction in PSCs. Consequently, this leads to outstanding performance of PSC, with power conversion efficiency surpassing 21%, accompanied by a remarkable increase in open-circuit voltage and exceptional stability.
Collapse
Affiliation(s)
- Mariia Stanitska
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Rasa Keruckiene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Gjergji Sini
- Laboratoire
de Physicochimie des Polymères et des Interfaces, CY Paris Cergy Université, EA 2528, 5 mail Gay-Lussac, Cergy-Pontoise, Cedex 95031, France
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Arunas Marsalka
- Faculty
of Physics, Vilnius University, Sauletekio st. 9-3, LT-10222 Vilnius, Lithuania
| | - Zhong-En Shi
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Chung-Ming Liu
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Yan-Ru Lin
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Chih-Ping Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
- College
of Engineering, Chang Gung University, Taoyuan City 33302, Taiwan, Republic of
China
| | - Juozas V. Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| |
Collapse
|
6
|
Liu X, Shi C, Zhao M, Li F, Zhang J, Jiang Z, Li Q, Yuan A, Yan H. Robust Radicals Featuring B- and N-Embedded Dioxygen-Bridged Units: Synthesis, Structures, and Optical Properties. Chemistry 2024; 30:e202400927. [PMID: 38773816 DOI: 10.1002/chem.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Tris(2,4,6-trichlorophenyl)methyl (TTM) group has been widely used for constructing organic radicals, but the poor optical stabilities limit the application prospects of the TTM radicals. In this work, the rigid B- and N-embedded dioxygen-bridged (BO and NO) units were attached to the TTM skeleton as the strong electron-withdrawing and electron-donating groups, respectively. The rigidity and strong electronic effect of the BO and NO units contribute to the high chemical and optical stability of BO-TTM and NO-TTM radicals. Notably, NO-TTM exhibits near-infrared emission at 830 nm with a narrow full width at half maximum (FWHM) of 55 nm (100 meV), while BO-TTM shows blue-shifted luminescence at 635 nm and a narrower FWHM of merely 43 nm (130 meV). This study has developed a methodology to produce highly efficient and enduring luminescent radicals, which could tune emission properties such as wavelength and FWHM.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Meng Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Zhen Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212100, Zhenjiang, Jiangsu, PR China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Nanjing University, 210093, Nanjing, P. R. China
| |
Collapse
|
7
|
Sahalianov I, Valiev RR, Ramazanov RR, Baryshnikov G. Neutral vs Charged Luminescent Radicals: Anti-Kasha Emission and the Impact of Molecular Surrounding. J Phys Chem A 2024; 128:5138-5145. [PMID: 38900960 PMCID: PMC11229066 DOI: 10.1021/acs.jpca.4c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Organic luminescent materials attract growing interest as an elegant solution for sustainable and inexpensive light-emitting devices. Most of them are neutral-emitting molecules with an implicit restriction of 25% internal quantum efficiency due to a spin-forbidden nature of the T1 → S0 transition. Utilizing organic radicals allows one to overcome such limits by theoretically boosting quantum yield up to 100%. Recently, different light-emitting radicals based on carbonyl- and carboxyl-substituted benzenes were synthesized and stabilized in different polymer matrices or ionic liquids. While some of them were proved to be suitable luminescent materials, the exact theoretical explanation of the nature of their emission is missing. There are two main hypotheses proposed in the literature. The first one suggests that the origin of luminescence is D2 → D0 anti-Kasha emission from anion radicals, while the second theory is based on D1 → D0 Kasha emission from neutral protonated radicals. In this work, we investigate both hypotheses and compare their derivatives with the available experimental data. We used density functional theory and complete-active space perturbation theory to investigate the absorption and emission properties in various aromatic carbonyl radicals. We found that both emission mechanisms can coexist simultaneously, with a dominant emission contribution made by anion radicals because of better agreement between oscillator strengths and radiative rate constants. Our numerical simulations agree with the experimental data and provide theoretical foundations for the fabrication of next-generation light-emitting devices based on luminescent radicals.
Collapse
Affiliation(s)
- I. Sahalianov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, ITN, Linköping University, 60174 Norrköping,Sweden
| | - R. R. Valiev
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats
1), 00014Helsinki,Finland
| | - R. R. Ramazanov
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats
1), 00014Helsinki,Finland
| | - G. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, ITN, Linköping University, 60174 Norrköping,Sweden
| |
Collapse
|
8
|
Gou Q, Guan J, Zhang L, Ai X. Phenyl Derivatives Modulate the Luminescent Properties and Stability of CzBTM-Type Radicals. Molecules 2024; 29:2900. [PMID: 38930965 PMCID: PMC11206717 DOI: 10.3390/molecules29122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The distinctive electron structures of luminescent radicals offer considerable potential for a diverse array of applications. Up to now, the luminescent properties of radicals have been modulated through the introduction of electron-donating substituents, predominantly derivatives of carbazole and polyaromatic amines with more and more complicated structures and redshifted luminescent spectra. Herein, four kinds of (N-carbazolyl)bis(2,4,6-tirchlorophenyl)-methyl (CzBTM) radicals, Ph2CzBTM, Mes2CzBTM, Ph2PyIDBTM, and Mes2PyIDBTM, were synthesized and characterized by introducing simple phenyl and 2,4,6-trimethylphenyl groups to CzBTM and PyIDBTM. These radicals exhibit rare blueshifted emission spectra compared to their parent radicals. Furthermore, modifications to CzBTM significantly enhanced the photoluminescence quantum yields (PLQYs), with a highest PLQY of 21% for Mes2CzBTM among CzBTM-type radicals. Additionally, the molecular structures, photophysical properties of molecular orbitals, and stability of the four radicals were systematically investigated. This study provides a novel strategy for tuning the luminescent color of radicals to shorter wavelengths and improving thermostability.
Collapse
Affiliation(s)
- Quanquan Gou
- School of Materials Science and Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Jiahao Guan
- School of Materials Science and Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Lintao Zhang
- School of Materials Science and Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Xin Ai
- School of Materials Science and Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
- Collaborative Innovation Center of Information Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
9
|
Zhang Z, Xiong Z, Zhang J, Chu B, Liu X, Tu W, Wang L, Sun JZ, Zhang C, Zhang H, Zhang X, Tang BZ. Near-Infrared Emission Beyond 900 nm from Stable Radicals in Nonconjugated Poly(diphenylmethane). Angew Chem Int Ed Engl 2024; 63:e202403827. [PMID: 38589299 DOI: 10.1002/anie.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bo Chu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Liu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Weihao Tu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Chengjian Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
10
|
Han Z, Liu R, Zhang L, Song J, Bai Y, Lu X. Bright Luminescence of Free Radical TEMPO Enabled by Electrochemiluminescence Technique. Anal Chem 2024; 96:7304-7310. [PMID: 38651947 DOI: 10.1021/acs.analchem.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Radicals can feature theoretically 100% light utilization owing to their nonelectron spin-forbidden transition and represent the most advanced luminescent materials at present. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) acts as a typically stable radical with very broad applications. However, their luminescent properties have not been discovered to date. In the present work, we observed the bright electrochemiluminescence (ECL) emission of TEMPO with a higher efficiency (72.3%) via the electrochemistry and coreactant strategies for the first time. Moreover, the radical-based ECL achieved high detection toward boron acid with a lower limit of detection (LOD) of 1.9 nM. This study offers a new approach to generate emissions for some unconventional luminophores and makes a major breakthrough in the field of new luminescent materials as well.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruirui Liu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Lijun Zhang
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jiangyun Song
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yunfeng Bai
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
11
|
Lv K, Zhang M, Xia X, Liu W, Wan K, Zhang M, Li F. Cyano modified triphenylmethyl radical skeletons: higher stability and efficiency. Chem Commun (Camb) 2024; 60:4846-4849. [PMID: 38619487 DOI: 10.1039/d4cc00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We introduced cyano groups to replace chlorine atoms in the tris(2,4,6-trichlorophenyl)methyl (TTM) radical skeleton, resulting in two cyano-modified TTM skeletons. The incorporation of cyano groups effectively suppresses nonradiative transition processes and lowers the frontier molecular orbital energy levels compared to those of the TTM radical. Consequently, enhanced photoluminescence quantum efficiency (PLQE) and a shift towards longer-wavelength emission in solution were achieved. Furthermore, the cyano-modified TTM skeletons exhibited improved stabilities. The development of these two skeletons adds diversity to stable organic luminescent radical skeletons.
Collapse
Affiliation(s)
- Kuo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Minzhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xin Xia
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Keke Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
12
|
Nakamura K, Matsuda K, Xiaotian R, Furukori M, Miyata S, Hosokai T, Anraku K, Nakao K, Albrecht K. Effects of halogen atom substitution on luminescent radicals: a case study on tris(2,4,6-trichlorophenyl)methyl radical-carbazole dyads. Faraday Discuss 2024; 250:192-201. [PMID: 37966049 DOI: 10.1039/d3fd00130j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A series of halogen-substitute carbazole TTM radicals was synthesized. The effect of halogen substituents on radical luminescence was systematically evaluated. It was found that the well-known heavy atom effect does not work in the emission of radicals and that halogen substitution of the donor carbazole can change the HOMO and alter the absorption and emission wavelengths. In addition, the photostability was found to be improved with respect to TTM but not significantly different from that of closed-shell fluorescent molecules.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Applied Science for Electronics and Materials, Interdisciplinery Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Kenshiro Matsuda
- Department of Applied Science for Electronics and Materials, Interdisciplinery Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Rui Xiaotian
- Department of Applied Science for Electronics and Materials, Interdisciplinery Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Minori Furukori
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Satoshi Miyata
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takuya Hosokai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kosuke Anraku
- Department of Applied Science for Electronics and Materials, Interdisciplinery Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Kohei Nakao
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen Kasuga-Shi, Fukuoka 816-8580, Japan.
| | - Ken Albrecht
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen Kasuga-Shi, Fukuoka 816-8580, Japan.
| |
Collapse
|
13
|
Ju CW, Shen Y, French EJ, Yi J, Bi H, Tian A, Lin Z. Accurate Electronic and Optical Properties of Organic Doublet Radicals Using Machine Learned Range-Separated Functionals. J Phys Chem A 2024. [PMID: 38382058 DOI: 10.1021/acs.jpca.3c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Luminescent organic semiconducting doublet-spin radicals are unique and emergent optical materials because their fluorescent quantum yields (Φfl) are not compromised by the spin-flipping intersystem crossing (ISC) into a dark high-spin state. The multiconfigurational nature of these radicals challenges their electronic structure calculations in the framework of single-reference density functional theory (DFT) and introduces room for method improvement. In the present study, we extended our earlier development of ML-ωPBE [J. Phys. Chem. Lett., 2021, 12, 9516-9524], a range-separated hybrid (RSH) exchange-correlation (XC) functional constructed using the stacked ensemble machine learning (SEML) algorithm, from closed-shell organic semiconducting molecules to doublet-spin organic semiconducting radicals. We assessed its performance for a new test set of 64 doublet-spin radicals from five categories while placing all previously compiled 3926 closed-shell molecules in the new training set. Interestingly, ML-ωPBE agrees with the nonempirical OT-ωPBE functional regarding the prediction of the molecule-dependent range-separation parameter (ω), with a small mean absolute error (MAE) of 0.0197 a0-1, but saves the computational cost by 2.46 orders of magnitude. This result demonstrates an outstanding domain adaptation capacity of ML-ωPBE for diverse organic semiconducting species. To further assess the predictive power of ML-ωPBE in experimental observables, we also applied it to evaluate absorption and fluorescence energies (Eabs and Efl) using linear-response time-dependent DFT (TDDFT), and we compared its behavior with nine popular XC functionals. For most radicals, ML-ωPBE reproduces experimental measurements of Eabs and Efl with small MAEs of 0.299 and 0.254 eV, only marginally different from those of OT-ωPBE. Our work illustrates a successful extension of the SEML framework from closed-shell molecules to doublet-spin radicals and will open the venue for calculating optical properties for organic semiconductors using single-reference TDDFT.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yili Shen
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ethan J French
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jun Yi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hongshan Bi
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Aaron Tian
- Manning College of Information and Computer Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Mizuno A, Matsuoka R, Mibu T, Kusamoto T. Luminescent Radicals. Chem Rev 2024; 124:1034-1121. [PMID: 38230673 DOI: 10.1021/acs.chemrev.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organic radicals are attracting increasing interest as a new class of molecular emitters. They demonstrate electronic excitation and relaxation dynamics based on their doublet or higher multiplet spin states, which are different from those based on singlet-triplet manifolds of conventional closed-shell molecules. Recent studies have disclosed luminescence properties and excited state dynamics unique to radicals, such as highly efficient electron-photon conversion in OLEDs, NIR emission, magnetoluminescence, an absence of heavy atom effect, and spin-dependent and spin-selective dynamics. These are difficult or sometimes impossible to achieve with closed-shell luminophores. This review focuses on luminescent organic radicals as an emerging photofunctional molecular system, and introduces the material developments, fundamental properties including luminescence, and photofunctions. Materials covered in this review range from monoradicals, radical oligomers, and radical polymers to metal complexes with radical ligands demonstrating radical-involved emission. In addition to stable radicals, transiently formed radicals generated in situ by external stimuli are introduced. This review shows that luminescent organic radicals have great potential to expand the chemical and spin spaces of luminescent molecular materials and thus broaden their applicability to photofunctional systems.
Collapse
Affiliation(s)
- Asato Mizuno
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
| | - Takuto Mibu
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
15
|
Xu Y, Teng C, Dang H, Yin D, Yan L. Highly bright stable organic radicals encapsulated by amphiphilic polypeptide for efficient near-infrared phototheranostics. Talanta 2024; 266:124948. [PMID: 37459788 DOI: 10.1016/j.talanta.2023.124948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023]
Abstract
Stable organic radical molecules have received extensive attention due to their unique electronic structure and photophysical properties, and the highly fluorescent quantum efficiency has great appeal to bioimaging. However, still scarce reports on the application of them on the therapy of tumors, especially theranostics. Here, 3,6-dibromocarbazole modified tris (2,4,6-trichlorophenyl) methane radical (TB) has been synthesized with high NIR fluorescence quantum efficiency, and free radical nanoparticles (NPs) have been prepared using the precursor of the radical doping strategy. The free radical molecule TB and its precursor molecule HTB were mixed in proportion and encapsulated with an amphiphilic polypeptide (PEG-PAsp) to obtain the NPs. The 4% NPs can achieve a high fluorescence quantum efficiency (18.68%) in the NIR region. In addition, the NPs also have a good ability to produce reactive oxygen species (ROS) under either normoxia or hypoxia conditions, which makes it possible for photodynamic therapy (PDT). Interestingly, the NPs also show preferable photothermal ability (PCE = 42.39%) for photothermal therapy (PTT). Both in vitro and in vivo studies reveal that the as-prepared radical NPS show a NIR fluorescence imaging-guided synergistic PTT and type I/II PDT to tumors. It provides new strategies and new clues for the application of free radical molecules in the theranostics of tumors.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, And Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, And Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China
| | - Huiping Dang
- Key Laboratory of Precision and Intelligent Chemistry, And Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, And Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai Road 96, 230026, Anhui, PR China.
| |
Collapse
|
16
|
Liu J, Yu H, Siddique F, Baryshnikov GV, Wu H. Photoinduced Carbonyl Radical Luminescence in Host-Guest Systems. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58888-58896. [PMID: 38083815 PMCID: PMC10739597 DOI: 10.1021/acsami.3c14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Developing a free radical emission system in different states, especially in water, is highly challenging and desired. Herein, a host-guest coassembly strategy was used to protect the in situ photoactivated radical emission of carbonyl compounds in solid and aqueous solutions by doping them into a series of small molecules with hydroxyl groups. The intermolecular interactions between host and guest and the electron-donating ability of the hydroxyl group can significantly promote the formation and stabilization of luminescence by carbonyl radicals. Accordingly, the stimuli-responsive property of the free radical system was investigated in detail, and the self-assembled aggregates showed photoactive and thermoresponsive behaviors. In addition, an advanced ammonia compound identification system can be built based on a radical emission system. Our design strategy sheds light on developing free radical systems that can emit in various states, which will greatly broaden the application range of free radicals.
Collapse
Affiliation(s)
- Juanjuan Liu
- Key
Lab of Science and Technology of Eco-Textile, Ministry of Education,
National Engineering Research Center for Dyeing and Finishing of Textiles,
College of Chemistry, Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Huajie Yu
- Key
Lab of Science and Technology of Eco-Textile, Ministry of Education,
National Engineering Research Center for Dyeing and Finishing of Textiles,
College of Chemistry, Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Farhan Siddique
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Glib V. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Hongwei Wu
- Key
Lab of Science and Technology of Eco-Textile, Ministry of Education,
National Engineering Research Center for Dyeing and Finishing of Textiles,
College of Chemistry, Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Ding J, Zhang M, Gao Y, Lu C, Zhang M, Li F. A Simple Molecular Design Strategy for Luminescent Radicals to Achieve Near-Infrared Emission. J Phys Chem Lett 2023; 14:8244-8250. [PMID: 37676025 DOI: 10.1021/acs.jpclett.3c01820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The spin-allowed doublet emission of luminescent radicals has recently attracted significant attention. However, the spectral range of most reported luminescent radical emitters and their corresponding organic light-emitting diodes (OLEDs) is confined to the red and deep red regions, with only a few extending to the near-infrared region, specifically in the context of an emission peak exceeding 800 nm. Herein, a luminescent radical, 2-(4-(bis(2,4,6-trichlorophenyl)methyl radical)-3,5-dichlorophenyl)-4-phenyl-4H-thieno[3,2-b]indole (TTM-2PTI), with NIR emission peaking at 830 nm in toluene, was obtained through attaching a 4-phenyl-4H-thieno[3,2-b]indole group to the TTM radical core. An organic light-emitting diode (OLED) utilizing TTM-2PTI as the emitter exhibits electroluminescence (EL) emission peaking at 870 nm, which is the longest EL wavelength among the doublet-emissive near-infrared (NIR) OLEDs. This work provides a simple molecular design strategy to achieve NIR emission of radicals by leveraging the lower steric hindrance and electron-donating ability of thiophene.
Collapse
Affiliation(s)
- Junshuai Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Minzhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Yuhang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| |
Collapse
|
18
|
Ma Z, Zhang L, Cui Z, Ai X. Improving the Luminescence and Stability of Carbon-Centered Radicals by Kinetic Isotope Effect. Molecules 2023; 28:4805. [PMID: 37375360 DOI: 10.3390/molecules28124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The kinetic isotope effect (KIE) is beneficial to improve the performance of luminescent molecules and relevant light-emitting diodes. In this work, the influences of deuteration on the photophysical property and stability of luminescent radicals are investigated for the first time. Four deuterated radicals based on biphenylmethyl, triphenylmethyl, and deuterated carbazole were synthesized and sufficiently characterized. The deuterated radicals exhibited excellent redox stability, as well as improved thermal and photostability. The appropriate deuteration of relevant C-H bonds would effectively suppress the non-radiative process, resulting in the increase in photoluminescence quantum efficiency (PLQE). This research has demonstrated that the introduction of deuterium atoms could be an effective pathway to develop high-performance luminescent radicals.
Collapse
Affiliation(s)
- Zhichao Ma
- School of Materials Science and Engineering, Collaborative Innovation Center of Information Technology, Collaborative Innovation Center of Marine Science and Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Lintao Zhang
- School of Materials Science and Engineering, Collaborative Innovation Center of Information Technology, Collaborative Innovation Center of Marine Science and Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Zhiyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Avenue, Changchun 130012, China
| | - Xin Ai
- School of Materials Science and Engineering, Collaborative Innovation Center of Information Technology, Collaborative Innovation Center of Marine Science and Technology, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
19
|
Xu J, Guo J, Li S, Yang Y, Lai W, Keoingthong P, Wang S, Zhang L, Dong Q, Zeng Z, Chen Z. Dual Charge Transfer Generated from Stable Mixed-Valence Radical Crystals for Boosting Solar-to-Thermal Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300980. [PMID: 37144542 PMCID: PMC10375089 DOI: 10.1002/advs.202300980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Realizing dual charge transfer (CT) based on stable organic radicals in one system is a long-sought goal, however, remains challenging. In this work, a stable mixed-valence radical crystal is designed via a surfactant-assisted method, namely TTF-(TTF+• )2 -RC (where TTF = tetrathiafulvalene), containing dual CT interactions. The solubilization of surfactants enables successful co-crystallization of mixed-valence TTF molecules with different polarity in aqueous solutions. Short intermolecular distances between adjacent TTF moieties within TTF-(TTF+• )2 -RC facilitate both inter-valence CT (IVCT) between neutral TTF and TTF+• , and inter-radical CT (IRCT) between two TTF+• in radical π-dimer, which are confirmed by single-crystal X-ray diffraction, solid-state absorption, electron spin resonance measurements, and DFT calculations. Moreover, TTF-(TTF+• )2 -RC reveals an open-shell singlet diradical ground state with the antiferromagnetic coupling of 2J = -657 cm-1 and an unprecedented temperature-dependent magnetic property, manifesting the main monoradical characters of IVCT at 113-203 K while the spin-spin interactions in radical dimers of IRCT are predominant at 263-353 K. Notably, dual CT characters endow TTF-(TTF+• )2 -RC with strong light absorption over the full solar spectrum and outstanding stability. As a result, TTF-(TTF+• )2 -RC exhibits significantly enhanced photothermal property, an increase of 46.6 °C within 180 s upon one-sun illumination.
Collapse
Affiliation(s)
- Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
20
|
Feng J, Zhang G, Wen J, He X, Li M. Ultra-Thin 2D Ionic Salt Supported with Strong Hydrogen-Bonding Assisted Ionic Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207509. [PMID: 36799141 DOI: 10.1002/smll.202207509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Indexed: 05/11/2023]
Abstract
2D materials have attracted great interest since the report of graphene. However, because of the fragile stability of ultra-thin nanosheets, most studies are restricted to sheets maintained by strong covalent or coordination bonds. The research on which kind of bonds can maintain the free-standing existence of 2D nanosheets is still of great significance. Recently, 2D ionic salts are successfully synthesized on substrates, but whether 2D ionic salts can free-stand is still a problem. Herein this problem is addressed by a free-standing 2D ionic salt (thickness: ≈2 nm) exfoliated from a 4,4'-bipyridinium hydrochloride salt crystal. The stability of this 2D salt is supported by a strong NH···Cl hydrogen (H)-bonding assisted ionic interaction (17.99 kcal mol-1 ), which is verified by density functional theory calculation and natural bond orbital analysis. The salt crystal has strong air-stable radicals inside and the 2D ionic salt exhibits red fluorescence in solution and in solid-state, especially in solution the stokes shifts are very large (≈ 386 nm). This breakthrough work is not only beneficial for the construction of novel 2D materials but also for the understanding of H-bonding interactions.
Collapse
Affiliation(s)
- Jiaxin Feng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ganbing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ju Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Xianying He
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
21
|
Gao S, Cui Z, Li F. Doublet-emissive materials for organic light-emitting diodes: exciton formation and emission processes. Chem Soc Rev 2023; 52:2875-2885. [PMID: 37052349 DOI: 10.1039/d2cs00772j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Doublet-emission is mainly discovered in stable radicals, lanthanide-metal complexes with an f1 electron configuration and transition-metal complexes with a low-spin d5 electron configuration, and has a distinct radiation mechanism from closed-shell luminescent molecules and thus technology opportunities. There exists an unpaired electron in the frontier molecular orbitals which enables efficient nanosecond-scale luminescence in these materials due to the spin-allowed transitions between doublet-spin states. In this review, we summarize recent advances in these materials and their application in organic light emitting diodes (OLEDs). The photoluminescence and electroluminescence mechanisms of different doublet-emissive molecular systems are discussed, in addition to the photophysical phenomena arising from doublet states. We also outline the current challenges faced by each molecular system, and the potential outlook on the future research trends in this field.
Collapse
Affiliation(s)
- Shengxiang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Zhiyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
22
|
Yang Y, Qiu L, Shi X. Chalcogen Effect of Atom Substitution on the Properties of Tris(2,4,6-trichlorophenyl)methyl(TTM) Radical. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-3008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Xu J, Li S, Yang Y, Chen Z. Stable Organic Radicals Participation in Charge Transfer: A New Strategy toward Molecular Functional Materials. Chemistry 2023; 29:e202203598. [PMID: 36527171 DOI: 10.1002/chem.202203598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Charge-transfer (CT) engineering with inter-/intramolecular CT interactions by simple compositions has emerged as a universal and efficient way to construct organic functional materials. Stable organic radicals with unique physicochemical properties that cannot be realized in closed-shell molecules, have been widely demonstrated to be ideal building blocks to construct versatile organic CT materials. This concept article provides a brief overview of the advances in the design, structure and property of stable organic radicals-based CT molecular functional materials, and the strategy for the generation of these materials is also highlighted. First, radicals are introduced as open-shell donors or acceptors, with a focus on their importance and uniqueness in improving electrical, magnetic and optical properties of CT functional materials. Additionally, CT interactions in stable radical dimers and trimers are further discussed systematically. Finally, the challenges are summarized and perspectives for future development of stable organic radicals-based CT functional materials are provided.
Collapse
Affiliation(s)
- Jieqiong Xu
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
24
|
Li X, Tan W, Bai X, Li F. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
25
|
Jin JM, Chen WC, Tan JH, Li Y, Mu Y, Zhu ZL, Cao C, Ji S, Hu D, Huo Y, Zhang HL, Lee CS. Photo-controllable Luminescence from Radicals Leading to Ratiometric Emission Switching via Dynamic Intermolecular Coupling. Angew Chem Int Ed Engl 2023; 62:e202214281. [PMID: 36314420 DOI: 10.1002/anie.202214281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.
Collapse
Affiliation(s)
- Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
26
|
Lu C, Cho E, Cui Z, Gao Y, Cao W, Brédas JL, Coropceanu V, Li F. Towards Efficient and Stable Donor-Acceptor Luminescent Radicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208190. [PMID: 36417767 DOI: 10.1002/adma.202208190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In contrast to closed-shell luminescent molecules, the electronic ground state and lowest excited state in organic luminescent radicals are both spin doublet, which results in spin-allowed radiative transitions. Most reported luminescent radicals with high photoluminescent quantum efficiency (PLQE) have a donor-acceptor (D-A•) chemical structure where an electron-donating group is covalently attached to an electron-withdrawing radical core (A•). Understanding the main factors that define the efficiency and stability of D-A• type luminescent radicals remains challenging. Here, we designed and synthesized a series of tri(2,4,6-trichlorophenyl)methyl (TTM) radical derivatives with donor substituents varying by their extent of conjugation and their number of imine-type nitrogen atoms. The experimental results suggest that the luminescence efficiency and stability of the radicals are proportional to the degree of conjugation but inversely proportional to the number of imine nitrogen atoms in the substituents. These experimental trends are very well reproduced by density functional theory calculations. The theoretical results indicate that both the luminescence efficiency and radical stability are related to the energy difference between the charge transfer (CT) and local-excitation (LE) states, which decreases as either the number of imine nitrogen atoms in the substituent increases or its conjugation length decreases.
Collapse
Affiliation(s)
- Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Zhiyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuhang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjuan Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
27
|
Matsuda K, Xiaotian R, Nakamura K, Furukori M, Hosokai T, Anraku K, Nakao K, Albrecht K. Photostability of luminescent tris(2,4,6-trichlorophenyl)methyl radical enhanced by terminal modification of carbazole donor. Chem Commun (Camb) 2022; 58:13443-13446. [PMID: 36373670 DOI: 10.1039/d2cc04481a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stable organic luminescent radicals have attracted much attention, but their stability under light irradiation is not yet satisfactory. New luminescent radicals (TTMs) based on terminal benzene ring modified carbazole donors were synthesized and evaluated. Their photostability (half-life under continuous laser irradiation) has improved by 1 order of magnitude compared to simple carbazole donors. This is a new molecular design strategy to improve the photostability of luminescent radicals without reducing other photophysical properties.
Collapse
Affiliation(s)
- Kenshiro Matsuda
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Rui Xiaotian
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kazuhiro Nakamura
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Minori Furukori
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Hosokai
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosuke Anraku
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kohei Nakao
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan.
| | - Ken Albrecht
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga-shi, Fukuoka 816-8580, Japan.
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Wang Z, Zou X, Xie Y, Zhang H, Hu L, Chan CCS, Zhang R, Guo J, Kwok RTK, Lam JWY, Williams ID, Zeng Z, Wong KS, Sherrill CD, Ye R, Tang BZ. A nonconjugated radical polymer with stable red luminescence in the solid state. MATERIALS HORIZONS 2022; 9:2564-2571. [PMID: 35880529 DOI: 10.1039/d2mh00808d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic radicals are unstable and stable radicals usually display non-luminescent properties. Luminescent radicals possess the all-in-one properties of optoelectronics, electronics, and magnetics. To date, the reported structures of luminescent radicals are limited to triphenylmethyl radical derivatives and their analogues, which are stabilized with extended π-conjugation. Here, we demonstrate the first example of a nonconjugated luminescent radical. In spite of the lack of delocalized π-stabilization, the radical polymer readily emits red luminescence in the solid state. A traditional luminescent quencher, 2,2,6,6-tetramethylpiperidin-1-yl turned into a red chromophore when grafted onto a polymer backbone. Experimental data confirm that the emission is associated with the nitroxide radicals and is also affected by the packing of the polymer. This work discloses a novel class of luminescent radicals and a distinctive pathway for luminescence from open-shell materials.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinhui Zou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yi Xie
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Christopher C S Chan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Kam Sing Wong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Department of Chemical and Biological Engineering, and Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
29
|
|
30
|
Kasemthaveechok S, Abella L, Crassous J, Autschbach J, Favereau L. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem Sci 2022; 13:9833-9847. [PMID: 36128246 PMCID: PMC9430691 DOI: 10.1039/d2sc02480b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Organic radicals possessing an electronic configuration in which the energy of the singly occupied molecular orbital (SOMO) is below the highest doubly occupied molecular orbital (HOMO) level have recently attracted significant interest, both theoretically and experimentally. The peculiar orbital energetics of these SOMO-HOMO inversion (SHI) organic radicals set their electronic properties apart from the more common situation where the SOMO is the highest occupied orbital of the system. This review gives a general perspective on SHI, with key fundamental aspects regarding the electronic and structural factors that govern this particular electronic configuration in organic radicals. Selected examples of reported compounds with SHI are highlighted to establish molecular guidelines for designing this type of radical, and to showcase the potential of SHI radicals in organic spintronics as well as for the development of more stable luminescent radicals for OLED applications.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo New York 14260 USA
| | | |
Collapse
|
31
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler H, Andrada DM, Ghadwal RS. Isolation of an Arsenic Diradicaloid with a Cyclic C 2 As 2 -Core. Angew Chem Int Ed Engl 2022; 61:e202207415. [PMID: 35652361 PMCID: PMC9545666 DOI: 10.1002/anie.202207415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Herein, we report on the synthesis, characterization, and reactivity studies of the first cyclic C2 As2 -diradicaloid {(IPr)CAs}2 (6) (IPr = C{N(Dipp)CH}2 ; Dipp = 2,6-iPr2 C6 H3 ). Treatment of (IPr)CH2 (1) with AsCl3 affords the Lewis adduct {(IPr)CH2 }AsCl3 (2). Compound 2 undergoes stepwise dehydrochlorination to yield {(IPr)CH}AsCl2 (3) and {(IPr)CAsCl}2 (5 a) or [{(IPr)CAs}2 Cl]OTf (5 b). Reduction of 5 a (or 5 b) with magnesium turnings gives 6 as a red crystalline solid in 90% yield. Compound 6 featuring a planar C2 As2 ring is diamagnetic and exhibits well resolved NMR signals. DFT calculations reveal a singlet ground state for 6 with a small singlet-triplet energy gap of 8.7 kcal mol-1 . The diradical character of 6 amounts to 20% (CASSCF, complete active space self consistent field) and 28% (DFT). Treatments of 6 with (PhSe)2 and Fe2 (CO)9 give rise to {(IPr)CAs(SePh)}2 (7) and {(IPr)CAs}2 Fe(CO)4 (8), respectively.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
32
|
Abroshan H, Winget P, Kwak HS, Brown CT, Halls MD. Organic radical emitters: nature of doublet excitons in emissive layers. Phys Chem Chem Phys 2022; 24:16891-16899. [PMID: 35788234 DOI: 10.1039/d2cp00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic radical emitters have received significant attention as a new route to efficient organic light-emitting diodes (OLEDs). The electronic structure of radical emitters allows bypassing the triplet harvesting issue in current OLED devices. However, the nature of doublet excited states remains elusive due to the complex nature of emissive layers. To date, the computational efforts have treated radical carrying materials as isolated entities in the gas phase. However, OLED materials are applied as thin solid films where intermolecular interactions significantly impact optoelectronic properties of the devices. Here, we combine molecular dynamics simulations and quantum chemical calculations to evaluate the effect of emitter-host interactions on the performance of radical-based emissive layers. Results demonstrate that intermolecular interactions remarkably modulate the electronic properties of the radicals in the thin solid films. The doublet excitons of isolated emitters demonstrate a hybrid character of charge-transfer (CT) and local-excitation (LE), while the emitter-host clusters present a significant CT character. Further, the impact of static and dynamic disorders on the hole-electron recombination is studied. Although the host-emitter interactions simultaneously decrease radiative rates and increase non-radiative rates, the latter rates are 100 times smaller than the former rates, allowing internal quantum efficiency to reach 100% for the doublet-based emission process. The results of this study highlight the significant impact of host-emitter interactions on radiative and non-radiative recombination processes and offer guidelines to tune these interactions for advancing radical-based OLEDs.
Collapse
|
33
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, Andrada DM, Ghadwal R. Isolation of an Arsenic Diradicaloid with a Cyclic C2As2‐Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Beate Neumann
- Bielefeld University: Universitat Bielefeld Chemistry GERMANY
| | | | - Diego M. Andrada
- Saarland University: Universitat des Saarlandes Chemistry GERMANY
| | - Rajendra Ghadwal
- Universitat Bielefeld Institut für Anorganische Chemie Universitätstrasse 25 33615 Bielefeld GERMANY
| |
Collapse
|
34
|
Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion. Angew Chem Int Ed Engl 2022; 61:e202202571. [DOI: 10.1002/anie.202202571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/01/2023]
|
35
|
Kasemthaveechok S, Abella L, Jean M, Cordier M, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. Carbazole Isomerism in Helical Radical Cations: Spin Delocalization and SOMO-HOMO Level Inversion in the Diradical State. J Am Chem Soc 2022; 144:7253-7263. [PMID: 35413200 DOI: 10.1021/jacs.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new molecular design to afford persistent chiral organic open-shell systems with configurational stability and an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest doubly occupied molecular orbital (HOMO) for both mono- and diradical states. The unpaired electron delocalization within the designed extended helical π-conjugated systems is a crucial factor to reach chemical stabilities, which is not obtained using the classical steric protection approach. The unique features of the obtained helical monoradicals allow an exploration of the chiral intramolecular electron transfer (IET) process in solvents of different polarity by means of optical and chiroptical spectroscopies, resulting in an unprecedented electronic circular dichroism (ECD) sign inversion for the radical transitions. We also characterized the corresponding helical diradicals, which show near-infrared electronic circular dichroism at wavelengths up to 1100 nm and an antiferromagnetic coupling between the spins, with an estimated singlet-triplet gap (ΔEST) of about -1.2 kcal mol-1. The study also revealed an intriguing double SOMO-HOMO inversion (SHI) electronic configuration for these diradicals, providing new insight regarding the peculiar energetic ordering of radical orbitals and the impact on the corresponding (chiral) optoelectronic properties.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Marion Jean
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | - Olivier Cador
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | | | |
Collapse
|
36
|
Cui X, Zhang Z, Yang Y, Li S, Lee C. Organic radical materials in biomedical applications: State of the art and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210264. [PMID: 37323877 PMCID: PMC10190988 DOI: 10.1002/exp.20210264] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 06/17/2023]
Abstract
Owing to their unique chemical reactivities and paramagnetism, organic radicals with unpaired electrons have found widespread exploration in physical, chemical, and biological fields. However, most radicals are too short-lived to be separated and only a few of them can maintain stable radical forms via stereochemical strategies. How to utilize these raw radicals for developing stable radical-containing materials have long been a research hotspot for many years. This perspective introduces fundamental characteristics of organic radical materials and highlights their applications in biomedical fields, particularly for bioimaging, biosensing, and photo-triggered therapies. Molecular design of these radical materials is considered with reference to their outstanding imaging and therapeutic performances. Various challenges currently limiting the wide applications of these organic radical materials and their future development are also discussed.
Collapse
Affiliation(s)
- Xiao Cui
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| | - Zhen Zhang
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| | - Yuliang Yang
- College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Chun‐Sing Lee
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
37
|
Xu J, Chen Q, Li S, Shen J, Keoingthong P, Zhang L, Yin Z, Cai X, Chen Z, Tan W. Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jieqiong Xu
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qian Chen
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Jiachao Shen
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhiwei Yin
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
38
|
Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2015-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Luo J, Rong XF, Ye YY, Li WZ, Wang XQ, Wang W. Research Progress on Triarylmethyl Radical-Based High-Efficiency OLED. Molecules 2022; 27:1632. [PMID: 35268732 PMCID: PMC8911689 DOI: 10.3390/molecules27051632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED's internal quantum efficiency (IQE) to 100%. In recent years, research on the luminescent properties of triarylmethyl radicals has attracted increasing attention. In this review, recent developments in these triarylmethyl radicals and their derivatives in OLED devices are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Qiang Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (J.L.); (X.-F.R.); (Y.-Y.Y.); (W.-Z.L.)
| |
Collapse
|
40
|
Zhou HP, Wu SX, Duan YC, Gao FW, Pan QQ, Kan YH, Su ZM. A theoretical study on the donor ability adjustment of tris(2,4,6-trichlorophenyl)methyl-triarylamine (TTM-TPA) radicals aiming to develop better organic luminescent materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj01548j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-unrestricted DFT and spin-unrestricted TDDFT calculations were performed to systematically investigate the correlation between the electron donating ability of donors and photophysical properties in D–A luminescent radicals.
Collapse
Affiliation(s)
- Hai-Ping Zhou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Shui-Xing Wu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ying-Chen Duan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Feng-Wei Gao
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
| | - Yu-He Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130012, China
- Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
41
|
Zhou HP, Wu SX, Duan YC, Gao FW, Pan QQ, Kan YH, Su ZM. The combination of skeleton-engineering and periphery-engineering: a design strategy for organic doublet emitters. Phys Chem Chem Phys 2022; 24:26853-26862. [DOI: 10.1039/d2cp03948f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) were theoretically designed and evaluated by combining skeleton-engineering and periphery-engineering strategies.
Collapse
Affiliation(s)
- Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
| | - Shui-Xing Wu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ying-Chen Duan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
| | - Feng-Wei Gao
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
| | - Yu-He Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
42
|
Radical character quenches luminescence in the all-hydrocarbon radical benzoBDPA. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Zheng L, Zhu W, Zhou Z, Liu K, Gao M, Tang BZ. Red-to-NIR emissive radical cations derived from simple pyrroles. MATERIALS HORIZONS 2021; 8:3082-3087. [PMID: 34505616 DOI: 10.1039/d1mh01121a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red-to-near-infrared (NIR) fluorophores are highly desirable in bio-imaging studies with advantages of high tissue penetration ability and less interference from auto-fluorescence. However, their preparation usually requires tedious synthetic procedures, which seriously restrict their applications. Thus, the direct preparation of red-to-NIR fluorophores from easily available substrates is highly desirable. Compared with the conventional closed-shell fluorophores, radical cations feature a large red-shift absorption, but only very few of them are fluorescent and they suffer from high instability. Herein, we proposed a convenient strategy for the preparation of red-to-NIR fluorophores through air oxidation of electron-rich 2,5-dimethylpyrroles to in situ generate red-to-NIR emissive radical cations, which can be stabilized by adsorption on silica gel-coated thin layer chromatography (TLC) plates or encapsulated in cucurbit[7]uril (CB[7]). The radical cations derived from pyrroles were verified using electron paramagnetic resonance (EPR) spectroscopy, theoretical calculations and one-electron oxidation experiments. Moreover, the pyrrole-derived radical cations encapsulated in CB[7] can be used for mitochondrial imaging in living cells with high specificity and in vivo imaging with long-term stability. The easily available pyrrole-derived radical cations with red-to-NIR emission are thus promising for biomedical applications.
Collapse
Affiliation(s)
- Lihua Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Zikai Zhou
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Biomedical Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Ben Zhong Tang
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou International Campus, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
44
|
Hattori Y, Tsubaki S, Matsuoka R, Kusamoto T, Nishihara H, Uchida K. Expansion of Photostable Luminescent Radicals by Meta-Substitution. Chem Asian J 2021; 16:2538-2544. [PMID: 34270166 DOI: 10.1002/asia.202100612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Indexed: 11/12/2022]
Abstract
Polychlorinated pyridyldiphenylmethyl radicals having substituents meta to the position bearing the carbon-centered radical (α-carbon) are synthesized. All of them are stable in ambient conditions in solutions and fluorescent in cyclohexane. The fluorescence of the radicals with bromo, phenyl, 4-chlorophenyl, or 2-pyridyl substituents are enhanced in chloroform, while the emission of the radicals with 2-thienyl or 2-furyl substituents are quenched in chloroform. DFT and TD-DFT calculations indicate that the first doublet excited states of the former are locally excited, while the first doublet excited states of the latter are charge transfer states from the π-electron-donating substituent to the accepting radical. The latter also show much higher photostability under 370-nm light irradiation compared with the first reported photostable fluorescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), with pronounced bathochromic shifts of the fluorescence.
Collapse
Affiliation(s)
- Yohei Hattori
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Shunsuke Tsubaki
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Instite for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Instite for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Hiroshi Nishihara
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kingo Uchida
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
45
|
Kusamoto T, Kimura S. Photostable Luminescent Triarylmethyl Radicals and Their Metal Complexes: Photofunctions Unique to Open-shell Electronic States. CHEM LETT 2021. [DOI: 10.1246/cl.210201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuro Kusamoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shun Kimura
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Plass F, Bönisch S, Held F, Ullrich T, Fischer FEJ, Guryev A, Görling A, Kahnt A, Tsogoeva SB. Controlling and Fine-Tuning Charge-Transfer Emission in 2,6-Dicyanoaniline Multichromophores Prepared through Domino Reactions: Entry to a Potentially New Class of OLEDs. J Org Chem 2021; 86:6111-6125. [PMID: 33843224 DOI: 10.1021/acs.joc.0c02944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substituted 2,6-dicyanoanilines are versatile electron donor-acceptor compounds, which have recently received considerable attention, since they exhibit strong fluorescence and may have utility in the synthesis of fluorescent materials, non-natural photosynthetic systems, and materials with nonlinear optical properties. The majority of known synthetic procedures are, however, "stop-and-go" reaction processes involving time-consuming and waste-producing isolation and purification of product intermediates. Here, we present the synthesis of substituted 2,6-dicyanoanilines via atom-economical and eco-friendly one-pot processes, involving metal-free domino reactions, and their subsequent photochemical and photophysical measurements and theoretical calculations. These studies exhibit the existence of an easily tunable radical ion pair-based charge-transfer (CT) emission in the synthesized 2,6-dicyanoaniline-based electron donor-acceptor systems. The charge-transfer processes were explored by photochemical and radiation chemical measurements, in particular, based on femtosecond laser photolysis transient absorption spectroscopy and time-resolved emission spectroscopy, accompanied by pulse radiolysis and complemented by quantum chemical investigations employing time-dependent density-functional theory. This chromophore class exhibits a broad-wavelength-range fine-tunable charge recombination emission with high photoluminescence quantum yields up to 0.98. Together with its rather simple and cost-effective synthesis (using easily available starting materials) and customizable properties, it renders this class of compounds feasible candidates as potential dyes for future optoelectronic devices like organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Fabian Plass
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Simon Bönisch
- Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Felix Held
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Tobias Ullrich
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Florian E J Fischer
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Anton Guryev
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Andreas Görling
- Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Axel Kahnt
- Physical Chemistry Chair I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
47
|
Sharma MK, Rottschäfer D, Neumann B, Stammler HG, Danés S, Andrada DM, van Gastel M, Hinz A, Ghadwal RS. Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands. Chemistry 2021; 27:5803-5809. [PMID: 33470468 PMCID: PMC8048781 DOI: 10.1002/chem.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3‐E)GaCl4 [(3‐E).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6‐iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1‐E) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] (2‐E), in which 1‐E binds to the Fe atom in an allylic (η3‐EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2‐E undergo 1e oxidation with GaCl3 to yield (3‐E)GaCl4. Spin density analysis revealed that the unpaired electron in (3‐E).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of (3‐E)GaCl4 leads to unprecedented η3‐EECvinyl to η3‐ECvinylCPh coordination shuttling to form the dications (4‐E)(GaCl4)2.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Sergi Danés
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
48
|
Cui X, Lu G, Dong S, Li S, Xiao Y, Zhang J, Liu Y, Meng X, Li F, Lee CS. Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. MATERIALS HORIZONS 2021; 8:571-576. [PMID: 34821273 DOI: 10.1039/d0mh01312a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the first demonstration using a stable π-radical as a versatile photosensitizer for hypoxia-overcoming photodynamic therapy. After self-assembling the radical molecules into radical nanoparticles (NPs), the NPs show good water dispersibility, good biocompatibility, broad near-infrared (NIR) absorption and emission at ∼800 nm. Significantly, the radical NPs remain stable in various biological mediums, after 100 days exposure to the ambient environment, and even after long-term laser irradiation, which is superior to many reported radical-based materials. More importantly, upon 635 nm laser irradiation, sufficient superoxide radical (O2-˙) generation and in vitro cytotoxicity were observed addressing the most important hurdle for successful PDT in the oxygen-deficient tumor microenvironment. In addition, the radical NPs are also demonstrated to have effective in vivo PDT efficacy, and excellent biosafety.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Chemistry Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Address 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Kasemthaveechok S, Abella L, Jean M, Cordier M, Roisnel T, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. Axially and Helically Chiral Cationic Radical Bicarbazoles: SOMO-HOMO Level Inversion and Chirality Impact on the Stability of Mono- and Diradical Cations. J Am Chem Soc 2020; 142:20409-20418. [PMID: 33201694 DOI: 10.1021/jacs.0c08948] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report persistent chiral organic mono- and diradical cations based on bicarbazole molecular design with an unprecedented stability dependence on the type of chirality, namely, axial versus helical. An unusual chemical stability was observed for sterically unprotected axial bicarbazole radical in comparison with monocarbazole and helical bicarbazole ones. Such results were experimentally and theoretically investigated, revealing an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbital (HOMO) in both axial and helical bicarbazole monoradicals along with a subtle difference of electronic coupling between the two carbazole units, which is modulated by their relative dihedral angle and related to the type of chirality. Such findings allowed us to explore in depth the SOMO-HOMO inversion (SHI) in chiral radical molecular systems and provide new insights regarding its impact on the stability of organic radicals. Finally, these specific electronic properties allowed us to prepare a persistent, intrinsically chiral, diradical which notably displayed near-infrared electronic circular dichroism responses up to 1100 nm and almost degenerate singlet-triplet ground states with weak antiferromagnetic interactions evaluated by magnetometry experiments.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Marion Jean
- Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France
| | - Marie Cordier
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Thierry Roisnel
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France
| | | | - Olivier Cador
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jeanne Crassous
- Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | | |
Collapse
|